| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sgn0bi | Structured version Visualization version GIF version | ||
| Description: Zero signum. (Contributed by Thierry Arnoux, 10-Oct-2018.) |
| Ref | Expression |
|---|---|
| sgn0bi | ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 0 ↔ 𝐴 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 ∈ ℝ* → 𝐴 ∈ ℝ*) | |
| 2 | eqeq1 2733 | . . 3 ⊢ ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = 0 ↔ 0 = 0)) | |
| 3 | 2 | bibi1d 343 | . 2 ⊢ ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (0 = 0 ↔ 𝐴 = 0))) |
| 4 | eqeq1 2733 | . . 3 ⊢ ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = 0 ↔ 1 = 0)) | |
| 5 | 4 | bibi1d 343 | . 2 ⊢ ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (1 = 0 ↔ 𝐴 = 0))) |
| 6 | eqeq1 2733 | . . 3 ⊢ ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = 0 ↔ -1 = 0)) | |
| 7 | 6 | bibi1d 343 | . 2 ⊢ ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = 0 ↔ 𝐴 = 0) ↔ (-1 = 0 ↔ 𝐴 = 0))) |
| 8 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → 𝐴 = 0) | |
| 9 | 8 | eqcomd 2735 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → 0 = 𝐴) |
| 10 | 9 | eqeq1d 2731 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (0 = 0 ↔ 𝐴 = 0)) |
| 11 | ax-1ne0 11113 | . . . . 5 ⊢ 1 ≠ 0 | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 1 ≠ 0) |
| 13 | 12 | neneqd 2930 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 1 = 0) |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 0 < 𝐴) | |
| 15 | 14 | gt0ne0d 11718 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → 𝐴 ≠ 0) |
| 16 | 15 | neneqd 2930 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → ¬ 𝐴 = 0) |
| 17 | 13, 16 | 2falsed 376 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = 0 ↔ 𝐴 = 0)) |
| 18 | 1cnd 11145 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 1 ∈ ℂ) | |
| 19 | 11 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 1 ≠ 0) |
| 20 | 18, 19 | negne0d 11507 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → -1 ≠ 0) |
| 21 | 20 | neneqd 2930 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → ¬ -1 = 0) |
| 22 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 𝐴 < 0) | |
| 23 | 22 | lt0ne0d 11719 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → 𝐴 ≠ 0) |
| 24 | 23 | neneqd 2930 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → ¬ 𝐴 = 0) |
| 25 | 21, 24 | 2falsed 376 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-1 = 0 ↔ 𝐴 = 0)) |
| 26 | 1, 3, 5, 7, 10, 17, 25 | sgn3da 32732 | 1 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 0 ↔ 𝐴 = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ‘cfv 6499 0cc0 11044 1c1 11045 ℝ*cxr 11183 < clt 11184 -cneg 11382 sgncsgn 15028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-sub 11383 df-neg 11384 df-sgn 15029 |
| This theorem is referenced by: signsvtn0 34534 signstfvneq0 34536 |
| Copyright terms: Public domain | W3C validator |