MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxple2 Structured version   Visualization version   GIF version

Theorem cxple2 26613
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.)
Assertion
Ref Expression
cxple2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))

Proof of Theorem cxple2
StepHypRef Expression
1 simpl1l 1225 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
2 simpr 484 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → 0 < 𝐴)
31, 2elrpd 12999 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
43adantr 480 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐴 ∈ ℝ+)
5 simp2l 1200 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ)
65ad2antrr 726 . . . . 5 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
7 simpr 484 . . . . 5 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < 𝐵)
86, 7elrpd 12999 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ+)
9 simp3 1138 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
109ad2antrr 726 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐶 ∈ ℝ+)
11 simp3 1138 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
1211rpred 13002 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
13 relogcl 26491 . . . . . . . 8 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
14133ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (log‘𝐴) ∈ ℝ)
1512, 14remulcld 11211 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐶 · (log‘𝐴)) ∈ ℝ)
16 relogcl 26491 . . . . . . . 8 (𝐵 ∈ ℝ+ → (log‘𝐵) ∈ ℝ)
17163ad2ant2 1134 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (log‘𝐵) ∈ ℝ)
1812, 17remulcld 11211 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐶 · (log‘𝐵)) ∈ ℝ)
19 efle 16093 . . . . . 6 (((𝐶 · (log‘𝐴)) ∈ ℝ ∧ (𝐶 · (log‘𝐵)) ∈ ℝ) → ((𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵)) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵)))))
2015, 18, 19syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵)) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵)))))
21 efle 16093 . . . . . . 7 (((log‘𝐴) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (exp‘(log‘𝐴)) ≤ (exp‘(log‘𝐵))))
2214, 17, 21syl2anc 584 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (exp‘(log‘𝐴)) ≤ (exp‘(log‘𝐵))))
2314, 17, 11lemul2d 13046 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵))))
24 reeflog 26496 . . . . . . . 8 (𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴)
25243ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (exp‘(log‘𝐴)) = 𝐴)
26 reeflog 26496 . . . . . . . 8 (𝐵 ∈ ℝ+ → (exp‘(log‘𝐵)) = 𝐵)
27263ad2ant2 1134 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (exp‘(log‘𝐵)) = 𝐵)
2825, 27breq12d 5123 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((exp‘(log‘𝐴)) ≤ (exp‘(log‘𝐵)) ↔ 𝐴𝐵))
2922, 23, 283bitr3rd 310 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵))))
30 rpre 12967 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
31303ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ)
3231recnd 11209 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
33 rpne0 12975 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ≠ 0)
34333ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ≠ 0)
3512recnd 11209 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
36 cxpef 26581 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐶 ∈ ℂ) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
3732, 34, 35, 36syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
38 rpre 12967 . . . . . . . . 9 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
39383ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ)
4039recnd 11209 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
41 rpne0 12975 . . . . . . . 8 (𝐵 ∈ ℝ+𝐵 ≠ 0)
42413ad2ant2 1134 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐵 ≠ 0)
43 cxpef 26581 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐶 ∈ ℂ) → (𝐵𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵))))
4440, 42, 35, 43syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐵𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵))))
4537, 44breq12d 5123 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵)))))
4620, 29, 453bitr4d 311 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
474, 8, 10, 46syl3anc 1373 . . 3 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
48 0re 11183 . . . . . . . 8 0 ∈ ℝ
49 simp1l 1198 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ)
50 ltnle 11260 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
5148, 49, 50sylancr 587 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
5251biimpa 476 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → ¬ 𝐴 ≤ 0)
539rpred 13002 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
5453adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → 𝐶 ∈ ℝ)
55 rpcxpcl 26592 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴𝑐𝐶) ∈ ℝ+)
563, 54, 55syl2anc 584 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (𝐴𝑐𝐶) ∈ ℝ+)
57 rpgt0 12971 . . . . . . . . 9 ((𝐴𝑐𝐶) ∈ ℝ+ → 0 < (𝐴𝑐𝐶))
58 rpre 12967 . . . . . . . . . 10 ((𝐴𝑐𝐶) ∈ ℝ+ → (𝐴𝑐𝐶) ∈ ℝ)
59 ltnle 11260 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝐴𝑐𝐶) ∈ ℝ) → (0 < (𝐴𝑐𝐶) ↔ ¬ (𝐴𝑐𝐶) ≤ 0))
6048, 58, 59sylancr 587 . . . . . . . . 9 ((𝐴𝑐𝐶) ∈ ℝ+ → (0 < (𝐴𝑐𝐶) ↔ ¬ (𝐴𝑐𝐶) ≤ 0))
6157, 60mpbid 232 . . . . . . . 8 ((𝐴𝑐𝐶) ∈ ℝ+ → ¬ (𝐴𝑐𝐶) ≤ 0)
6256, 61syl 17 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → ¬ (𝐴𝑐𝐶) ≤ 0)
6353recnd 11209 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
649rpne0d 13007 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ≠ 0)
65 0cxp 26582 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (0↑𝑐𝐶) = 0)
6663, 64, 65syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0↑𝑐𝐶) = 0)
6766adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (0↑𝑐𝐶) = 0)
6867breq2d 5122 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → ((𝐴𝑐𝐶) ≤ (0↑𝑐𝐶) ↔ (𝐴𝑐𝐶) ≤ 0))
6962, 68mtbird 325 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → ¬ (𝐴𝑐𝐶) ≤ (0↑𝑐𝐶))
7052, 692falsed 376 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (𝐴 ≤ 0 ↔ (𝐴𝑐𝐶) ≤ (0↑𝑐𝐶)))
71 breq2 5114 . . . . . 6 (0 = 𝐵 → (𝐴 ≤ 0 ↔ 𝐴𝐵))
72 oveq1 7397 . . . . . . 7 (0 = 𝐵 → (0↑𝑐𝐶) = (𝐵𝑐𝐶))
7372breq2d 5122 . . . . . 6 (0 = 𝐵 → ((𝐴𝑐𝐶) ≤ (0↑𝑐𝐶) ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
7471, 73bibi12d 345 . . . . 5 (0 = 𝐵 → ((𝐴 ≤ 0 ↔ (𝐴𝑐𝐶) ≤ (0↑𝑐𝐶)) ↔ (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶))))
7570, 74syl5ibcom 245 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (0 = 𝐵 → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶))))
7675imp 406 . . 3 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
77 simp2r 1201 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ 𝐵)
78 leloe 11267 . . . . . 6 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
7948, 5, 78sylancr 587 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
8077, 79mpbid 232 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 < 𝐵 ∨ 0 = 𝐵))
8180adantr 480 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (0 < 𝐵 ∨ 0 = 𝐵))
8247, 76, 81mpjaodan 960 . 2 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
83 simpr 484 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 = 𝐴)
84 simpl2r 1228 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 ≤ 𝐵)
8583, 84eqbrtrrd 5134 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 𝐴𝐵)
8666adantr 480 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (0↑𝑐𝐶) = 0)
8783oveq1d 7405 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (0↑𝑐𝐶) = (𝐴𝑐𝐶))
8886, 87eqtr3d 2767 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 = (𝐴𝑐𝐶))
89 simpl2l 1227 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 𝐵 ∈ ℝ)
9053adantr 480 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 𝐶 ∈ ℝ)
91 cxpge0 26599 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐶 ∈ ℝ) → 0 ≤ (𝐵𝑐𝐶))
9289, 84, 90, 91syl3anc 1373 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 ≤ (𝐵𝑐𝐶))
9388, 92eqbrtrrd 5134 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶))
9485, 932thd 265 . 2 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
95 simp1r 1199 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ 𝐴)
96 leloe 11267 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
9748, 49, 96sylancr 587 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
9895, 97mpbid 232 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 < 𝐴 ∨ 0 = 𝐴))
9982, 94, 98mpjaodan 960 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   · cmul 11080   < clt 11215  cle 11216  +crp 12958  expce 16034  logclog 26470  𝑐ccxp 26471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473
This theorem is referenced by:  cxplt2  26614  cxple2a  26615  cxple2d  26643
  Copyright terms: Public domain W3C validator