Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adantl2 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adantl2 | ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 1148 | . 2 ⊢ ((𝜑 ∧ 𝜏 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3ad2antl1 1184 omord2 8398 nnmord 8463 axcc3 10194 lediv2a 11869 zdiv 12390 clatleglb 18236 mulgnn0subcl 18717 mulgsubcl 18718 ghmmulg 18846 obs2ss 20936 scmatf1 21680 neiint 22255 cnpnei 22415 caublcls 24473 axlowdimlem16 27325 clwwlkext2edg 28420 ipval2lem2 29066 fh1 29980 cm2j 29982 hoadddi 30165 hoadddir 30166 lindsadd 35770 lautco 38111 sticksstones1 40102 sticksstones12 40114 supxrge 42877 infleinflem2 42910 stoweidlem44 43585 fourierdlem41 43689 fourierdlem42 43690 fourierdlem54 43701 fourierdlem83 43730 sge0uzfsumgt 43982 |
Copyright terms: Public domain | W3C validator |