Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0uzfsumgt Structured version   Visualization version   GIF version

Theorem sge0uzfsumgt 42725
Description: If a real number is smaller than a generalized sum of nonnegative reals, then it is smaller than some finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0uzfsumgt.p 𝑘𝜑
sge0uzfsumgt.h (𝜑𝐾 ∈ ℤ)
sge0uzfsumgt.z 𝑍 = (ℤ𝐾)
sge0uzfsumgt.b ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
sge0uzfsumgt.c (𝜑𝐶 ∈ ℝ)
sge0uzfsumgt.l (𝜑𝐶 < (Σ^‘(𝑘𝑍𝐵)))
Assertion
Ref Expression
sge0uzfsumgt (𝜑 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
Distinct variable groups:   𝐵,𝑚   𝐶,𝑚   𝑘,𝐾,𝑚   𝑘,𝑍,𝑚   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem sge0uzfsumgt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sge0uzfsumgt.p . . 3 𝑘𝜑
2 sge0uzfsumgt.z . . . . 5 𝑍 = (ℤ𝐾)
32fvexi 6683 . . . 4 𝑍 ∈ V
43a1i 11 . . 3 (𝜑𝑍 ∈ V)
5 sge0uzfsumgt.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
6 sge0uzfsumgt.c . . 3 (𝜑𝐶 ∈ ℝ)
7 sge0uzfsumgt.l . . 3 (𝜑𝐶 < (Σ^‘(𝑘𝑍𝐵)))
81, 4, 5, 6, 7sge0gtfsumgt 42724 . 2 (𝜑 → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝐶 < Σ𝑘𝑥 𝐵)
9 sge0uzfsumgt.h . . . . . . 7 (𝜑𝐾 ∈ ℤ)
1093ad2ant1 1129 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → 𝐾 ∈ ℤ)
11 elpwinss 41309 . . . . . . 7 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → 𝑥𝑍)
12113ad2ant2 1130 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → 𝑥𝑍)
13 elinel2 4172 . . . . . . 7 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → 𝑥 ∈ Fin)
14133ad2ant2 1130 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → 𝑥 ∈ Fin)
1510, 2, 12, 14uzfissfz 41592 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → ∃𝑚𝑍 𝑥 ⊆ (𝐾...𝑚))
166ad2antrr 724 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → 𝐶 ∈ ℝ)
17 nfv 1911 . . . . . . . . . . . . 13 𝑘 𝑥 ⊆ (𝐾...𝑚)
181, 17nfan 1896 . . . . . . . . . . . 12 𝑘(𝜑𝑥 ⊆ (𝐾...𝑚))
19 fzfid 13340 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → (𝐾...𝑚) ∈ Fin)
20 simpr 487 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → 𝑥 ⊆ (𝐾...𝑚))
2119, 20ssfid 8740 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → 𝑥 ∈ Fin)
22 simpll 765 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘𝑥) → 𝜑)
2320sselda 3966 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘𝑥) → 𝑘 ∈ (𝐾...𝑚))
24 rge0ssre 12843 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
25 fzssuz 12947 . . . . . . . . . . . . . . . . 17 (𝐾...𝑚) ⊆ (ℤ𝐾)
2625, 2sseqtrri 4003 . . . . . . . . . . . . . . . 16 (𝐾...𝑚) ⊆ 𝑍
27 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐾...𝑚) → 𝑘 ∈ (𝐾...𝑚))
2826, 27sseldi 3964 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐾...𝑚) → 𝑘𝑍)
2928, 5sylan2 594 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 𝐵 ∈ (0[,)+∞))
3024, 29sseldi 3964 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 𝐵 ∈ ℝ)
3122, 23, 30syl2anc 586 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘𝑥) → 𝐵 ∈ ℝ)
3218, 21, 31fsumreclf 41855 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ∈ ℝ)
3332adantlr 713 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ∈ ℝ)
34 fzfid 13340 . . . . . . . . . . . 12 (𝜑 → (𝐾...𝑚) ∈ Fin)
351, 34, 30fsumreclf 41855 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝐾...𝑚)𝐵 ∈ ℝ)
3635ad2antrr 724 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘 ∈ (𝐾...𝑚)𝐵 ∈ ℝ)
37 simplr 767 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → 𝐶 < Σ𝑘𝑥 𝐵)
3830adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘 ∈ (𝐾...𝑚)) → 𝐵 ∈ ℝ)
39 0xr 10687 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
4039a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 0 ∈ ℝ*)
41 pnfxr 10694 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
4241a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐾...𝑚)) → +∞ ∈ ℝ*)
43 icogelb 12787 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
4440, 42, 29, 43syl3anc 1367 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 0 ≤ 𝐵)
4544adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘 ∈ (𝐾...𝑚)) → 0 ≤ 𝐵)
4618, 19, 38, 45, 20fsumlessf 41856 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ≤ Σ𝑘 ∈ (𝐾...𝑚)𝐵)
4746adantlr 713 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ≤ Σ𝑘 ∈ (𝐾...𝑚)𝐵)
4816, 33, 36, 37, 47ltletrd 10799 . . . . . . . . 9 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
4948ex 415 . . . . . . . 8 ((𝜑𝐶 < Σ𝑘𝑥 𝐵) → (𝑥 ⊆ (𝐾...𝑚) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
5049adantr 483 . . . . . . 7 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑚𝑍) → (𝑥 ⊆ (𝐾...𝑚) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
51503adantl2 1163 . . . . . 6 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑚𝑍) → (𝑥 ⊆ (𝐾...𝑚) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
5251reximdva 3274 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → (∃𝑚𝑍 𝑥 ⊆ (𝐾...𝑚) → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
5315, 52mpd 15 . . . 4 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
54533exp 1115 . . 3 (𝜑 → (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → (𝐶 < Σ𝑘𝑥 𝐵 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)))
5554rexlimdv 3283 . 2 (𝜑 → (∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝐶 < Σ𝑘𝑥 𝐵 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
568, 55mpd 15 1 (𝜑 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wnf 1780  wcel 2110  wrex 3139  Vcvv 3494  cin 3934  wss 3935  𝒫 cpw 4538   class class class wbr 5065  cmpt 5145  cfv 6354  (class class class)co 7155  Fincfn 8508  cr 10535  0cc0 10536  +∞cpnf 10671  *cxr 10673   < clt 10674  cle 10675  cz 11980  cuz 12242  [,)cico 12739  ...cfz 12891  Σcsu 15041  Σ^csumge0 42643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042  df-sumge0 42644
This theorem is referenced by:  hoidmvlelem3  42878
  Copyright terms: Public domain W3C validator