| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantl2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantl2 | ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1149 | . 2 ⊢ ((𝜑 ∧ 𝜏 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ad2antl1 1186 omord2 8482 nnmord 8547 axcc3 10326 lediv2a 12013 zdiv 12540 clatleglb 18421 mulgnn0subcl 18997 mulgsubcl 18998 ghmmulg 19138 obs2ss 21664 scmatf1 22444 neiint 23017 cnpnei 23177 caublcls 25234 axlowdimlem16 28933 clwwlkext2edg 30031 ipval2lem2 30679 fh1 31593 cm2j 31595 hoadddi 31778 hoadddir 31779 lindsadd 37652 lautco 40135 sticksstones1 42178 sticksstones12 42190 supxrge 45376 infleinflem2 45408 stoweidlem44 46081 fourierdlem41 46185 fourierdlem42 46186 fourierdlem54 46197 fourierdlem83 46226 sge0uzfsumgt 46481 |
| Copyright terms: Public domain | W3C validator |