| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantl2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantl2 | ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1149 | . 2 ⊢ ((𝜑 ∧ 𝜏 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ad2antl1 1186 omord2 8577 nnmord 8642 axcc3 10450 lediv2a 12134 zdiv 12661 clatleglb 18526 mulgnn0subcl 19068 mulgsubcl 19069 ghmmulg 19209 obs2ss 21687 scmatf1 22467 neiint 23040 cnpnei 23200 caublcls 25259 axlowdimlem16 28882 clwwlkext2edg 29983 ipval2lem2 30631 fh1 31545 cm2j 31547 hoadddi 31730 hoadddir 31731 lindsadd 37583 lautco 40062 sticksstones1 42105 sticksstones12 42117 supxrge 45313 infleinflem2 45346 stoweidlem44 46021 fourierdlem41 46125 fourierdlem42 46126 fourierdlem54 46137 fourierdlem83 46166 sge0uzfsumgt 46421 |
| Copyright terms: Public domain | W3C validator |