Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgn0bi Structured version   Visualization version   GIF version

Theorem sgn0bi 32815
Description: Zero signum. (Contributed by Thierry Arnoux, 10-Oct-2018.)
Assertion
Ref Expression
sgn0bi (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 0 ↔ 𝐴 = 0))

Proof of Theorem sgn0bi
StepHypRef Expression
1 id 22 . 2 (𝐴 ∈ ℝ*𝐴 ∈ ℝ*)
2 eqeq1 2735 . . 3 ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = 0 ↔ 0 = 0))
32bibi1d 343 . 2 ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (0 = 0 ↔ 𝐴 = 0)))
4 eqeq1 2735 . . 3 ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = 0 ↔ 1 = 0))
54bibi1d 343 . 2 ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (1 = 0 ↔ 𝐴 = 0)))
6 eqeq1 2735 . . 3 ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = 0 ↔ -1 = 0))
76bibi1d 343 . 2 ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (-1 = 0 ↔ 𝐴 = 0)))
8 simpr 484 . . . 4 ((𝐴 ∈ ℝ*𝐴 = 0) → 𝐴 = 0)
98eqcomd 2737 . . 3 ((𝐴 ∈ ℝ*𝐴 = 0) → 0 = 𝐴)
109eqeq1d 2733 . 2 ((𝐴 ∈ ℝ*𝐴 = 0) → (0 = 0 ↔ 𝐴 = 0))
11 ax-1ne0 11070 . . . . 5 1 ≠ 0
1211a1i 11 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 1 ≠ 0)
1312neneqd 2933 . . 3 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 1 = 0)
14 simpr 484 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 0 < 𝐴)
1514gt0ne0d 11676 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0)
1615neneqd 2933 . . 3 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 𝐴 = 0)
1713, 162falsed 376 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = 0 ↔ 𝐴 = 0))
18 1cnd 11102 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → 1 ∈ ℂ)
1911a1i 11 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → 1 ≠ 0)
2018, 19negne0d 11465 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → -1 ≠ 0)
2120neneqd 2933 . . 3 ((𝐴 ∈ ℝ*𝐴 < 0) → ¬ -1 = 0)
22 simpr 484 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → 𝐴 < 0)
2322lt0ne0d 11677 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → 𝐴 ≠ 0)
2423neneqd 2933 . . 3 ((𝐴 ∈ ℝ*𝐴 < 0) → ¬ 𝐴 = 0)
2521, 242falsed 376 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → (-1 = 0 ↔ 𝐴 = 0))
261, 3, 5, 7, 10, 17, 25sgn3da 32809 1 (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 0 ↔ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5086  cfv 6476  0cc0 11001  1c1 11002  *cxr 11140   < clt 11141  -cneg 11340  sgncsgn 14988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-sub 11341  df-neg 11342  df-sgn 14989
This theorem is referenced by:  signsvtn0  34575  signstfvneq0  34577
  Copyright terms: Public domain W3C validator