| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3adantl2 | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3adantl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantl2 | ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpb 1149 | . 2 ⊢ ((𝜑 ∧ 𝜏 ∧ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 3adantl.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜏 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3ad2antl1 1186 omord2 8534 nnmord 8599 axcc3 10398 lediv2a 12084 zdiv 12611 clatleglb 18484 mulgnn0subcl 19026 mulgsubcl 19027 ghmmulg 19167 obs2ss 21645 scmatf1 22425 neiint 22998 cnpnei 23158 caublcls 25216 axlowdimlem16 28891 clwwlkext2edg 29992 ipval2lem2 30640 fh1 31554 cm2j 31556 hoadddi 31739 hoadddir 31740 lindsadd 37614 lautco 40098 sticksstones1 42141 sticksstones12 42153 supxrge 45341 infleinflem2 45374 stoweidlem44 46049 fourierdlem41 46153 fourierdlem42 46154 fourierdlem54 46165 fourierdlem83 46194 sge0uzfsumgt 46449 |
| Copyright terms: Public domain | W3C validator |