MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adantl2 Structured version   Visualization version   GIF version

Theorem 3adantl2 1166
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3adantl.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
3adantl2 (((𝜑𝜏𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem 3adantl2
StepHypRef Expression
1 3simpb 1148 . 2 ((𝜑𝜏𝜓) → (𝜑𝜓))
2 3adantl.1 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
31, 2sylan 580 1 (((𝜑𝜏𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  3ad2antl1  1184  omord2  8398  nnmord  8463  axcc3  10194  lediv2a  11869  zdiv  12390  clatleglb  18236  mulgnn0subcl  18717  mulgsubcl  18718  ghmmulg  18846  obs2ss  20936  scmatf1  21680  neiint  22255  cnpnei  22415  caublcls  24473  axlowdimlem16  27325  clwwlkext2edg  28420  ipval2lem2  29066  fh1  29980  cm2j  29982  hoadddi  30165  hoadddir  30166  lindsadd  35770  lautco  38111  sticksstones1  40102  sticksstones12  40114  supxrge  42877  infleinflem2  42910  stoweidlem44  43585  fourierdlem41  43689  fourierdlem42  43690  fourierdlem54  43701  fourierdlem83  43730  sge0uzfsumgt  43982
  Copyright terms: Public domain W3C validator