MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmord Structured version   Visualization version   GIF version

Theorem nnmord 8572
Description: Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmord ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))

Proof of Theorem nnmord
StepHypRef Expression
1 nnmordi 8571 . . . . 5 (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
21ex 414 . . . 4 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
32impcomd 413 . . 3 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
433adant1 1131 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
5 ne0i 4293 . . . . . . . 8 ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → (𝐶 ·o 𝐵) ≠ ∅)
6 nnm0r 8550 . . . . . . . . . 10 (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅)
7 oveq1 7359 . . . . . . . . . . 11 (𝐶 = ∅ → (𝐶 ·o 𝐵) = (∅ ·o 𝐵))
87eqeq1d 2740 . . . . . . . . . 10 (𝐶 = ∅ → ((𝐶 ·o 𝐵) = ∅ ↔ (∅ ·o 𝐵) = ∅))
96, 8syl5ibrcom 247 . . . . . . . . 9 (𝐵 ∈ ω → (𝐶 = ∅ → (𝐶 ·o 𝐵) = ∅))
109necon3d 2963 . . . . . . . 8 (𝐵 ∈ ω → ((𝐶 ·o 𝐵) ≠ ∅ → 𝐶 ≠ ∅))
115, 10syl5 34 . . . . . . 7 (𝐵 ∈ ω → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐶 ≠ ∅))
1211adantr 482 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐶 ≠ ∅))
13 nnord 7803 . . . . . . . 8 (𝐶 ∈ ω → Ord 𝐶)
14 ord0eln0 6371 . . . . . . . 8 (Ord 𝐶 → (∅ ∈ 𝐶𝐶 ≠ ∅))
1513, 14syl 17 . . . . . . 7 (𝐶 ∈ ω → (∅ ∈ 𝐶𝐶 ≠ ∅))
1615adantl 483 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶𝐶 ≠ ∅))
1712, 16sylibrd 259 . . . . 5 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → ∅ ∈ 𝐶))
18173adant1 1131 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → ∅ ∈ 𝐶))
19 oveq2 7360 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵))
2019a1i 11 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 = 𝐵 → (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵)))
21 nnmordi 8571 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐵𝐴 → (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))
22213adantl2 1168 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐵𝐴 → (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))
2320, 22orim12d 964 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐴 = 𝐵𝐵𝐴) → ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴))))
2423con3d 152 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)) → ¬ (𝐴 = 𝐵𝐵𝐴)))
25 simpl3 1194 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐶 ∈ ω)
26 simpl1 1192 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐴 ∈ ω)
27 nnmcl 8552 . . . . . . . . 9 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ·o 𝐴) ∈ ω)
2825, 26, 27syl2anc 585 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐴) ∈ ω)
29 simpl2 1193 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → 𝐵 ∈ ω)
30 nnmcl 8552 . . . . . . . . 9 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ·o 𝐵) ∈ ω)
3125, 29, 30syl2anc 585 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐵) ∈ ω)
32 nnord 7803 . . . . . . . . 9 ((𝐶 ·o 𝐴) ∈ ω → Ord (𝐶 ·o 𝐴))
33 nnord 7803 . . . . . . . . 9 ((𝐶 ·o 𝐵) ∈ ω → Ord (𝐶 ·o 𝐵))
34 ordtri2 6351 . . . . . . . . 9 ((Ord (𝐶 ·o 𝐴) ∧ Ord (𝐶 ·o 𝐵)) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ↔ ¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴))))
3532, 33, 34syl2an 597 . . . . . . . 8 (((𝐶 ·o 𝐴) ∈ ω ∧ (𝐶 ·o 𝐵) ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ↔ ¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴))))
3628, 31, 35syl2anc 585 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ↔ ¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴))))
37 nnord 7803 . . . . . . . . 9 (𝐴 ∈ ω → Ord 𝐴)
38 nnord 7803 . . . . . . . . 9 (𝐵 ∈ ω → Ord 𝐵)
39 ordtri2 6351 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
4037, 38, 39syl2an 597 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
4126, 29, 40syl2anc 585 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
4224, 36, 413imtr4d 294 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐴𝐵))
4342ex 414 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐴𝐵)))
4443com23 86 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → (∅ ∈ 𝐶𝐴𝐵)))
4518, 44mpdd 43 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐴𝐵))
4645, 18jcad 514 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → (𝐴𝐵 ∧ ∅ ∈ 𝐶)))
474, 46impbid 211 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wne 2942  c0 4281  Ord word 6315  (class class class)co 7352  ωcom 7795   ·o comu 8403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pr 5383  ax-un 7665
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7796  df-2nd 7915  df-frecs 8205  df-wrecs 8236  df-recs 8310  df-rdg 8349  df-oadd 8409  df-omul 8410
This theorem is referenced by:  nnmword  8573  nnneo  8594  ltmpi  10799
  Copyright terms: Public domain W3C validator