| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fz0n | Structured version Visualization version GIF version | ||
| Description: The sequence (0...(𝑁 − 1)) is empty iff 𝑁 is zero. (Contributed by Scott Fenton, 16-May-2014.) |
| Ref | Expression |
|---|---|
| fz0n | ⊢ (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12516 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | nn0z 12530 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 3 | peano2zm 12552 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ) |
| 5 | fzn 13477 | . . 3 ⊢ ((0 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) < 0 ↔ (0...(𝑁 − 1)) = ∅)) | |
| 6 | 1, 4, 5 | sylancr 587 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ (0...(𝑁 − 1)) = ∅)) |
| 7 | elnn0 12420 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 8 | nnge1 12190 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
| 9 | nnre 12169 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 10 | 1re 11150 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 11 | subge0 11667 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ 1 ≤ 𝑁)) | |
| 12 | 0re 11152 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 13 | resubcl 11462 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 − 1) ∈ ℝ) | |
| 14 | lenlt 11228 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0)) | |
| 15 | 12, 13, 14 | sylancr 587 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0)) |
| 16 | 11, 15 | bitr3d 281 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (1 ≤ 𝑁 ↔ ¬ (𝑁 − 1) < 0)) |
| 17 | 9, 10, 16 | sylancl 586 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (1 ≤ 𝑁 ↔ ¬ (𝑁 − 1) < 0)) |
| 18 | 8, 17 | mpbid 232 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ¬ (𝑁 − 1) < 0) |
| 19 | nnne0 12196 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 20 | 19 | neneqd 2930 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ¬ 𝑁 = 0) |
| 21 | 18, 20 | 2falsed 376 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) < 0 ↔ 𝑁 = 0)) |
| 22 | oveq1 7376 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑁 − 1) = (0 − 1)) | |
| 23 | df-neg 11384 | . . . . . . 7 ⊢ -1 = (0 − 1) | |
| 24 | 22, 23 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 − 1) = -1) |
| 25 | neg1lt0 12150 | . . . . . 6 ⊢ -1 < 0 | |
| 26 | 24, 25 | eqbrtrdi 5141 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁 − 1) < 0) |
| 27 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
| 28 | 26, 27 | 2thd 265 | . . . 4 ⊢ (𝑁 = 0 → ((𝑁 − 1) < 0 ↔ 𝑁 = 0)) |
| 29 | 21, 28 | jaoi 857 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝑁 − 1) < 0 ↔ 𝑁 = 0)) |
| 30 | 7, 29 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ 𝑁 = 0)) |
| 31 | 6, 30 | bitr3d 281 | 1 ⊢ (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∅c0 4292 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 < clt 11184 ≤ cle 11185 − cmin 11381 -cneg 11382 ℕcn 12162 ℕ0cn0 12418 ℤcz 12505 ...cfz 13444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |