| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sgn0bi | Structured version Visualization version GIF version | ||
| Description: Zero signum. (Contributed by Thierry Arnoux, 10-Oct-2018.) |
| Ref | Expression |
|---|---|
| sgn0bi | ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 0 ↔ 𝐴 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ∈ ℝ* → 𝐴 ∈ ℝ*) | |
| 2 | eqeq1 2738 | . . 3 ⊢ ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = 0 ↔ 0 = 0)) | |
| 3 | 2 | bibi1d 343 | . 2 ⊢ ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (0 = 0 ↔ 𝐴 = 0))) |
| 4 | eqeq1 2738 | . . 3 ⊢ ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = 0 ↔ 1 = 0)) | |
| 5 | 4 | bibi1d 343 | . 2 ⊢ ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (1 = 0 ↔ 𝐴 = 0))) |
| 6 | eqeq1 2738 | . . 3 ⊢ ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = 0 ↔ -1 = 0)) | |
| 7 | 6 | bibi1d 343 | . 2 ⊢ ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (-1 = 0 ↔ 𝐴 = 0))) |
| 8 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → 𝐴 = 0) | |
| 9 | 8 | eqcomd 2740 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → 0 = 𝐴) |
| 10 | 9 | eqeq1d 2736 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (0 = 0 ↔ 𝐴 = 0)) |
| 11 | ax-1ne0 11206 | . . . . 5 ⊢ 1 ≠ 0 | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 1 ≠ 0) |
| 13 | 12 | neneqd 2936 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 1 = 0) |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 0 < 𝐴) | |
| 15 | 14 | gt0ne0d 11809 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
| 16 | 15 | neneqd 2936 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 𝐴 = 0) |
| 17 | 13, 16 | 2falsed 376 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = 0 ↔ 𝐴 = 0)) |
| 18 | 1cnd 11238 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 1 ∈ ℂ) | |
| 19 | 11 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 1 ≠ 0) |
| 20 | 18, 19 | negne0d 11600 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → -1 ≠ 0) |
| 21 | 20 | neneqd 2936 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → ¬ -1 = 0) |
| 22 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 𝐴 < 0) | |
| 23 | 22 | lt0ne0d 11810 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 𝐴 ≠ 0) |
| 24 | 23 | neneqd 2936 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → ¬ 𝐴 = 0) |
| 25 | 21, 24 | 2falsed 376 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-1 = 0 ↔ 𝐴 = 0)) |
| 26 | 1, 3, 5, 7, 10, 17, 25 | sgn3da 34503 | 1 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 0 ↔ 𝐴 = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5123 ‘cfv 6541 0cc0 11137 1c1 11138 ℝ*cxr 11276 < clt 11277 -cneg 11475 sgncsgn 15107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-sub 11476 df-neg 11477 df-sgn 15108 |
| This theorem is referenced by: signsvtn0 34544 signstfvneq0 34546 |
| Copyright terms: Public domain | W3C validator |