MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adantl2 Structured version   Visualization version   GIF version

Theorem 3adantl2 1168
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3adantl.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
3adantl2 (((𝜑𝜏𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adantl2
StepHypRef Expression
1 3simpb 1149 . 2 ((𝜑𝜏𝜓) → (𝜑𝜓))
2 3adantl.1 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
31, 2sylan 580 1 (((𝜑𝜏𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3ad2antl1  1186  omord2  8531  nnmord  8596  axcc3  10391  lediv2a  12077  zdiv  12604  clatleglb  18477  mulgnn0subcl  19019  mulgsubcl  19020  ghmmulg  19160  obs2ss  21638  scmatf1  22418  neiint  22991  cnpnei  23151  caublcls  25209  axlowdimlem16  28884  clwwlkext2edg  29985  ipval2lem2  30633  fh1  31547  cm2j  31549  hoadddi  31732  hoadddir  31733  lindsadd  37607  lautco  40091  sticksstones1  42134  sticksstones12  42146  supxrge  45334  infleinflem2  45367  stoweidlem44  46042  fourierdlem41  46146  fourierdlem42  46147  fourierdlem54  46158  fourierdlem83  46187  sge0uzfsumgt  46442
  Copyright terms: Public domain W3C validator