Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adantl2 | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adantl2 | ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 1147 | . 2 ⊢ ((𝜑 ∧ 𝜏 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylan 579 | 1 ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3ad2antl1 1183 omord2 8360 nnmord 8425 axcc3 10125 lediv2a 11799 zdiv 12320 clatleglb 18151 mulgnn0subcl 18632 mulgsubcl 18633 ghmmulg 18761 obs2ss 20846 scmatf1 21588 neiint 22163 cnpnei 22323 caublcls 24378 axlowdimlem16 27228 clwwlkext2edg 28321 ipval2lem2 28967 fh1 29881 cm2j 29883 hoadddi 30066 hoadddir 30067 lindsadd 35697 lautco 38038 sticksstones1 40030 sticksstones12 40042 supxrge 42767 infleinflem2 42800 stoweidlem44 43475 fourierdlem41 43579 fourierdlem42 43580 fourierdlem54 43591 fourierdlem83 43620 sge0uzfsumgt 43872 |
Copyright terms: Public domain | W3C validator |