![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fz0n | Structured version Visualization version GIF version |
Description: The sequence (0...(𝑁 − 1)) is empty iff 𝑁 is zero. (Contributed by Scott Fenton, 16-May-2014.) |
Ref | Expression |
---|---|
fz0n | ⊢ (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 11802 | . . 3 ⊢ 0 ∈ ℤ | |
2 | nn0z 11816 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
3 | peano2zm 11836 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ) |
5 | fzn 12737 | . . 3 ⊢ ((0 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) < 0 ↔ (0...(𝑁 − 1)) = ∅)) | |
6 | 1, 4, 5 | sylancr 579 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ (0...(𝑁 − 1)) = ∅)) |
7 | elnn0 11707 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
8 | nnge1 11466 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
9 | nnre 11445 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
10 | 1re 10437 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
11 | subge0 10952 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ 1 ≤ 𝑁)) | |
12 | 0re 10439 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
13 | resubcl 10749 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 − 1) ∈ ℝ) | |
14 | lenlt 10517 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0)) | |
15 | 12, 13, 14 | sylancr 579 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0)) |
16 | 11, 15 | bitr3d 273 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (1 ≤ 𝑁 ↔ ¬ (𝑁 − 1) < 0)) |
17 | 9, 10, 16 | sylancl 578 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (1 ≤ 𝑁 ↔ ¬ (𝑁 − 1) < 0)) |
18 | 8, 17 | mpbid 224 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ¬ (𝑁 − 1) < 0) |
19 | nnne0 11472 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
20 | 19 | neneqd 2965 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ¬ 𝑁 = 0) |
21 | 18, 20 | 2falsed 369 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) < 0 ↔ 𝑁 = 0)) |
22 | oveq1 6981 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑁 − 1) = (0 − 1)) | |
23 | df-neg 10671 | . . . . . . 7 ⊢ -1 = (0 − 1) | |
24 | 22, 23 | syl6eqr 2825 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 − 1) = -1) |
25 | neg1lt0 11562 | . . . . . 6 ⊢ -1 < 0 | |
26 | 24, 25 | syl6eqbr 4964 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁 − 1) < 0) |
27 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
28 | 26, 27 | 2thd 257 | . . . 4 ⊢ (𝑁 = 0 → ((𝑁 − 1) < 0 ↔ 𝑁 = 0)) |
29 | 21, 28 | jaoi 844 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝑁 − 1) < 0 ↔ 𝑁 = 0)) |
30 | 7, 29 | sylbi 209 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ 𝑁 = 0)) |
31 | 6, 30 | bitr3d 273 | 1 ⊢ (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∨ wo 834 = wceq 1508 ∈ wcel 2051 ∅c0 4172 class class class wbr 4925 (class class class)co 6974 ℝcr 10332 0cc0 10333 1c1 10334 < clt 10472 ≤ cle 10473 − cmin 10668 -cneg 10669 ℕcn 11437 ℕ0cn0 11705 ℤcz 11791 ...cfz 12706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-n0 11706 df-z 11792 df-uz 12057 df-fz 12707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |