Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulgsubcl | Structured version Visualization version GIF version |
Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
mulgnnsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnnsubcl.t | ⊢ · = (.g‘𝐺) |
mulgnnsubcl.p | ⊢ + = (+g‘𝐺) |
mulgnnsubcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
mulgnnsubcl.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
mulgnnsubcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
mulgnn0subcl.z | ⊢ 0 = (0g‘𝐺) |
mulgnn0subcl.c | ⊢ (𝜑 → 0 ∈ 𝑆) |
mulgsubcl.i | ⊢ 𝐼 = (invg‘𝐺) |
mulgsubcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐼‘𝑥) ∈ 𝑆) |
Ref | Expression |
---|---|
mulgsubcl | ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgnnsubcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mulgnnsubcl.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
3 | mulgnnsubcl.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
4 | mulgnnsubcl.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
5 | mulgnnsubcl.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
6 | mulgnnsubcl.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | |
7 | mulgnn0subcl.z | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
8 | mulgnn0subcl.c | . . . . . 6 ⊢ (𝜑 → 0 ∈ 𝑆) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mulgnn0subcl 18717 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
10 | 9 | 3expa 1117 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0) ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
11 | 10 | an32s 649 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆) |
12 | 11 | 3adantl2 1166 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆) |
13 | simp2 1136 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈ ℤ) | |
14 | 13 | adantr 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℤ) |
15 | 14 | zcnd 12427 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
16 | 15 | negnegd 11323 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → --𝑁 = 𝑁) |
17 | 16 | oveq1d 7290 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝑁 · 𝑋)) |
18 | id 22 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ) | |
19 | 5 | 3ad2ant1 1132 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
20 | simp3 1137 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
21 | 19, 20 | sseldd 3922 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
22 | mulgsubcl.i | . . . . . . 7 ⊢ 𝐼 = (invg‘𝐺) | |
23 | 1, 2, 22 | mulgnegnn 18714 | . . . . . 6 ⊢ ((-𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋))) |
24 | 18, 21, 23 | syl2anr 597 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋))) |
25 | 17, 24 | eqtr3d 2780 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋))) |
26 | fveq2 6774 | . . . . . 6 ⊢ (𝑥 = (-𝑁 · 𝑋) → (𝐼‘𝑥) = (𝐼‘(-𝑁 · 𝑋))) | |
27 | 26 | eleq1d 2823 | . . . . 5 ⊢ (𝑥 = (-𝑁 · 𝑋) → ((𝐼‘𝑥) ∈ 𝑆 ↔ (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆)) |
28 | mulgsubcl.c | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐼‘𝑥) ∈ 𝑆) | |
29 | 28 | ralrimiva 3103 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
30 | 29 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
31 | 30 | adantr 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
32 | 1, 2, 3, 4, 5, 6 | mulgnnsubcl 18716 | . . . . . . . 8 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (-𝑁 · 𝑋) ∈ 𝑆) |
33 | 32 | 3expa 1117 | . . . . . . 7 ⊢ (((𝜑 ∧ -𝑁 ∈ ℕ) ∧ 𝑋 ∈ 𝑆) → (-𝑁 · 𝑋) ∈ 𝑆) |
34 | 33 | an32s 649 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆) |
35 | 34 | 3adantl2 1166 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆) |
36 | 27, 31, 35 | rspcdva 3562 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆) |
37 | 25, 36 | eqeltrd 2839 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆) |
38 | 37 | adantrl 713 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑁 · 𝑋) ∈ 𝑆) |
39 | elznn0nn 12333 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | |
40 | 13, 39 | sylib 217 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) |
41 | 12, 38, 40 | mpjaodan 956 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 -cneg 11206 ℕcn 11973 ℕ0cn0 12233 ℤcz 12319 Basecbs 16912 +gcplusg 16962 0gc0g 17150 invgcminusg 18578 .gcmg 18700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-seq 13722 df-mulg 18701 |
This theorem is referenced by: mulgcl 18721 subgmulgcl 18768 |
Copyright terms: Public domain | W3C validator |