Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fz0n Structured version   Visualization version   GIF version

Theorem fz0n 34594
Description: The sequence (0...(𝑁 − 1)) is empty iff 𝑁 is zero. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
fz0n (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0))

Proof of Theorem fz0n
StepHypRef Expression
1 0z 12553 . . 3 0 ∈ ℤ
2 nn0z 12567 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 peano2zm 12589 . . . 4 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
42, 3syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
5 fzn 13501 . . 3 ((0 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) < 0 ↔ (0...(𝑁 − 1)) = ∅))
61, 4, 5sylancr 587 . 2 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ (0...(𝑁 − 1)) = ∅))
7 elnn0 12458 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
8 nnge1 12224 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
9 nnre 12203 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
10 1re 11198 . . . . . . 7 1 ∈ ℝ
11 subge0 11711 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ 1 ≤ 𝑁))
12 0re 11200 . . . . . . . . 9 0 ∈ ℝ
13 resubcl 11508 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 − 1) ∈ ℝ)
14 lenlt 11276 . . . . . . . . 9 ((0 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0))
1512, 13, 14sylancr 587 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0))
1611, 15bitr3d 280 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (1 ≤ 𝑁 ↔ ¬ (𝑁 − 1) < 0))
179, 10, 16sylancl 586 . . . . . 6 (𝑁 ∈ ℕ → (1 ≤ 𝑁 ↔ ¬ (𝑁 − 1) < 0))
188, 17mpbid 231 . . . . 5 (𝑁 ∈ ℕ → ¬ (𝑁 − 1) < 0)
19 nnne0 12230 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2019neneqd 2945 . . . . 5 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
2118, 202falsed 376 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
22 oveq1 7401 . . . . . . 7 (𝑁 = 0 → (𝑁 − 1) = (0 − 1))
23 df-neg 11431 . . . . . . 7 -1 = (0 − 1)
2422, 23eqtr4di 2790 . . . . . 6 (𝑁 = 0 → (𝑁 − 1) = -1)
25 neg1lt0 12313 . . . . . 6 -1 < 0
2624, 25eqbrtrdi 5181 . . . . 5 (𝑁 = 0 → (𝑁 − 1) < 0)
27 id 22 . . . . 5 (𝑁 = 0 → 𝑁 = 0)
2826, 272thd 264 . . . 4 (𝑁 = 0 → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
2921, 28jaoi 855 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
307, 29sylbi 216 . 2 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
316, 30bitr3d 280 1 (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  c0 4319   class class class wbr 5142  (class class class)co 7394  cr 11093  0cc0 11094  1c1 11095   < clt 11232  cle 11233  cmin 11428  -cneg 11429  cn 12196  0cn0 12456  cz 12542  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-er 8688  df-en 8925  df-dom 8926  df-sdom 8927  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-n0 12457  df-z 12543  df-uz 12807  df-fz 13469
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator