Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0uzfsumgt Structured version   Visualization version   GIF version

Theorem sge0uzfsumgt 46473
Description: If a real number is smaller than a generalized sum of nonnegative reals, then it is smaller than some finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0uzfsumgt.p 𝑘𝜑
sge0uzfsumgt.h (𝜑𝐾 ∈ ℤ)
sge0uzfsumgt.z 𝑍 = (ℤ𝐾)
sge0uzfsumgt.b ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
sge0uzfsumgt.c (𝜑𝐶 ∈ ℝ)
sge0uzfsumgt.l (𝜑𝐶 < (Σ^‘(𝑘𝑍𝐵)))
Assertion
Ref Expression
sge0uzfsumgt (𝜑 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
Distinct variable groups:   𝐵,𝑚   𝐶,𝑚   𝑘,𝐾,𝑚   𝑘,𝑍,𝑚   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem sge0uzfsumgt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sge0uzfsumgt.p . . 3 𝑘𝜑
2 sge0uzfsumgt.z . . . . 5 𝑍 = (ℤ𝐾)
32fvexi 6890 . . . 4 𝑍 ∈ V
43a1i 11 . . 3 (𝜑𝑍 ∈ V)
5 sge0uzfsumgt.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
6 sge0uzfsumgt.c . . 3 (𝜑𝐶 ∈ ℝ)
7 sge0uzfsumgt.l . . 3 (𝜑𝐶 < (Σ^‘(𝑘𝑍𝐵)))
81, 4, 5, 6, 7sge0gtfsumgt 46472 . 2 (𝜑 → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝐶 < Σ𝑘𝑥 𝐵)
9 sge0uzfsumgt.h . . . . . . 7 (𝜑𝐾 ∈ ℤ)
1093ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → 𝐾 ∈ ℤ)
11 elpwinss 45073 . . . . . . 7 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → 𝑥𝑍)
12113ad2ant2 1134 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → 𝑥𝑍)
13 elinel2 4177 . . . . . . 7 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → 𝑥 ∈ Fin)
14133ad2ant2 1134 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → 𝑥 ∈ Fin)
1510, 2, 12, 14uzfissfz 45353 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → ∃𝑚𝑍 𝑥 ⊆ (𝐾...𝑚))
166ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → 𝐶 ∈ ℝ)
17 nfv 1914 . . . . . . . . . . . . 13 𝑘 𝑥 ⊆ (𝐾...𝑚)
181, 17nfan 1899 . . . . . . . . . . . 12 𝑘(𝜑𝑥 ⊆ (𝐾...𝑚))
19 fzfid 13991 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → (𝐾...𝑚) ∈ Fin)
20 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → 𝑥 ⊆ (𝐾...𝑚))
2119, 20ssfid 9273 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → 𝑥 ∈ Fin)
22 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘𝑥) → 𝜑)
2320sselda 3958 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘𝑥) → 𝑘 ∈ (𝐾...𝑚))
24 rge0ssre 13473 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
25 fzssuz 13582 . . . . . . . . . . . . . . . . 17 (𝐾...𝑚) ⊆ (ℤ𝐾)
2625, 2sseqtrri 4008 . . . . . . . . . . . . . . . 16 (𝐾...𝑚) ⊆ 𝑍
27 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐾...𝑚) → 𝑘 ∈ (𝐾...𝑚))
2826, 27sselid 3956 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐾...𝑚) → 𝑘𝑍)
2928, 5sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 𝐵 ∈ (0[,)+∞))
3024, 29sselid 3956 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 𝐵 ∈ ℝ)
3122, 23, 30syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘𝑥) → 𝐵 ∈ ℝ)
3218, 21, 31fsumreclf 45605 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ∈ ℝ)
3332adantlr 715 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ∈ ℝ)
34 fzfid 13991 . . . . . . . . . . . 12 (𝜑 → (𝐾...𝑚) ∈ Fin)
351, 34, 30fsumreclf 45605 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝐾...𝑚)𝐵 ∈ ℝ)
3635ad2antrr 726 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘 ∈ (𝐾...𝑚)𝐵 ∈ ℝ)
37 simplr 768 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → 𝐶 < Σ𝑘𝑥 𝐵)
3830adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘 ∈ (𝐾...𝑚)) → 𝐵 ∈ ℝ)
39 0xr 11282 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
4039a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 0 ∈ ℝ*)
41 pnfxr 11289 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
4241a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐾...𝑚)) → +∞ ∈ ℝ*)
43 icogelb 13413 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
4440, 42, 29, 43syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 0 ≤ 𝐵)
4544adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘 ∈ (𝐾...𝑚)) → 0 ≤ 𝐵)
4618, 19, 38, 45, 20fsumlessf 45606 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ≤ Σ𝑘 ∈ (𝐾...𝑚)𝐵)
4746adantlr 715 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ≤ Σ𝑘 ∈ (𝐾...𝑚)𝐵)
4816, 33, 36, 37, 47ltletrd 11395 . . . . . . . . 9 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
4948ex 412 . . . . . . . 8 ((𝜑𝐶 < Σ𝑘𝑥 𝐵) → (𝑥 ⊆ (𝐾...𝑚) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
5049adantr 480 . . . . . . 7 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑚𝑍) → (𝑥 ⊆ (𝐾...𝑚) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
51503adantl2 1168 . . . . . 6 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑚𝑍) → (𝑥 ⊆ (𝐾...𝑚) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
5251reximdva 3153 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → (∃𝑚𝑍 𝑥 ⊆ (𝐾...𝑚) → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
5315, 52mpd 15 . . . 4 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
54533exp 1119 . . 3 (𝜑 → (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → (𝐶 < Σ𝑘𝑥 𝐵 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)))
5554rexlimdv 3139 . 2 (𝜑 → (∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝐶 < Σ𝑘𝑥 𝐵 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
568, 55mpd 15 1 (𝜑 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2108  wrex 3060  Vcvv 3459  cin 3925  wss 3926  𝒫 cpw 4575   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  Fincfn 8959  cr 11128  0cc0 11129  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  cz 12588  cuz 12852  [,)cico 13364  ...cfz 13524  Σcsu 15702  Σ^csumge0 46391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-sumge0 46392
This theorem is referenced by:  hoidmvlelem3  46626
  Copyright terms: Public domain W3C validator