Proof of Theorem nnmord
| Step | Hyp | Ref
| Expression |
| 1 | | nnmordi 8669 |
. . . . 5
⊢ (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐴 ∈ 𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 2 | 1 | ex 412 |
. . . 4
⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅
∈ 𝐶 → (𝐴 ∈ 𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))) |
| 3 | 2 | impcomd 411 |
. . 3
⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 4 | 3 | 3adant1 1131 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |
| 5 | | ne0i 4341 |
. . . . . . . 8
⊢ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → (𝐶 ·o 𝐵) ≠ ∅) |
| 6 | | nnm0r 8648 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ω → (∅
·o 𝐵) =
∅) |
| 7 | | oveq1 7438 |
. . . . . . . . . . 11
⊢ (𝐶 = ∅ → (𝐶 ·o 𝐵) = (∅
·o 𝐵)) |
| 8 | 7 | eqeq1d 2739 |
. . . . . . . . . 10
⊢ (𝐶 = ∅ → ((𝐶 ·o 𝐵) = ∅ ↔ (∅
·o 𝐵) =
∅)) |
| 9 | 6, 8 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ (𝐵 ∈ ω → (𝐶 = ∅ → (𝐶 ·o 𝐵) = ∅)) |
| 10 | 9 | necon3d 2961 |
. . . . . . . 8
⊢ (𝐵 ∈ ω → ((𝐶 ·o 𝐵) ≠ ∅ → 𝐶 ≠ ∅)) |
| 11 | 5, 10 | syl5 34 |
. . . . . . 7
⊢ (𝐵 ∈ ω → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐶 ≠ ∅)) |
| 12 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐶 ≠ ∅)) |
| 13 | | nnord 7895 |
. . . . . . . 8
⊢ (𝐶 ∈ ω → Ord 𝐶) |
| 14 | | ord0eln0 6439 |
. . . . . . . 8
⊢ (Ord
𝐶 → (∅ ∈
𝐶 ↔ 𝐶 ≠ ∅)) |
| 15 | 13, 14 | syl 17 |
. . . . . . 7
⊢ (𝐶 ∈ ω → (∅
∈ 𝐶 ↔ 𝐶 ≠ ∅)) |
| 16 | 15 | adantl 481 |
. . . . . 6
⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅
∈ 𝐶 ↔ 𝐶 ≠ ∅)) |
| 17 | 12, 16 | sylibrd 259 |
. . . . 5
⊢ ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → ∅ ∈ 𝐶)) |
| 18 | 17 | 3adant1 1131 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → ∅ ∈ 𝐶)) |
| 19 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝐴 = 𝐵 → (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵)) |
| 20 | 19 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐴 = 𝐵 → (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵))) |
| 21 | | nnmordi 8669 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐵 ∈ 𝐴 → (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴))) |
| 22 | 21 | 3adantl2 1168 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐵 ∈ 𝐴 → (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴))) |
| 23 | 20, 22 | orim12d 967 |
. . . . . . . 8
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → ((𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) → ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))) |
| 24 | 23 | con3d 152 |
. . . . . . 7
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (¬
((𝐶 ·o
𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)) → ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 25 | | simpl3 1194 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → 𝐶 ∈
ω) |
| 26 | | simpl1 1192 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → 𝐴 ∈
ω) |
| 27 | | nnmcl 8650 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 ·o 𝐴) ∈
ω) |
| 28 | 25, 26, 27 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐶 ·o 𝐴) ∈
ω) |
| 29 | | simpl2 1193 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → 𝐵 ∈
ω) |
| 30 | | nnmcl 8650 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 ·o 𝐵) ∈
ω) |
| 31 | 25, 29, 30 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐶 ·o 𝐵) ∈
ω) |
| 32 | | nnord 7895 |
. . . . . . . . 9
⊢ ((𝐶 ·o 𝐴) ∈ ω → Ord
(𝐶 ·o
𝐴)) |
| 33 | | nnord 7895 |
. . . . . . . . 9
⊢ ((𝐶 ·o 𝐵) ∈ ω → Ord
(𝐶 ·o
𝐵)) |
| 34 | | ordtri2 6419 |
. . . . . . . . 9
⊢ ((Ord
(𝐶 ·o
𝐴) ∧ Ord (𝐶 ·o 𝐵)) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ↔ ¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))) |
| 35 | 32, 33, 34 | syl2an 596 |
. . . . . . . 8
⊢ (((𝐶 ·o 𝐴) ∈ ω ∧ (𝐶 ·o 𝐵) ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ↔ ¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))) |
| 36 | 28, 31, 35 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ↔ ¬ ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐵) ∈ (𝐶 ·o 𝐴)))) |
| 37 | | nnord 7895 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → Ord 𝐴) |
| 38 | | nnord 7895 |
. . . . . . . . 9
⊢ (𝐵 ∈ ω → Ord 𝐵) |
| 39 | | ordtri2 6419 |
. . . . . . . . 9
⊢ ((Ord
𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 40 | 37, 38, 39 | syl2an 596 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 41 | 26, 29, 40 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → (𝐴 ∈ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 42 | 24, 36, 41 | 3imtr4d 294 |
. . . . . 6
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅
∈ 𝐶) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐴 ∈ 𝐵)) |
| 43 | 42 | ex 412 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅
∈ 𝐶 → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐴 ∈ 𝐵))) |
| 44 | 43 | com23 86 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → (∅ ∈ 𝐶 → 𝐴 ∈ 𝐵))) |
| 45 | 18, 44 | mpdd 43 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → 𝐴 ∈ 𝐵)) |
| 46 | 45, 18 | jcad 512 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) → (𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶))) |
| 47 | 4, 46 | impbid 212 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) |