MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkext2edg Structured version   Visualization version   GIF version

Theorem clwwlkext2edg 27768
Description: If a word concatenated with a vertex represents a closed walk in (in a graph), there is an edge between this vertex and the last vertex of the word, and between this vertex and the first vertex of the word. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 27-Apr-2021.) (Proof shortened by AV, 22-Mar-2022.)
Hypotheses
Ref Expression
clwwlkext2edg.v 𝑉 = (Vtx‘𝐺)
clwwlkext2edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlkext2edg (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺)) → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸))

Proof of Theorem clwwlkext2edg
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 clwwlknnn 27744 . . 3 ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ)
2 clwwlkext2edg.v . . . . 5 𝑉 = (Vtx‘𝐺)
3 clwwlkext2edg.e . . . . 5 𝐸 = (Edg‘𝐺)
42, 3isclwwlknx 27747 . . . 4 (𝑁 ∈ ℕ → ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁)))
5 ige2m2fzo 13095 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
653ad2ant3 1129 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
76adantr 481 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
8 oveq1 7157 . . . . . . . . . . . . . . . 16 ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1) = (𝑁 − 1))
98oveq2d 7166 . . . . . . . . . . . . . . 15 ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) = (0..^(𝑁 − 1)))
109eleq2d 2903 . . . . . . . . . . . . . 14 ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((𝑁 − 2) ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) ↔ (𝑁 − 2) ∈ (0..^(𝑁 − 1))))
1110adantl 482 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑁 − 2) ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) ↔ (𝑁 − 2) ∈ (0..^(𝑁 − 1))))
127, 11mpbird 258 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑁 − 2) ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)))
13 fveq2 6669 . . . . . . . . . . . . . . 15 (𝑖 = (𝑁 − 2) → ((𝑊 ++ ⟨“𝑍”⟩)‘𝑖) = ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)))
14 fvoveq1 7173 . . . . . . . . . . . . . . 15 (𝑖 = (𝑁 − 2) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1)) = ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1)))
1513, 14preq12d 4676 . . . . . . . . . . . . . 14 (𝑖 = (𝑁 − 2) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))})
1615eleq1d 2902 . . . . . . . . . . . . 13 (𝑖 = (𝑁 − 2) → ({((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} ∈ 𝐸))
1716rspcv 3622 . . . . . . . . . . . 12 ((𝑁 − 2) ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) → (∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} ∈ 𝐸))
1812, 17syl 17 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} ∈ 𝐸))
19 wrdlenccats1lenm1 13971 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ Word 𝑉 → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1) = (♯‘𝑊))
2019eqcomd 2832 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) = ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1))
2120adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉𝑍𝑉) → (♯‘𝑊) = ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1))
2221, 8sylan9eq 2881 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉𝑍𝑉) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (♯‘𝑊) = (𝑁 − 1))
2322ex 413 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉𝑍𝑉) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (♯‘𝑊) = (𝑁 − 1)))
24233adant3 1126 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (♯‘𝑊) = (𝑁 − 1)))
25 eluzelcn 12249 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
26 1cnd 10630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℂ)
2725, 26, 26subsub4d 11022 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
28 1p1e2 11756 . . . . . . . . . . . . . . . . . . . . . . 23 (1 + 1) = 2
2928a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (1 + 1) = 2)
3029oveq2d 7166 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (𝑁 − (1 + 1)) = (𝑁 − 2))
3127, 30eqtr2d 2862 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) = ((𝑁 − 1) − 1))
32313ad2ant3 1129 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → (𝑁 − 2) = ((𝑁 − 1) − 1))
33 oveq1 7157 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑊) = (𝑁 − 1) → ((♯‘𝑊) − 1) = ((𝑁 − 1) − 1))
3433eqcomd 2832 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) = (𝑁 − 1) → ((𝑁 − 1) − 1) = ((♯‘𝑊) − 1))
3532, 34sylan9eq 2881 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → (𝑁 − 2) = ((♯‘𝑊) − 1))
3635ex 413 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘𝑊) = (𝑁 − 1) → (𝑁 − 2) = ((♯‘𝑊) − 1)))
3724, 36syld 47 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (𝑁 − 2) = ((♯‘𝑊) − 1)))
3837imp 407 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑁 − 2) = ((♯‘𝑊) − 1))
3938fveq2d 6673 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)) = ((𝑊 ++ ⟨“𝑍”⟩)‘((♯‘𝑊) − 1)))
40 simpl1 1185 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → 𝑊 ∈ Word 𝑉)
41 s1cl 13951 . . . . . . . . . . . . . . . . . . . . 21 (𝑍𝑉 → ⟨“𝑍”⟩ ∈ Word 𝑉)
42413ad2ant2 1128 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ⟨“𝑍”⟩ ∈ Word 𝑉)
4342adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → ⟨“𝑍”⟩ ∈ Word 𝑉)
44 eluz2 12243 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
45 zre 11979 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
46 1red 10636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 ∈ ℝ)
47 2re 11705 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 ∈ ℝ
4847a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 2 ∈ ℝ)
49 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℝ)
50 1lt2 11802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1 < 2
5150a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 < 2)
52 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁)
5346, 48, 49, 51, 52ltletrd 10794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 < 𝑁)
54 1red 10636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℝ → 1 ∈ ℝ)
55 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
5654, 55posdifd 11221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℝ → (1 < 𝑁 ↔ 0 < (𝑁 − 1)))
5756adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (1 < 𝑁 ↔ 0 < (𝑁 − 1)))
5853, 57mpbid 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 0 < (𝑁 − 1))
5958ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℝ → (2 ≤ 𝑁 → 0 < (𝑁 − 1)))
6045, 59syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → 0 < (𝑁 − 1)))
6160a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ ℤ → (𝑁 ∈ ℤ → (2 ≤ 𝑁 → 0 < (𝑁 − 1))))
62613imp 1105 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 0 < (𝑁 − 1))
6344, 62sylbi 218 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 0 < (𝑁 − 1))
6463ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → 0 < (𝑁 − 1))
65 breq2 5067 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) = (𝑁 − 1) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 − 1)))
6665adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 − 1)))
6764, 66mpbird 258 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → 0 < (♯‘𝑊))
68 hashneq0 13720 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
6968adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
7069adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
7167, 70mpbid 233 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → 𝑊 ≠ ∅)
72713adantl2 1161 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → 𝑊 ≠ ∅)
7340, 43, 723jca 1122 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅))
7473ex 413 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘𝑊) = (𝑁 − 1) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅)))
7524, 74syld 47 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅)))
7675imp 407 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅))
77 ccatval1lsw 13933 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 ++ ⟨“𝑍”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
7876, 77syl 17 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
7939, 78eqtrd 2861 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)) = (lastS‘𝑊))
80 2m1e1 11757 . . . . . . . . . . . . . . . . . . . . . . 23 (2 − 1) = 1
8180a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (2 − 1) = 1)
8281eqcomd 2832 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 1 = (2 − 1))
8382oveq2d 7166 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) = (𝑁 − (2 − 1)))
84 2cnd 11709 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
8525, 84, 26subsubd 11019 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
8683, 85eqtr2d 2862 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) = (𝑁 − 1))
87863ad2ant3 1129 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((𝑁 − 2) + 1) = (𝑁 − 1))
88 eqeq2 2838 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) = (𝑁 − 1) → (((𝑁 − 2) + 1) = (♯‘𝑊) ↔ ((𝑁 − 2) + 1) = (𝑁 − 1)))
8987, 88syl5ibrcom 248 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘𝑊) = (𝑁 − 1) → ((𝑁 − 2) + 1) = (♯‘𝑊)))
9024, 89syld 47 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((𝑁 − 2) + 1) = (♯‘𝑊)))
9190imp 407 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑁 − 2) + 1) = (♯‘𝑊))
9291fveq2d 6673 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1)) = ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)))
93 id 22 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉) → (𝑊 ∈ Word 𝑉𝑍𝑉))
94933adant3 1126 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → (𝑊 ∈ Word 𝑉𝑍𝑉))
9594adantr 481 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑊 ∈ Word 𝑉𝑍𝑉))
96 ccatws1ls 13987 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝑍𝑉) → ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)) = 𝑍)
9795, 96syl 17 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)) = 𝑍)
9892, 97eqtrd 2861 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1)) = 𝑍)
9979, 98preq12d 4676 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} = {(lastS‘𝑊), 𝑍})
10099eleq1d 2902 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ({((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} ∈ 𝐸 ↔ {(lastS‘𝑊), 𝑍} ∈ 𝐸))
10118, 100sylibd 240 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → {(lastS‘𝑊), 𝑍} ∈ 𝐸))
102101ex 413 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → {(lastS‘𝑊), 𝑍} ∈ 𝐸)))
103102com13 88 . . . . . . . 8 (∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → {(lastS‘𝑊), 𝑍} ∈ 𝐸)))
1041033ad2ant2 1128 . . . . . . 7 (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → {(lastS‘𝑊), 𝑍} ∈ 𝐸)))
105104imp31 418 . . . . . 6 (((((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {(lastS‘𝑊), 𝑍} ∈ 𝐸)
10694adantr 481 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → (𝑊 ∈ Word 𝑉𝑍𝑉))
107 lswccats1 13988 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝑍𝑉) → (lastS‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑍)
108106, 107syl 17 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → (lastS‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑍)
109633ad2ant3 1129 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → 0 < (𝑁 − 1))
110109adantr 481 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → 0 < (𝑁 − 1))
11165adantl 482 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 − 1)))
112110, 111mpbird 258 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → 0 < (♯‘𝑊))
113 ccatfv0 13932 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑍”⟩)‘0) = (𝑊‘0))
11440, 43, 112, 113syl3anc 1365 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → ((𝑊 ++ ⟨“𝑍”⟩)‘0) = (𝑊‘0))
115108, 114preq12d 4676 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)})
116115ex 413 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘𝑊) = (𝑁 − 1) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)}))
11724, 116syld 47 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)}))
118117impcom 408 . . . . . . . . . 10 (((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)})
119118eleq1d 2902 . . . . . . . . 9 (((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → ({(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸 ↔ {𝑍, (𝑊‘0)} ∈ 𝐸))
120119biimpcd 250 . . . . . . . 8 ({(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸 → (((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {𝑍, (𝑊‘0)} ∈ 𝐸))
1211203ad2ant3 1129 . . . . . . 7 (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) → (((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {𝑍, (𝑊‘0)} ∈ 𝐸))
122121impl 456 . . . . . 6 (((((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {𝑍, (𝑊‘0)} ∈ 𝐸)
123105, 122jca 512 . . . . 5 (((((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸))
124123ex 413 . . . 4 ((((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)))
1254, 124syl6bi 254 . . 3 (𝑁 ∈ ℕ → ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸))))
1261, 125mpcom 38 . 2 ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)))
127126impcom 408 1 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺)) → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  c0 4295  {cpr 4566   class class class wbr 5063  cfv 6354  (class class class)co 7150  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   < clt 10669  cle 10670  cmin 10864  cn 11632  2c2 11686  cz 11975  cuz 12237  ..^cfzo 13028  chash 13685  Word cword 13856  lastSclsw 13909   ++ cconcat 13917  ⟨“cs1 13944  Vtxcvtx 26714  Edgcedg 26765   ClWWalksN cclwwlkn 27735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-rp 12385  df-fz 12888  df-fzo 13029  df-hash 13686  df-word 13857  df-lsw 13910  df-concat 13918  df-s1 13945  df-clwwlk 27693  df-clwwlkn 27736
This theorem is referenced by:  numclwwlk2lem1  28088
  Copyright terms: Public domain W3C validator