| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantl2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantl2 | ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1149 | . 2 ⊢ ((𝜑 ∧ 𝜏 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ad2antl1 1186 omord2 8488 nnmord 8553 axcc3 10336 lediv2a 12023 zdiv 12549 clatleglb 18426 mulgnn0subcl 19002 mulgsubcl 19003 ghmmulg 19142 obs2ss 21668 scmatf1 22447 neiint 23020 cnpnei 23180 caublcls 25237 axlowdimlem16 28937 clwwlkext2edg 30038 ipval2lem2 30686 fh1 31600 cm2j 31602 hoadddi 31785 hoadddir 31786 lindsadd 37673 lautco 40216 sticksstones1 42259 sticksstones12 42271 supxrge 45461 infleinflem2 45493 stoweidlem44 46166 fourierdlem41 46270 fourierdlem42 46271 fourierdlem54 46282 fourierdlem83 46311 sge0uzfsumgt 46566 |
| Copyright terms: Public domain | W3C validator |