MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkext2edg Structured version   Visualization version   GIF version

Theorem clwwlkext2edg 30018
Description: If a word concatenated with a vertex represents a closed walk in (in a graph), there is an edge between this vertex and the last vertex of the word, and between this vertex and the first vertex of the word. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Revised by AV, 27-Apr-2021.) (Proof shortened by AV, 22-Mar-2022.)
Hypotheses
Ref Expression
clwwlkext2edg.v 𝑉 = (Vtx‘𝐺)
clwwlkext2edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlkext2edg (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺)) → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸))

Proof of Theorem clwwlkext2edg
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 clwwlknnn 29995 . . 3 ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 ∈ ℕ)
2 clwwlkext2edg.v . . . . 5 𝑉 = (Vtx‘𝐺)
3 clwwlkext2edg.e . . . . 5 𝐸 = (Edg‘𝐺)
42, 3isclwwlknx 29998 . . . 4 (𝑁 ∈ ℕ → ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺) ↔ (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁)))
5 ige2m2fzo 13649 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
653ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
76adantr 480 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑁 − 2) ∈ (0..^(𝑁 − 1)))
8 oveq1 7360 . . . . . . . . . . . . . . . 16 ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1) = (𝑁 − 1))
98oveq2d 7369 . . . . . . . . . . . . . . 15 ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) = (0..^(𝑁 − 1)))
109eleq2d 2814 . . . . . . . . . . . . . 14 ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((𝑁 − 2) ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) ↔ (𝑁 − 2) ∈ (0..^(𝑁 − 1))))
1110adantl 481 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑁 − 2) ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) ↔ (𝑁 − 2) ∈ (0..^(𝑁 − 1))))
127, 11mpbird 257 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑁 − 2) ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)))
13 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑖 = (𝑁 − 2) → ((𝑊 ++ ⟨“𝑍”⟩)‘𝑖) = ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)))
14 fvoveq1 7376 . . . . . . . . . . . . . . 15 (𝑖 = (𝑁 − 2) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1)) = ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1)))
1513, 14preq12d 4695 . . . . . . . . . . . . . 14 (𝑖 = (𝑁 − 2) → {((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} = {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))})
1615eleq1d 2813 . . . . . . . . . . . . 13 (𝑖 = (𝑁 − 2) → ({((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ↔ {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} ∈ 𝐸))
1716rspcv 3575 . . . . . . . . . . . 12 ((𝑁 − 2) ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)) → (∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} ∈ 𝐸))
1812, 17syl 17 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} ∈ 𝐸))
19 wrdlenccats1lenm1 14547 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ Word 𝑉 → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1) = (♯‘𝑊))
2019eqcomd 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) = ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1))
2120adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉𝑍𝑉) → (♯‘𝑊) = ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1))
2221, 8sylan9eq 2784 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉𝑍𝑉) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (♯‘𝑊) = (𝑁 − 1))
2322ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉𝑍𝑉) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (♯‘𝑊) = (𝑁 − 1)))
24233adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (♯‘𝑊) = (𝑁 − 1)))
25 eluzelcn 12765 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
26 1cnd 11129 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℂ)
2725, 26, 26subsub4d 11524 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
28 1p1e2 12266 . . . . . . . . . . . . . . . . . . . . . . 23 (1 + 1) = 2
2928a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (1 + 1) = 2)
3029oveq2d 7369 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (𝑁 − (1 + 1)) = (𝑁 − 2))
3127, 30eqtr2d 2765 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) = ((𝑁 − 1) − 1))
32313ad2ant3 1135 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → (𝑁 − 2) = ((𝑁 − 1) − 1))
33 oveq1 7360 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑊) = (𝑁 − 1) → ((♯‘𝑊) − 1) = ((𝑁 − 1) − 1))
3433eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) = (𝑁 − 1) → ((𝑁 − 1) − 1) = ((♯‘𝑊) − 1))
3532, 34sylan9eq 2784 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → (𝑁 − 2) = ((♯‘𝑊) − 1))
3635ex 412 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘𝑊) = (𝑁 − 1) → (𝑁 − 2) = ((♯‘𝑊) − 1)))
3724, 36syld 47 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (𝑁 − 2) = ((♯‘𝑊) − 1)))
3837imp 406 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑁 − 2) = ((♯‘𝑊) − 1))
3938fveq2d 6830 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)) = ((𝑊 ++ ⟨“𝑍”⟩)‘((♯‘𝑊) − 1)))
40 simpl1 1192 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → 𝑊 ∈ Word 𝑉)
41 s1cl 14527 . . . . . . . . . . . . . . . . . . . . 21 (𝑍𝑉 → ⟨“𝑍”⟩ ∈ Word 𝑉)
42413ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ⟨“𝑍”⟩ ∈ Word 𝑉)
4342adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → ⟨“𝑍”⟩ ∈ Word 𝑉)
44 eluz2 12759 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
45 zre 12493 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
46 1red 11135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 ∈ ℝ)
47 2re 12220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2 ∈ ℝ
4847a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 2 ∈ ℝ)
49 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℝ)
50 1lt2 12312 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1 < 2
5150a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 < 2)
52 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁)
5346, 48, 49, 51, 52ltletrd 11294 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 < 𝑁)
54 1red 11135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℝ → 1 ∈ ℝ)
55 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
5654, 55posdifd 11725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℝ → (1 < 𝑁 ↔ 0 < (𝑁 − 1)))
5756adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (1 < 𝑁 ↔ 0 < (𝑁 − 1)))
5853, 57mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 0 < (𝑁 − 1))
5958ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℝ → (2 ≤ 𝑁 → 0 < (𝑁 − 1)))
6045, 59syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℤ → (2 ≤ 𝑁 → 0 < (𝑁 − 1)))
6160a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ ℤ → (𝑁 ∈ ℤ → (2 ≤ 𝑁 → 0 < (𝑁 − 1))))
62613imp 1110 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁) → 0 < (𝑁 − 1))
6344, 62sylbi 217 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘2) → 0 < (𝑁 − 1))
6463ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → 0 < (𝑁 − 1))
65 breq2 5099 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) = (𝑁 − 1) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 − 1)))
6665adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 − 1)))
6764, 66mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → 0 < (♯‘𝑊))
68 hashneq0 14289 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑊 ∈ Word 𝑉 → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
6968adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
7069adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → (0 < (♯‘𝑊) ↔ 𝑊 ≠ ∅))
7167, 70mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ Word 𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → 𝑊 ≠ ∅)
72713adantl2 1168 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → 𝑊 ≠ ∅)
7340, 43, 723jca 1128 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅))
7473ex 412 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘𝑊) = (𝑁 − 1) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅)))
7524, 74syld 47 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅)))
7675imp 406 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅))
77 ccatval1lsw 14509 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 ++ ⟨“𝑍”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
7876, 77syl 17 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
7939, 78eqtrd 2764 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)) = (lastS‘𝑊))
80 2m1e1 12267 . . . . . . . . . . . . . . . . . . . . . . 23 (2 − 1) = 1
8180a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘2) → (2 − 1) = 1)
8281eqcomd 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 1 = (2 − 1))
8382oveq2d 7369 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) = (𝑁 − (2 − 1)))
84 2cnd 12224 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
8525, 84, 26subsubd 11521 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
8683, 85eqtr2d 2765 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 2) + 1) = (𝑁 − 1))
87863ad2ant3 1135 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((𝑁 − 2) + 1) = (𝑁 − 1))
88 eqeq2 2741 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑊) = (𝑁 − 1) → (((𝑁 − 2) + 1) = (♯‘𝑊) ↔ ((𝑁 − 2) + 1) = (𝑁 − 1)))
8987, 88syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘𝑊) = (𝑁 − 1) → ((𝑁 − 2) + 1) = (♯‘𝑊)))
9024, 89syld 47 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((𝑁 − 2) + 1) = (♯‘𝑊)))
9190imp 406 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑁 − 2) + 1) = (♯‘𝑊))
9291fveq2d 6830 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1)) = ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)))
93 id 22 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉) → (𝑊 ∈ Word 𝑉𝑍𝑉))
94933adant3 1132 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → (𝑊 ∈ Word 𝑉𝑍𝑉))
9594adantr 480 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (𝑊 ∈ Word 𝑉𝑍𝑉))
96 ccatws1ls 14558 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝑍𝑉) → ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)) = 𝑍)
9795, 96syl 17 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘(♯‘𝑊)) = 𝑍)
9892, 97eqtrd 2764 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1)) = 𝑍)
9979, 98preq12d 4695 . . . . . . . . . . . 12 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → {((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} = {(lastS‘𝑊), 𝑍})
10099eleq1d 2813 . . . . . . . . . . 11 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ({((𝑊 ++ ⟨“𝑍”⟩)‘(𝑁 − 2)), ((𝑊 ++ ⟨“𝑍”⟩)‘((𝑁 − 2) + 1))} ∈ 𝐸 ↔ {(lastS‘𝑊), 𝑍} ∈ 𝐸))
10118, 100sylibd 239 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → (∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → {(lastS‘𝑊), 𝑍} ∈ 𝐸))
102101ex 412 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → (∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → {(lastS‘𝑊), 𝑍} ∈ 𝐸)))
103102com13 88 . . . . . . . 8 (∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → {(lastS‘𝑊), 𝑍} ∈ 𝐸)))
1041033ad2ant2 1134 . . . . . . 7 (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → {(lastS‘𝑊), 𝑍} ∈ 𝐸)))
105104imp31 417 . . . . . 6 (((((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {(lastS‘𝑊), 𝑍} ∈ 𝐸)
10694adantr 480 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → (𝑊 ∈ Word 𝑉𝑍𝑉))
107 lswccats1 14559 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝑍𝑉) → (lastS‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑍)
108106, 107syl 17 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → (lastS‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑍)
109633ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → 0 < (𝑁 − 1))
110109adantr 480 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → 0 < (𝑁 − 1))
11165adantl 481 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → (0 < (♯‘𝑊) ↔ 0 < (𝑁 − 1)))
112110, 111mpbird 257 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → 0 < (♯‘𝑊))
113 ccatfv0 14508 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑍”⟩ ∈ Word 𝑉 ∧ 0 < (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑍”⟩)‘0) = (𝑊‘0))
11440, 43, 112, 113syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → ((𝑊 ++ ⟨“𝑍”⟩)‘0) = (𝑊‘0))
115108, 114preq12d 4695 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (♯‘𝑊) = (𝑁 − 1)) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)})
116115ex 412 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘𝑊) = (𝑁 − 1) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)}))
11724, 116syld 47 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)}))
118117impcom 407 . . . . . . . . . 10 (((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} = {𝑍, (𝑊‘0)})
119118eleq1d 2813 . . . . . . . . 9 (((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → ({(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸 ↔ {𝑍, (𝑊‘0)} ∈ 𝐸))
120119biimpcd 249 . . . . . . . 8 ({(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸 → (((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {𝑍, (𝑊‘0)} ∈ 𝐸))
1211203ad2ant3 1135 . . . . . . 7 (((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) → (((♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁 ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {𝑍, (𝑊‘0)} ∈ 𝐸))
122121impl 455 . . . . . 6 (((((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → {𝑍, (𝑊‘0)} ∈ 𝐸)
123105, 122jca 511 . . . . 5 (((((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) ∧ (𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2))) → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸))
124123ex 412 . . . 4 ((((𝑊 ++ ⟨“𝑍”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“𝑍”⟩)) − 1)){((𝑊 ++ ⟨“𝑍”⟩)‘𝑖), ((𝑊 ++ ⟨“𝑍”⟩)‘(𝑖 + 1))} ∈ 𝐸 ∧ {(lastS‘(𝑊 ++ ⟨“𝑍”⟩)), ((𝑊 ++ ⟨“𝑍”⟩)‘0)} ∈ 𝐸) ∧ (♯‘(𝑊 ++ ⟨“𝑍”⟩)) = 𝑁) → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)))
1254, 124biimtrdi 253 . . 3 (𝑁 ∈ ℕ → ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸))))
1261, 125mpcom 38 . 2 ((𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸)))
127126impcom 407 1 (((𝑊 ∈ Word 𝑉𝑍𝑉𝑁 ∈ (ℤ‘2)) ∧ (𝑊 ++ ⟨“𝑍”⟩) ∈ (𝑁 ClWWalksN 𝐺)) → ({(lastS‘𝑊), 𝑍} ∈ 𝐸 ∧ {𝑍, (𝑊‘0)} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  c0 4286  {cpr 4581   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   < clt 11168  cle 11169  cmin 11365  cn 12146  2c2 12201  cz 12489  cuz 12753  ..^cfzo 13575  chash 14255  Word cword 14438  lastSclsw 14487   ++ cconcat 14495  ⟨“cs1 14520  Vtxcvtx 28959  Edgcedg 29010   ClWWalksN cclwwlkn 29986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-clwwlk 29944  df-clwwlkn 29987
This theorem is referenced by:  numclwwlk2lem1  30338
  Copyright terms: Public domain W3C validator