Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0uzfsumgt Structured version   Visualization version   GIF version

Theorem sge0uzfsumgt 45150
Description: If a real number is smaller than a generalized sum of nonnegative reals, then it is smaller than some finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0uzfsumgt.p 𝑘𝜑
sge0uzfsumgt.h (𝜑𝐾 ∈ ℤ)
sge0uzfsumgt.z 𝑍 = (ℤ𝐾)
sge0uzfsumgt.b ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
sge0uzfsumgt.c (𝜑𝐶 ∈ ℝ)
sge0uzfsumgt.l (𝜑𝐶 < (Σ^‘(𝑘𝑍𝐵)))
Assertion
Ref Expression
sge0uzfsumgt (𝜑 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
Distinct variable groups:   𝐵,𝑚   𝐶,𝑚   𝑘,𝐾,𝑚   𝑘,𝑍,𝑚   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem sge0uzfsumgt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sge0uzfsumgt.p . . 3 𝑘𝜑
2 sge0uzfsumgt.z . . . . 5 𝑍 = (ℤ𝐾)
32fvexi 6905 . . . 4 𝑍 ∈ V
43a1i 11 . . 3 (𝜑𝑍 ∈ V)
5 sge0uzfsumgt.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
6 sge0uzfsumgt.c . . 3 (𝜑𝐶 ∈ ℝ)
7 sge0uzfsumgt.l . . 3 (𝜑𝐶 < (Σ^‘(𝑘𝑍𝐵)))
81, 4, 5, 6, 7sge0gtfsumgt 45149 . 2 (𝜑 → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝐶 < Σ𝑘𝑥 𝐵)
9 sge0uzfsumgt.h . . . . . . 7 (𝜑𝐾 ∈ ℤ)
1093ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → 𝐾 ∈ ℤ)
11 elpwinss 43726 . . . . . . 7 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → 𝑥𝑍)
12113ad2ant2 1134 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → 𝑥𝑍)
13 elinel2 4196 . . . . . . 7 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → 𝑥 ∈ Fin)
14133ad2ant2 1134 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → 𝑥 ∈ Fin)
1510, 2, 12, 14uzfissfz 44026 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → ∃𝑚𝑍 𝑥 ⊆ (𝐾...𝑚))
166ad2antrr 724 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → 𝐶 ∈ ℝ)
17 nfv 1917 . . . . . . . . . . . . 13 𝑘 𝑥 ⊆ (𝐾...𝑚)
181, 17nfan 1902 . . . . . . . . . . . 12 𝑘(𝜑𝑥 ⊆ (𝐾...𝑚))
19 fzfid 13937 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → (𝐾...𝑚) ∈ Fin)
20 simpr 485 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → 𝑥 ⊆ (𝐾...𝑚))
2119, 20ssfid 9266 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → 𝑥 ∈ Fin)
22 simpll 765 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘𝑥) → 𝜑)
2320sselda 3982 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘𝑥) → 𝑘 ∈ (𝐾...𝑚))
24 rge0ssre 13432 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
25 fzssuz 13541 . . . . . . . . . . . . . . . . 17 (𝐾...𝑚) ⊆ (ℤ𝐾)
2625, 2sseqtrri 4019 . . . . . . . . . . . . . . . 16 (𝐾...𝑚) ⊆ 𝑍
27 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐾...𝑚) → 𝑘 ∈ (𝐾...𝑚))
2826, 27sselid 3980 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐾...𝑚) → 𝑘𝑍)
2928, 5sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 𝐵 ∈ (0[,)+∞))
3024, 29sselid 3980 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 𝐵 ∈ ℝ)
3122, 23, 30syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘𝑥) → 𝐵 ∈ ℝ)
3218, 21, 31fsumreclf 44282 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ∈ ℝ)
3332adantlr 713 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ∈ ℝ)
34 fzfid 13937 . . . . . . . . . . . 12 (𝜑 → (𝐾...𝑚) ∈ Fin)
351, 34, 30fsumreclf 44282 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝐾...𝑚)𝐵 ∈ ℝ)
3635ad2antrr 724 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘 ∈ (𝐾...𝑚)𝐵 ∈ ℝ)
37 simplr 767 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → 𝐶 < Σ𝑘𝑥 𝐵)
3830adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘 ∈ (𝐾...𝑚)) → 𝐵 ∈ ℝ)
39 0xr 11260 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
4039a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 0 ∈ ℝ*)
41 pnfxr 11267 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
4241a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐾...𝑚)) → +∞ ∈ ℝ*)
43 icogelb 13374 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
4440, 42, 29, 43syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 0 ≤ 𝐵)
4544adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘 ∈ (𝐾...𝑚)) → 0 ≤ 𝐵)
4618, 19, 38, 45, 20fsumlessf 44283 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ≤ Σ𝑘 ∈ (𝐾...𝑚)𝐵)
4746adantlr 713 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ≤ Σ𝑘 ∈ (𝐾...𝑚)𝐵)
4816, 33, 36, 37, 47ltletrd 11373 . . . . . . . . 9 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
4948ex 413 . . . . . . . 8 ((𝜑𝐶 < Σ𝑘𝑥 𝐵) → (𝑥 ⊆ (𝐾...𝑚) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
5049adantr 481 . . . . . . 7 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑚𝑍) → (𝑥 ⊆ (𝐾...𝑚) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
51503adantl2 1167 . . . . . 6 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑚𝑍) → (𝑥 ⊆ (𝐾...𝑚) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
5251reximdva 3168 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → (∃𝑚𝑍 𝑥 ⊆ (𝐾...𝑚) → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
5315, 52mpd 15 . . . 4 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
54533exp 1119 . . 3 (𝜑 → (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → (𝐶 < Σ𝑘𝑥 𝐵 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)))
5554rexlimdv 3153 . 2 (𝜑 → (∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝐶 < Σ𝑘𝑥 𝐵 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
568, 55mpd 15 1 (𝜑 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wnf 1785  wcel 2106  wrex 3070  Vcvv 3474  cin 3947  wss 3948  𝒫 cpw 4602   class class class wbr 5148  cmpt 5231  cfv 6543  (class class class)co 7408  Fincfn 8938  cr 11108  0cc0 11109  +∞cpnf 11244  *cxr 11246   < clt 11247  cle 11248  cz 12557  cuz 12821  [,)cico 13325  ...cfz 13483  Σcsu 15631  Σ^csumge0 45068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-oi 9504  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-ico 13329  df-icc 13330  df-fz 13484  df-fzo 13627  df-seq 13966  df-exp 14027  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431  df-sum 15632  df-sumge0 45069
This theorem is referenced by:  hoidmvlelem3  45303
  Copyright terms: Public domain W3C validator