MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxple2 Structured version   Visualization version   GIF version

Theorem cxple2 25852
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.)
Assertion
Ref Expression
cxple2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))

Proof of Theorem cxple2
StepHypRef Expression
1 simpl1l 1223 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
2 simpr 485 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → 0 < 𝐴)
31, 2elrpd 12769 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
43adantr 481 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐴 ∈ ℝ+)
5 simp2l 1198 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ)
65ad2antrr 723 . . . . 5 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
7 simpr 485 . . . . 5 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 0 < 𝐵)
86, 7elrpd 12769 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ+)
9 simp3 1137 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
109ad2antrr 723 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → 𝐶 ∈ ℝ+)
11 simp3 1137 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
1211rpred 12772 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
13 relogcl 25731 . . . . . . . 8 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
14133ad2ant1 1132 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (log‘𝐴) ∈ ℝ)
1512, 14remulcld 11005 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐶 · (log‘𝐴)) ∈ ℝ)
16 relogcl 25731 . . . . . . . 8 (𝐵 ∈ ℝ+ → (log‘𝐵) ∈ ℝ)
17163ad2ant2 1133 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (log‘𝐵) ∈ ℝ)
1812, 17remulcld 11005 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐶 · (log‘𝐵)) ∈ ℝ)
19 efle 15827 . . . . . 6 (((𝐶 · (log‘𝐴)) ∈ ℝ ∧ (𝐶 · (log‘𝐵)) ∈ ℝ) → ((𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵)) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵)))))
2015, 18, 19syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵)) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵)))))
21 efle 15827 . . . . . . 7 (((log‘𝐴) ∈ ℝ ∧ (log‘𝐵) ∈ ℝ) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (exp‘(log‘𝐴)) ≤ (exp‘(log‘𝐵))))
2214, 17, 21syl2anc 584 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (exp‘(log‘𝐴)) ≤ (exp‘(log‘𝐵))))
2314, 17, 11lemul2d 12816 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((log‘𝐴) ≤ (log‘𝐵) ↔ (𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵))))
24 reeflog 25736 . . . . . . . 8 (𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴)
25243ad2ant1 1132 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (exp‘(log‘𝐴)) = 𝐴)
26 reeflog 25736 . . . . . . . 8 (𝐵 ∈ ℝ+ → (exp‘(log‘𝐵)) = 𝐵)
27263ad2ant2 1133 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (exp‘(log‘𝐵)) = 𝐵)
2825, 27breq12d 5087 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((exp‘(log‘𝐴)) ≤ (exp‘(log‘𝐵)) ↔ 𝐴𝐵))
2922, 23, 283bitr3rd 310 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐶 · (log‘𝐴)) ≤ (𝐶 · (log‘𝐵))))
30 rpre 12738 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
31303ad2ant1 1132 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ)
3231recnd 11003 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
33 rpne0 12746 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ≠ 0)
34333ad2ant1 1132 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ≠ 0)
3512recnd 11003 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
36 cxpef 25820 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐶 ∈ ℂ) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
3732, 34, 35, 36syl3anc 1370 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
38 rpre 12738 . . . . . . . . 9 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
39383ad2ant2 1133 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ)
4039recnd 11003 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
41 rpne0 12746 . . . . . . . 8 (𝐵 ∈ ℝ+𝐵 ≠ 0)
42413ad2ant2 1133 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐵 ≠ 0)
43 cxpef 25820 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐶 ∈ ℂ) → (𝐵𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵))))
4440, 42, 35, 43syl3anc 1370 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐵𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵))))
4537, 44breq12d 5087 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → ((𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶) ↔ (exp‘(𝐶 · (log‘𝐴))) ≤ (exp‘(𝐶 · (log‘𝐵)))))
4620, 29, 453bitr4d 311 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
474, 8, 10, 46syl3anc 1370 . . 3 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 < 𝐵) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
48 0re 10977 . . . . . . . 8 0 ∈ ℝ
49 simp1l 1196 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ)
50 ltnle 11054 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
5148, 49, 50sylancr 587 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
5251biimpa 477 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → ¬ 𝐴 ≤ 0)
539rpred 12772 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
5453adantr 481 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → 𝐶 ∈ ℝ)
55 rpcxpcl 25831 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴𝑐𝐶) ∈ ℝ+)
563, 54, 55syl2anc 584 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (𝐴𝑐𝐶) ∈ ℝ+)
57 rpgt0 12742 . . . . . . . . 9 ((𝐴𝑐𝐶) ∈ ℝ+ → 0 < (𝐴𝑐𝐶))
58 rpre 12738 . . . . . . . . . 10 ((𝐴𝑐𝐶) ∈ ℝ+ → (𝐴𝑐𝐶) ∈ ℝ)
59 ltnle 11054 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝐴𝑐𝐶) ∈ ℝ) → (0 < (𝐴𝑐𝐶) ↔ ¬ (𝐴𝑐𝐶) ≤ 0))
6048, 58, 59sylancr 587 . . . . . . . . 9 ((𝐴𝑐𝐶) ∈ ℝ+ → (0 < (𝐴𝑐𝐶) ↔ ¬ (𝐴𝑐𝐶) ≤ 0))
6157, 60mpbid 231 . . . . . . . 8 ((𝐴𝑐𝐶) ∈ ℝ+ → ¬ (𝐴𝑐𝐶) ≤ 0)
6256, 61syl 17 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → ¬ (𝐴𝑐𝐶) ≤ 0)
6353recnd 11003 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
649rpne0d 12777 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ≠ 0)
65 0cxp 25821 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (0↑𝑐𝐶) = 0)
6663, 64, 65syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0↑𝑐𝐶) = 0)
6766adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (0↑𝑐𝐶) = 0)
6867breq2d 5086 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → ((𝐴𝑐𝐶) ≤ (0↑𝑐𝐶) ↔ (𝐴𝑐𝐶) ≤ 0))
6962, 68mtbird 325 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → ¬ (𝐴𝑐𝐶) ≤ (0↑𝑐𝐶))
7052, 692falsed 377 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (𝐴 ≤ 0 ↔ (𝐴𝑐𝐶) ≤ (0↑𝑐𝐶)))
71 breq2 5078 . . . . . 6 (0 = 𝐵 → (𝐴 ≤ 0 ↔ 𝐴𝐵))
72 oveq1 7282 . . . . . . 7 (0 = 𝐵 → (0↑𝑐𝐶) = (𝐵𝑐𝐶))
7372breq2d 5086 . . . . . 6 (0 = 𝐵 → ((𝐴𝑐𝐶) ≤ (0↑𝑐𝐶) ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
7471, 73bibi12d 346 . . . . 5 (0 = 𝐵 → ((𝐴 ≤ 0 ↔ (𝐴𝑐𝐶) ≤ (0↑𝑐𝐶)) ↔ (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶))))
7570, 74syl5ibcom 244 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (0 = 𝐵 → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶))))
7675imp 407 . . 3 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) ∧ 0 = 𝐵) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
77 simp2r 1199 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ 𝐵)
78 leloe 11061 . . . . . 6 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
7948, 5, 78sylancr 587 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
8077, 79mpbid 231 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 < 𝐵 ∨ 0 = 𝐵))
8180adantr 481 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (0 < 𝐵 ∨ 0 = 𝐵))
8247, 76, 81mpjaodan 956 . 2 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 < 𝐴) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
83 simpr 485 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 = 𝐴)
84 simpl2r 1226 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 ≤ 𝐵)
8583, 84eqbrtrrd 5098 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 𝐴𝐵)
8666adantr 481 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (0↑𝑐𝐶) = 0)
8783oveq1d 7290 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (0↑𝑐𝐶) = (𝐴𝑐𝐶))
8886, 87eqtr3d 2780 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 = (𝐴𝑐𝐶))
89 simpl2l 1225 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 𝐵 ∈ ℝ)
9053adantr 481 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 𝐶 ∈ ℝ)
91 cxpge0 25838 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐶 ∈ ℝ) → 0 ≤ (𝐵𝑐𝐶))
9289, 84, 90, 91syl3anc 1370 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → 0 ≤ (𝐵𝑐𝐶))
9388, 92eqbrtrrd 5098 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶))
9485, 932thd 264 . 2 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) ∧ 0 = 𝐴) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
95 simp1r 1197 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ 𝐴)
96 leloe 11061 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
9748, 49, 96sylancr 587 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
9895, 97mpbid 231 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (0 < 𝐴 ∨ 0 = 𝐴))
9982, 94, 98mpjaodan 956 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴𝑐𝐶) ≤ (𝐵𝑐𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   · cmul 10876   < clt 11009  cle 11010  +crp 12730  expce 15771  logclog 25710  𝑐ccxp 25711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713
This theorem is referenced by:  cxplt2  25853  cxple2a  25854  cxple2d  25882
  Copyright terms: Public domain W3C validator