Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fz0n Structured version   Visualization version   GIF version

Theorem fz0n 33022
Description: The sequence (0...(𝑁 − 1)) is empty iff 𝑁 is zero. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
fz0n (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0))

Proof of Theorem fz0n
StepHypRef Expression
1 0z 11989 . . 3 0 ∈ ℤ
2 nn0z 12002 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 peano2zm 12022 . . . 4 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
42, 3syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
5 fzn 12927 . . 3 ((0 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) < 0 ↔ (0...(𝑁 − 1)) = ∅))
61, 4, 5sylancr 590 . 2 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ (0...(𝑁 − 1)) = ∅))
7 elnn0 11896 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
8 nnge1 11662 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
9 nnre 11641 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
10 1re 10639 . . . . . . 7 1 ∈ ℝ
11 subge0 11151 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ 1 ≤ 𝑁))
12 0re 10641 . . . . . . . . 9 0 ∈ ℝ
13 resubcl 10948 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 − 1) ∈ ℝ)
14 lenlt 10717 . . . . . . . . 9 ((0 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0))
1512, 13, 14sylancr 590 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0))
1611, 15bitr3d 284 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (1 ≤ 𝑁 ↔ ¬ (𝑁 − 1) < 0))
179, 10, 16sylancl 589 . . . . . 6 (𝑁 ∈ ℕ → (1 ≤ 𝑁 ↔ ¬ (𝑁 − 1) < 0))
188, 17mpbid 235 . . . . 5 (𝑁 ∈ ℕ → ¬ (𝑁 − 1) < 0)
19 nnne0 11668 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2019neneqd 3019 . . . . 5 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
2118, 202falsed 380 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
22 oveq1 7156 . . . . . . 7 (𝑁 = 0 → (𝑁 − 1) = (0 − 1))
23 df-neg 10871 . . . . . . 7 -1 = (0 − 1)
2422, 23syl6eqr 2877 . . . . . 6 (𝑁 = 0 → (𝑁 − 1) = -1)
25 neg1lt0 11751 . . . . . 6 -1 < 0
2624, 25eqbrtrdi 5091 . . . . 5 (𝑁 = 0 → (𝑁 − 1) < 0)
27 id 22 . . . . 5 (𝑁 = 0 → 𝑁 = 0)
2826, 272thd 268 . . . 4 (𝑁 = 0 → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
2921, 28jaoi 854 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
307, 29sylbi 220 . 2 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
316, 30bitr3d 284 1 (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2115  c0 4276   class class class wbr 5052  (class class class)co 7149  cr 10534  0cc0 10535  1c1 10536   < clt 10673  cle 10674  cmin 10868  -cneg 10869  cn 11634  0cn0 11894  cz 11978  ...cfz 12894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator