Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0uzfsumgt Structured version   Visualization version   GIF version

Theorem sge0uzfsumgt 46365
Description: If a real number is smaller than a generalized sum of nonnegative reals, then it is smaller than some finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0uzfsumgt.p 𝑘𝜑
sge0uzfsumgt.h (𝜑𝐾 ∈ ℤ)
sge0uzfsumgt.z 𝑍 = (ℤ𝐾)
sge0uzfsumgt.b ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
sge0uzfsumgt.c (𝜑𝐶 ∈ ℝ)
sge0uzfsumgt.l (𝜑𝐶 < (Σ^‘(𝑘𝑍𝐵)))
Assertion
Ref Expression
sge0uzfsumgt (𝜑 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
Distinct variable groups:   𝐵,𝑚   𝐶,𝑚   𝑘,𝐾,𝑚   𝑘,𝑍,𝑚   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem sge0uzfsumgt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sge0uzfsumgt.p . . 3 𝑘𝜑
2 sge0uzfsumgt.z . . . . 5 𝑍 = (ℤ𝐾)
32fvexi 6934 . . . 4 𝑍 ∈ V
43a1i 11 . . 3 (𝜑𝑍 ∈ V)
5 sge0uzfsumgt.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ (0[,)+∞))
6 sge0uzfsumgt.c . . 3 (𝜑𝐶 ∈ ℝ)
7 sge0uzfsumgt.l . . 3 (𝜑𝐶 < (Σ^‘(𝑘𝑍𝐵)))
81, 4, 5, 6, 7sge0gtfsumgt 46364 . 2 (𝜑 → ∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝐶 < Σ𝑘𝑥 𝐵)
9 sge0uzfsumgt.h . . . . . . 7 (𝜑𝐾 ∈ ℤ)
1093ad2ant1 1133 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → 𝐾 ∈ ℤ)
11 elpwinss 44951 . . . . . . 7 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → 𝑥𝑍)
12113ad2ant2 1134 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → 𝑥𝑍)
13 elinel2 4225 . . . . . . 7 (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → 𝑥 ∈ Fin)
14133ad2ant2 1134 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → 𝑥 ∈ Fin)
1510, 2, 12, 14uzfissfz 45241 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → ∃𝑚𝑍 𝑥 ⊆ (𝐾...𝑚))
166ad2antrr 725 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → 𝐶 ∈ ℝ)
17 nfv 1913 . . . . . . . . . . . . 13 𝑘 𝑥 ⊆ (𝐾...𝑚)
181, 17nfan 1898 . . . . . . . . . . . 12 𝑘(𝜑𝑥 ⊆ (𝐾...𝑚))
19 fzfid 14024 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → (𝐾...𝑚) ∈ Fin)
20 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → 𝑥 ⊆ (𝐾...𝑚))
2119, 20ssfid 9329 . . . . . . . . . . . 12 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → 𝑥 ∈ Fin)
22 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘𝑥) → 𝜑)
2320sselda 4008 . . . . . . . . . . . . 13 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘𝑥) → 𝑘 ∈ (𝐾...𝑚))
24 rge0ssre 13516 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
25 fzssuz 13625 . . . . . . . . . . . . . . . . 17 (𝐾...𝑚) ⊆ (ℤ𝐾)
2625, 2sseqtrri 4046 . . . . . . . . . . . . . . . 16 (𝐾...𝑚) ⊆ 𝑍
27 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝐾...𝑚) → 𝑘 ∈ (𝐾...𝑚))
2826, 27sselid 4006 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐾...𝑚) → 𝑘𝑍)
2928, 5sylan2 592 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 𝐵 ∈ (0[,)+∞))
3024, 29sselid 4006 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 𝐵 ∈ ℝ)
3122, 23, 30syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘𝑥) → 𝐵 ∈ ℝ)
3218, 21, 31fsumreclf 45497 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ∈ ℝ)
3332adantlr 714 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ∈ ℝ)
34 fzfid 14024 . . . . . . . . . . . 12 (𝜑 → (𝐾...𝑚) ∈ Fin)
351, 34, 30fsumreclf 45497 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝐾...𝑚)𝐵 ∈ ℝ)
3635ad2antrr 725 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘 ∈ (𝐾...𝑚)𝐵 ∈ ℝ)
37 simplr 768 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → 𝐶 < Σ𝑘𝑥 𝐵)
3830adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘 ∈ (𝐾...𝑚)) → 𝐵 ∈ ℝ)
39 0xr 11337 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
4039a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 0 ∈ ℝ*)
41 pnfxr 11344 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
4241a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝐾...𝑚)) → +∞ ∈ ℝ*)
43 icogelb 13458 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
4440, 42, 29, 43syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐾...𝑚)) → 0 ≤ 𝐵)
4544adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑥 ⊆ (𝐾...𝑚)) ∧ 𝑘 ∈ (𝐾...𝑚)) → 0 ≤ 𝐵)
4618, 19, 38, 45, 20fsumlessf 45498 . . . . . . . . . . 11 ((𝜑𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ≤ Σ𝑘 ∈ (𝐾...𝑚)𝐵)
4746adantlr 714 . . . . . . . . . 10 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → Σ𝑘𝑥 𝐵 ≤ Σ𝑘 ∈ (𝐾...𝑚)𝐵)
4816, 33, 36, 37, 47ltletrd 11450 . . . . . . . . 9 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑥 ⊆ (𝐾...𝑚)) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
4948ex 412 . . . . . . . 8 ((𝜑𝐶 < Σ𝑘𝑥 𝐵) → (𝑥 ⊆ (𝐾...𝑚) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
5049adantr 480 . . . . . . 7 (((𝜑𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑚𝑍) → (𝑥 ⊆ (𝐾...𝑚) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
51503adantl2 1167 . . . . . 6 (((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) ∧ 𝑚𝑍) → (𝑥 ⊆ (𝐾...𝑚) → 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
5251reximdva 3174 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → (∃𝑚𝑍 𝑥 ⊆ (𝐾...𝑚) → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
5315, 52mpd 15 . . . 4 ((𝜑𝑥 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝐶 < Σ𝑘𝑥 𝐵) → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
54533exp 1119 . . 3 (𝜑 → (𝑥 ∈ (𝒫 𝑍 ∩ Fin) → (𝐶 < Σ𝑘𝑥 𝐵 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)))
5554rexlimdv 3159 . 2 (𝜑 → (∃𝑥 ∈ (𝒫 𝑍 ∩ Fin)𝐶 < Σ𝑘𝑥 𝐵 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵))
568, 55mpd 15 1 (𝜑 → ∃𝑚𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wnf 1781  wcel 2108  wrex 3076  Vcvv 3488  cin 3975  wss 3976  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  Fincfn 9003  cr 11183  0cc0 11184  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cz 12639  cuz 12903  [,)cico 13409  ...cfz 13567  Σcsu 15734  Σ^csumge0 46283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-sumge0 46284
This theorem is referenced by:  hoidmvlelem3  46518
  Copyright terms: Public domain W3C validator