Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgn0bi Structured version   Visualization version   GIF version

Theorem sgn0bi 34509
Description: Zero signum. (Contributed by Thierry Arnoux, 10-Oct-2018.)
Assertion
Ref Expression
sgn0bi (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 0 ↔ 𝐴 = 0))

Proof of Theorem sgn0bi
StepHypRef Expression
1 id 22 . 2 (𝐴 ∈ ℝ*𝐴 ∈ ℝ*)
2 eqeq1 2738 . . 3 ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = 0 ↔ 0 = 0))
32bibi1d 343 . 2 ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (0 = 0 ↔ 𝐴 = 0)))
4 eqeq1 2738 . . 3 ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = 0 ↔ 1 = 0))
54bibi1d 343 . 2 ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (1 = 0 ↔ 𝐴 = 0)))
6 eqeq1 2738 . . 3 ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = 0 ↔ -1 = 0))
76bibi1d 343 . 2 ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (-1 = 0 ↔ 𝐴 = 0)))
8 simpr 484 . . . 4 ((𝐴 ∈ ℝ*𝐴 = 0) → 𝐴 = 0)
98eqcomd 2740 . . 3 ((𝐴 ∈ ℝ*𝐴 = 0) → 0 = 𝐴)
109eqeq1d 2736 . 2 ((𝐴 ∈ ℝ*𝐴 = 0) → (0 = 0 ↔ 𝐴 = 0))
11 ax-1ne0 11206 . . . . 5 1 ≠ 0
1211a1i 11 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 1 ≠ 0)
1312neneqd 2936 . . 3 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 1 = 0)
14 simpr 484 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 0 < 𝐴)
1514gt0ne0d 11809 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0)
1615neneqd 2936 . . 3 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 𝐴 = 0)
1713, 162falsed 376 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = 0 ↔ 𝐴 = 0))
18 1cnd 11238 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → 1 ∈ ℂ)
1911a1i 11 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → 1 ≠ 0)
2018, 19negne0d 11600 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → -1 ≠ 0)
2120neneqd 2936 . . 3 ((𝐴 ∈ ℝ*𝐴 < 0) → ¬ -1 = 0)
22 simpr 484 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → 𝐴 < 0)
2322lt0ne0d 11810 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → 𝐴 ≠ 0)
2423neneqd 2936 . . 3 ((𝐴 ∈ ℝ*𝐴 < 0) → ¬ 𝐴 = 0)
2521, 242falsed 376 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → (-1 = 0 ↔ 𝐴 = 0))
261, 3, 5, 7, 10, 17, 25sgn3da 34503 1 (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 0 ↔ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5123  cfv 6541  0cc0 11137  1c1 11138  *cxr 11276   < clt 11277  -cneg 11475  sgncsgn 15107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-sub 11476  df-neg 11477  df-sgn 15108
This theorem is referenced by:  signsvtn0  34544  signstfvneq0  34546
  Copyright terms: Public domain W3C validator