![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgn0bi | Structured version Visualization version GIF version |
Description: Zero signum. (Contributed by Thierry Arnoux, 10-Oct-2018.) |
Ref | Expression |
---|---|
sgn0bi | ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 0 ↔ 𝐴 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ∈ ℝ* → 𝐴 ∈ ℝ*) | |
2 | eqeq1 2735 | . . 3 ⊢ ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = 0 ↔ 0 = 0)) | |
3 | 2 | bibi1d 343 | . 2 ⊢ ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (0 = 0 ↔ 𝐴 = 0))) |
4 | eqeq1 2735 | . . 3 ⊢ ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = 0 ↔ 1 = 0)) | |
5 | 4 | bibi1d 343 | . 2 ⊢ ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (1 = 0 ↔ 𝐴 = 0))) |
6 | eqeq1 2735 | . . 3 ⊢ ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = 0 ↔ -1 = 0)) | |
7 | 6 | bibi1d 343 | . 2 ⊢ ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (-1 = 0 ↔ 𝐴 = 0))) |
8 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → 𝐴 = 0) | |
9 | 8 | eqcomd 2737 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → 0 = 𝐴) |
10 | 9 | eqeq1d 2733 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (0 = 0 ↔ 𝐴 = 0)) |
11 | ax-1ne0 11182 | . . . . 5 ⊢ 1 ≠ 0 | |
12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 1 ≠ 0) |
13 | 12 | neneqd 2944 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 1 = 0) |
14 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 0 < 𝐴) | |
15 | 14 | gt0ne0d 11783 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
16 | 15 | neneqd 2944 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 𝐴 = 0) |
17 | 13, 16 | 2falsed 376 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = 0 ↔ 𝐴 = 0)) |
18 | 1cnd 11214 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 1 ∈ ℂ) | |
19 | 11 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 1 ≠ 0) |
20 | 18, 19 | negne0d 11574 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → -1 ≠ 0) |
21 | 20 | neneqd 2944 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → ¬ -1 = 0) |
22 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 𝐴 < 0) | |
23 | 22 | lt0ne0d 11784 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 𝐴 ≠ 0) |
24 | 23 | neneqd 2944 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → ¬ 𝐴 = 0) |
25 | 21, 24 | 2falsed 376 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-1 = 0 ↔ 𝐴 = 0)) |
26 | 1, 3, 5, 7, 10, 17, 25 | sgn3da 33839 | 1 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 0 ↔ 𝐴 = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 class class class wbr 5148 ‘cfv 6543 0cc0 11113 1c1 11114 ℝ*cxr 11252 < clt 11253 -cneg 11450 sgncsgn 15038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-sub 11451 df-neg 11452 df-sgn 15039 |
This theorem is referenced by: signsvtn0 33880 signstfvneq0 33882 |
Copyright terms: Public domain | W3C validator |