Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fz0n Structured version   Visualization version   GIF version

Theorem fz0n 35691
Description: The sequence (0...(𝑁 − 1)) is empty iff 𝑁 is zero. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
fz0n (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0))

Proof of Theorem fz0n
StepHypRef Expression
1 0z 12516 . . 3 0 ∈ ℤ
2 nn0z 12530 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 peano2zm 12552 . . . 4 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
42, 3syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
5 fzn 13477 . . 3 ((0 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) < 0 ↔ (0...(𝑁 − 1)) = ∅))
61, 4, 5sylancr 587 . 2 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ (0...(𝑁 − 1)) = ∅))
7 elnn0 12420 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
8 nnge1 12190 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
9 nnre 12169 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
10 1re 11150 . . . . . . 7 1 ∈ ℝ
11 subge0 11667 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ 1 ≤ 𝑁))
12 0re 11152 . . . . . . . . 9 0 ∈ ℝ
13 resubcl 11462 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 − 1) ∈ ℝ)
14 lenlt 11228 . . . . . . . . 9 ((0 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0))
1512, 13, 14sylancr 587 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0))
1611, 15bitr3d 281 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (1 ≤ 𝑁 ↔ ¬ (𝑁 − 1) < 0))
179, 10, 16sylancl 586 . . . . . 6 (𝑁 ∈ ℕ → (1 ≤ 𝑁 ↔ ¬ (𝑁 − 1) < 0))
188, 17mpbid 232 . . . . 5 (𝑁 ∈ ℕ → ¬ (𝑁 − 1) < 0)
19 nnne0 12196 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2019neneqd 2930 . . . . 5 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
2118, 202falsed 376 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
22 oveq1 7376 . . . . . . 7 (𝑁 = 0 → (𝑁 − 1) = (0 − 1))
23 df-neg 11384 . . . . . . 7 -1 = (0 − 1)
2422, 23eqtr4di 2782 . . . . . 6 (𝑁 = 0 → (𝑁 − 1) = -1)
25 neg1lt0 12150 . . . . . 6 -1 < 0
2624, 25eqbrtrdi 5141 . . . . 5 (𝑁 = 0 → (𝑁 − 1) < 0)
27 id 22 . . . . 5 (𝑁 = 0 → 𝑁 = 0)
2826, 272thd 265 . . . 4 (𝑁 = 0 → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
2921, 28jaoi 857 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
307, 29sylbi 217 . 2 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
316, 30bitr3d 281 1 (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  c0 4292   class class class wbr 5102  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   < clt 11184  cle 11185  cmin 11381  -cneg 11382  cn 12162  0cn0 12418  cz 12505  ...cfz 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator