Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulgsubcl | Structured version Visualization version GIF version |
Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
mulgnnsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnnsubcl.t | ⊢ · = (.g‘𝐺) |
mulgnnsubcl.p | ⊢ + = (+g‘𝐺) |
mulgnnsubcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
mulgnnsubcl.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
mulgnnsubcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
mulgnn0subcl.z | ⊢ 0 = (0g‘𝐺) |
mulgnn0subcl.c | ⊢ (𝜑 → 0 ∈ 𝑆) |
mulgsubcl.i | ⊢ 𝐼 = (invg‘𝐺) |
mulgsubcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐼‘𝑥) ∈ 𝑆) |
Ref | Expression |
---|---|
mulgsubcl | ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgnnsubcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mulgnnsubcl.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
3 | mulgnnsubcl.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
4 | mulgnnsubcl.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
5 | mulgnnsubcl.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
6 | mulgnnsubcl.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | |
7 | mulgnn0subcl.z | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
8 | mulgnn0subcl.c | . . . . . 6 ⊢ (𝜑 → 0 ∈ 𝑆) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mulgnn0subcl 18632 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
10 | 9 | 3expa 1116 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0) ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
11 | 10 | an32s 648 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆) |
12 | 11 | 3adantl2 1165 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆) |
13 | simp2 1135 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈ ℤ) | |
14 | 13 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℤ) |
15 | 14 | zcnd 12356 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
16 | 15 | negnegd 11253 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → --𝑁 = 𝑁) |
17 | 16 | oveq1d 7270 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝑁 · 𝑋)) |
18 | id 22 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ) | |
19 | 5 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
20 | simp3 1136 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
21 | 19, 20 | sseldd 3918 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
22 | mulgsubcl.i | . . . . . . 7 ⊢ 𝐼 = (invg‘𝐺) | |
23 | 1, 2, 22 | mulgnegnn 18629 | . . . . . 6 ⊢ ((-𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋))) |
24 | 18, 21, 23 | syl2anr 596 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋))) |
25 | 17, 24 | eqtr3d 2780 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋))) |
26 | fveq2 6756 | . . . . . 6 ⊢ (𝑥 = (-𝑁 · 𝑋) → (𝐼‘𝑥) = (𝐼‘(-𝑁 · 𝑋))) | |
27 | 26 | eleq1d 2823 | . . . . 5 ⊢ (𝑥 = (-𝑁 · 𝑋) → ((𝐼‘𝑥) ∈ 𝑆 ↔ (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆)) |
28 | mulgsubcl.c | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐼‘𝑥) ∈ 𝑆) | |
29 | 28 | ralrimiva 3107 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
30 | 29 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
31 | 30 | adantr 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
32 | 1, 2, 3, 4, 5, 6 | mulgnnsubcl 18631 | . . . . . . . 8 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (-𝑁 · 𝑋) ∈ 𝑆) |
33 | 32 | 3expa 1116 | . . . . . . 7 ⊢ (((𝜑 ∧ -𝑁 ∈ ℕ) ∧ 𝑋 ∈ 𝑆) → (-𝑁 · 𝑋) ∈ 𝑆) |
34 | 33 | an32s 648 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆) |
35 | 34 | 3adantl2 1165 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆) |
36 | 27, 31, 35 | rspcdva 3554 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆) |
37 | 25, 36 | eqeltrd 2839 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆) |
38 | 37 | adantrl 712 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑁 · 𝑋) ∈ 𝑆) |
39 | elznn0nn 12263 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | |
40 | 13, 39 | sylib 217 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) |
41 | 12, 38, 40 | mpjaodan 955 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 -cneg 11136 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 Basecbs 16840 +gcplusg 16888 0gc0g 17067 invgcminusg 18493 .gcmg 18615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-seq 13650 df-mulg 18616 |
This theorem is referenced by: mulgcl 18636 subgmulgcl 18683 |
Copyright terms: Public domain | W3C validator |