MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxple2 Structured version   Visualization version   GIF version

Theorem cxple2 26739
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.)
Assertion
Ref Expression
cxple2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))

Proof of Theorem cxple2
StepHypRef Expression
1 simpl1l 1225 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
2 simpr 484 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → 0 < 𝐴)
31, 2elrpd 13074 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
43adantr 480 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐴 ∈ ℝ+)
5 simp2l 1200 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ)
65ad2antrr 726 . . . . 5 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
7 simpr 484 . . . . 5 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < 𝐵)
86, 7elrpd 13074 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ+)
9 simp3 1139 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
109ad2antrr 726 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐶 ∈ ℝ+)
11 simp3 1139 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
1211rpred 13077 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
13 relogcl 26617 . . . . . . . 8 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
14133ad2ant1 1134 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (log‘𝐴) ∈ ℝ)
1512, 14remulcld 11291 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐶 · (log‘𝐴)) ∈ ℝ)
16 relogcl 26617 . . . . . . . 8 (𝐵 ∈ ℝ+ → (log‘𝐵) ∈ ℝ)
17163ad2ant2 1135 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (log‘𝐵) ∈ ℝ)
1812, 17remulcld 11291 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐶 · (log‘𝐵)) ∈ ℝ)
19 efle 16154 . . . . . 6 (((𝐶 · (log‘𝐴)) ∈ ℝ ∧ (𝐶 · (log‘𝐵)) ∈ ℝ) → ((𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵)) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵)))))
2015, 18, 19syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵)) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵)))))
21 efle 16154 . . . . . . 7 (((log‘𝐴) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (exp‘(log‘𝐴)) ≤ (exp‘(log‘𝐵))))
2214, 17, 21syl2anc 584 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (exp‘(log‘𝐴)) ≤ (exp‘(log‘𝐵))))
2314, 17, 11lemul2d 13121 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵))))
24 reeflog 26622 . . . . . . . 8 (𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴)
25243ad2ant1 1134 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (exp‘(log‘𝐴)) = 𝐴)
26 reeflog 26622 . . . . . . . 8 (𝐵 ∈ ℝ+ → (exp‘(log‘𝐵)) = 𝐵)
27263ad2ant2 1135 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (exp‘(log‘𝐵)) = 𝐵)
2825, 27breq12d 5156 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((exp‘(log‘𝐴)) ≤ (exp‘(log‘𝐵)) ↔ 𝐴𝐵))
2922, 23, 283bitr3rd 310 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵))))
30 rpre 13043 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
31303ad2ant1 1134 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ)
3231recnd 11289 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
33 rpne0 13051 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ≠ 0)
34333ad2ant1 1134 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ≠ 0)
3512recnd 11289 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
36 cxpef 26707 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐶 ∈ ℂ) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
3732, 34, 35, 36syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
38 rpre 13043 . . . . . . . . 9 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
39383ad2ant2 1135 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ)
4039recnd 11289 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
41 rpne0 13051 . . . . . . . 8 (𝐵 ∈ ℝ+𝐵 ≠ 0)
42413ad2ant2 1135 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐵 ≠ 0)
43 cxpef 26707 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐶 ∈ ℂ) → (𝐵𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵))))
4440, 42, 35, 43syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐵𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵))))
4537, 44breq12d 5156 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵)))))
4620, 29, 453bitr4d 311 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
474, 8, 10, 46syl3anc 1373 . . 3 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
48 0re 11263 . . . . . . . 8 0 ∈ ℝ
49 simp1l 1198 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ)
50 ltnle 11340 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
5148, 49, 50sylancr 587 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
5251biimpa 476 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → ¬ 𝐴 ≤ 0)
539rpred 13077 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
5453adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → 𝐶 ∈ ℝ)
55 rpcxpcl 26718 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴𝑐𝐶) ∈ ℝ+)
563, 54, 55syl2anc 584 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (𝐴𝑐𝐶) ∈ ℝ+)
57 rpgt0 13047 . . . . . . . . 9 ((𝐴𝑐𝐶) ∈ ℝ+ → 0 < (𝐴𝑐𝐶))
58 rpre 13043 . . . . . . . . . 10 ((𝐴𝑐𝐶) ∈ ℝ+ → (𝐴𝑐𝐶) ∈ ℝ)
59 ltnle 11340 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝐴𝑐𝐶) ∈ ℝ) → (0 < (𝐴𝑐𝐶) ↔ ¬ (𝐴𝑐𝐶) ≤ 0))
6048, 58, 59sylancr 587 . . . . . . . . 9 ((𝐴𝑐𝐶) ∈ ℝ+ → (0 < (𝐴𝑐𝐶) ↔ ¬ (𝐴𝑐𝐶) ≤ 0))
6157, 60mpbid 232 . . . . . . . 8 ((𝐴𝑐𝐶) ∈ ℝ+ → ¬ (𝐴𝑐𝐶) ≤ 0)
6256, 61syl 17 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → ¬ (𝐴𝑐𝐶) ≤ 0)
6353recnd 11289 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
649rpne0d 13082 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ≠ 0)
65 0cxp 26708 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (0↑𝑐𝐶) = 0)
6663, 64, 65syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0↑𝑐𝐶) = 0)
6766adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (0↑𝑐𝐶) = 0)
6867breq2d 5155 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → ((𝐴𝑐𝐶) ≤ (0↑𝑐𝐶) ↔ (𝐴𝑐𝐶) ≤ 0))
6962, 68mtbird 325 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → ¬ (𝐴𝑐𝐶) ≤ (0↑𝑐𝐶))
7052, 692falsed 376 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (𝐴 ≤ 0 ↔ (𝐴𝑐𝐶) ≤ (0↑𝑐𝐶)))
71 breq2 5147 . . . . . 6 (0 = 𝐵 → (𝐴 ≤ 0 ↔ 𝐴𝐵))
72 oveq1 7438 . . . . . . 7 (0 = 𝐵 → (0↑𝑐𝐶) = (𝐵𝑐𝐶))
7372breq2d 5155 . . . . . 6 (0 = 𝐵 → ((𝐴𝑐𝐶) ≤ (0↑𝑐𝐶) ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
7471, 73bibi12d 345 . . . . 5 (0 = 𝐵 → ((𝐴 ≤ 0 ↔ (𝐴𝑐𝐶) ≤ (0↑𝑐𝐶)) ↔ (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶))))
7570, 74syl5ibcom 245 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (0 = 𝐵 → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶))))
7675imp 406 . . 3 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
77 simp2r 1201 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ 𝐵)
78 leloe 11347 . . . . . 6 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
7948, 5, 78sylancr 587 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
8077, 79mpbid 232 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 < 𝐵 ∨ 0 = 𝐵))
8180adantr 480 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (0 < 𝐵 ∨ 0 = 𝐵))
8247, 76, 81mpjaodan 961 . 2 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
83 simpr 484 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 = 𝐴)
84 simpl2r 1228 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 ≤ 𝐵)
8583, 84eqbrtrrd 5167 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 𝐴𝐵)
8666adantr 480 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (0↑𝑐𝐶) = 0)
8783oveq1d 7446 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (0↑𝑐𝐶) = (𝐴𝑐𝐶))
8886, 87eqtr3d 2779 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 = (𝐴𝑐𝐶))
89 simpl2l 1227 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 𝐵 ∈ ℝ)
9053adantr 480 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 𝐶 ∈ ℝ)
91 cxpge0 26725 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐶 ∈ ℝ) → 0 ≤ (𝐵𝑐𝐶))
9289, 84, 90, 91syl3anc 1373 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 ≤ (𝐵𝑐𝐶))
9388, 92eqbrtrrd 5167 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶))
9485, 932thd 265 . 2 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
95 simp1r 1199 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ 𝐴)
96 leloe 11347 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
9748, 49, 96sylancr 587 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
9895, 97mpbid 232 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 < 𝐴 ∨ 0 = 𝐴))
9982, 94, 98mpjaodan 961 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   · cmul 11160   < clt 11295  cle 11296  +crp 13034  expce 16097  logclog 26596  𝑐ccxp 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599
This theorem is referenced by:  cxplt2  26740  cxple2a  26741  cxple2d  26769
  Copyright terms: Public domain W3C validator