![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adantl2 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adantl2 | ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 1149 | . 2 ⊢ ((𝜑 ∧ 𝜏 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylan 579 | 1 ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3ad2antl1 1185 omord2 8623 nnmord 8688 axcc3 10507 lediv2a 12189 zdiv 12713 clatleglb 18588 mulgnn0subcl 19127 mulgsubcl 19128 ghmmulg 19268 obs2ss 21772 scmatf1 22558 neiint 23133 cnpnei 23293 caublcls 25362 axlowdimlem16 28990 clwwlkext2edg 30088 ipval2lem2 30736 fh1 31650 cm2j 31652 hoadddi 31835 hoadddir 31836 lindsadd 37573 lautco 40054 sticksstones1 42103 sticksstones12 42115 supxrge 45253 infleinflem2 45286 stoweidlem44 45965 fourierdlem41 46069 fourierdlem42 46070 fourierdlem54 46081 fourierdlem83 46110 sge0uzfsumgt 46365 |
Copyright terms: Public domain | W3C validator |