| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantl2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantl2 | ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1149 | . 2 ⊢ ((𝜑 ∧ 𝜏 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ad2antl1 1186 omord2 8492 nnmord 8557 axcc3 10351 lediv2a 12037 zdiv 12564 clatleglb 18442 mulgnn0subcl 18984 mulgsubcl 18985 ghmmulg 19125 obs2ss 21654 scmatf1 22434 neiint 23007 cnpnei 23167 caublcls 25225 axlowdimlem16 28920 clwwlkext2edg 30018 ipval2lem2 30666 fh1 31580 cm2j 31582 hoadddi 31765 hoadddir 31766 lindsadd 37592 lautco 40076 sticksstones1 42119 sticksstones12 42131 supxrge 45318 infleinflem2 45351 stoweidlem44 46026 fourierdlem41 46130 fourierdlem42 46131 fourierdlem54 46142 fourierdlem83 46171 sge0uzfsumgt 46426 |
| Copyright terms: Public domain | W3C validator |