| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantl2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantl2 | ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1149 | . 2 ⊢ ((𝜑 ∧ 𝜏 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ad2antl1 1186 omord2 8531 nnmord 8596 axcc3 10391 lediv2a 12077 zdiv 12604 clatleglb 18477 mulgnn0subcl 19019 mulgsubcl 19020 ghmmulg 19160 obs2ss 21638 scmatf1 22418 neiint 22991 cnpnei 23151 caublcls 25209 axlowdimlem16 28884 clwwlkext2edg 29985 ipval2lem2 30633 fh1 31547 cm2j 31549 hoadddi 31732 hoadddir 31733 lindsadd 37607 lautco 40091 sticksstones1 42134 sticksstones12 42146 supxrge 45334 infleinflem2 45367 stoweidlem44 46042 fourierdlem41 46146 fourierdlem42 46147 fourierdlem54 46158 fourierdlem83 46187 sge0uzfsumgt 46442 |
| Copyright terms: Public domain | W3C validator |