Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fz0n Structured version   Visualization version   GIF version

Theorem fz0n 33075
Description: The sequence (0...(𝑁 − 1)) is empty iff 𝑁 is zero. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
fz0n (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0))

Proof of Theorem fz0n
StepHypRef Expression
1 0z 11980 . . 3 0 ∈ ℤ
2 nn0z 11993 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 peano2zm 12013 . . . 4 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
42, 3syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
5 fzn 12918 . . 3 ((0 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) < 0 ↔ (0...(𝑁 − 1)) = ∅))
61, 4, 5sylancr 590 . 2 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ (0...(𝑁 − 1)) = ∅))
7 elnn0 11887 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
8 nnge1 11653 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
9 nnre 11632 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
10 1re 10630 . . . . . . 7 1 ∈ ℝ
11 subge0 11142 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ 1 ≤ 𝑁))
12 0re 10632 . . . . . . . . 9 0 ∈ ℝ
13 resubcl 10939 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 − 1) ∈ ℝ)
14 lenlt 10708 . . . . . . . . 9 ((0 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0))
1512, 13, 14sylancr 590 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0))
1611, 15bitr3d 284 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (1 ≤ 𝑁 ↔ ¬ (𝑁 − 1) < 0))
179, 10, 16sylancl 589 . . . . . 6 (𝑁 ∈ ℕ → (1 ≤ 𝑁 ↔ ¬ (𝑁 − 1) < 0))
188, 17mpbid 235 . . . . 5 (𝑁 ∈ ℕ → ¬ (𝑁 − 1) < 0)
19 nnne0 11659 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2019neneqd 2992 . . . . 5 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
2118, 202falsed 380 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
22 oveq1 7142 . . . . . . 7 (𝑁 = 0 → (𝑁 − 1) = (0 − 1))
23 df-neg 10862 . . . . . . 7 -1 = (0 − 1)
2422, 23eqtr4di 2851 . . . . . 6 (𝑁 = 0 → (𝑁 − 1) = -1)
25 neg1lt0 11742 . . . . . 6 -1 < 0
2624, 25eqbrtrdi 5069 . . . . 5 (𝑁 = 0 → (𝑁 − 1) < 0)
27 id 22 . . . . 5 (𝑁 = 0 → 𝑁 = 0)
2826, 272thd 268 . . . 4 (𝑁 = 0 → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
2921, 28jaoi 854 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
307, 29sylbi 220 . 2 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
316, 30bitr3d 284 1 (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  c0 4243   class class class wbr 5030  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   < clt 10664  cle 10665  cmin 10859  -cneg 10860  cn 11625  0cn0 11885  cz 11969  ...cfz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator