Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fz0n Structured version   Visualization version   GIF version

Theorem fz0n 35748
Description: The sequence (0...(𝑁 − 1)) is empty iff 𝑁 is zero. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
fz0n (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0))

Proof of Theorem fz0n
StepHypRef Expression
1 0z 12599 . . 3 0 ∈ ℤ
2 nn0z 12613 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 peano2zm 12635 . . . 4 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
42, 3syl 17 . . 3 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
5 fzn 13557 . . 3 ((0 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) < 0 ↔ (0...(𝑁 − 1)) = ∅))
61, 4, 5sylancr 587 . 2 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ (0...(𝑁 − 1)) = ∅))
7 elnn0 12503 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
8 nnge1 12268 . . . . . 6 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
9 nnre 12247 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
10 1re 11235 . . . . . . 7 1 ∈ ℝ
11 subge0 11750 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ 1 ≤ 𝑁))
12 0re 11237 . . . . . . . . 9 0 ∈ ℝ
13 resubcl 11547 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 − 1) ∈ ℝ)
14 lenlt 11313 . . . . . . . . 9 ((0 ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0))
1512, 13, 14sylancr 587 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝑁 − 1) ↔ ¬ (𝑁 − 1) < 0))
1611, 15bitr3d 281 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (1 ≤ 𝑁 ↔ ¬ (𝑁 − 1) < 0))
179, 10, 16sylancl 586 . . . . . 6 (𝑁 ∈ ℕ → (1 ≤ 𝑁 ↔ ¬ (𝑁 − 1) < 0))
188, 17mpbid 232 . . . . 5 (𝑁 ∈ ℕ → ¬ (𝑁 − 1) < 0)
19 nnne0 12274 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2019neneqd 2937 . . . . 5 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
2118, 202falsed 376 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
22 oveq1 7412 . . . . . . 7 (𝑁 = 0 → (𝑁 − 1) = (0 − 1))
23 df-neg 11469 . . . . . . 7 -1 = (0 − 1)
2422, 23eqtr4di 2788 . . . . . 6 (𝑁 = 0 → (𝑁 − 1) = -1)
25 neg1lt0 12357 . . . . . 6 -1 < 0
2624, 25eqbrtrdi 5158 . . . . 5 (𝑁 = 0 → (𝑁 − 1) < 0)
27 id 22 . . . . 5 (𝑁 = 0 → 𝑁 = 0)
2826, 272thd 265 . . . 4 (𝑁 = 0 → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
2921, 28jaoi 857 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
307, 29sylbi 217 . 2 (𝑁 ∈ ℕ0 → ((𝑁 − 1) < 0 ↔ 𝑁 = 0))
316, 30bitr3d 281 1 (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  c0 4308   class class class wbr 5119  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   < clt 11269  cle 11270  cmin 11466  -cneg 11467  cn 12240  0cn0 12501  cz 12588  ...cfz 13524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator