![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adantl2 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adantl2 | ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 1148 | . 2 ⊢ ((𝜑 ∧ 𝜏 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3ad2antl1 1184 omord2 8603 nnmord 8668 axcc3 10475 lediv2a 12159 zdiv 12685 clatleglb 18575 mulgnn0subcl 19117 mulgsubcl 19118 ghmmulg 19258 obs2ss 21766 scmatf1 22552 neiint 23127 cnpnei 23287 caublcls 25356 axlowdimlem16 28986 clwwlkext2edg 30084 ipval2lem2 30732 fh1 31646 cm2j 31648 hoadddi 31831 hoadddir 31832 lindsadd 37599 lautco 40079 sticksstones1 42127 sticksstones12 42139 supxrge 45287 infleinflem2 45320 stoweidlem44 45999 fourierdlem41 46103 fourierdlem42 46104 fourierdlem54 46115 fourierdlem83 46144 sge0uzfsumgt 46399 |
Copyright terms: Public domain | W3C validator |