![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgsubcl | Structured version Visualization version GIF version |
Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
mulgnnsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnnsubcl.t | ⊢ · = (.g‘𝐺) |
mulgnnsubcl.p | ⊢ + = (+g‘𝐺) |
mulgnnsubcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
mulgnnsubcl.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
mulgnnsubcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
mulgnn0subcl.z | ⊢ 0 = (0g‘𝐺) |
mulgnn0subcl.c | ⊢ (𝜑 → 0 ∈ 𝑆) |
mulgsubcl.i | ⊢ 𝐼 = (invg‘𝐺) |
mulgsubcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐼‘𝑥) ∈ 𝑆) |
Ref | Expression |
---|---|
mulgsubcl | ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgnnsubcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mulgnnsubcl.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
3 | mulgnnsubcl.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
4 | mulgnnsubcl.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
5 | mulgnnsubcl.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
6 | mulgnnsubcl.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | |
7 | mulgnn0subcl.z | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
8 | mulgnn0subcl.c | . . . . . 6 ⊢ (𝜑 → 0 ∈ 𝑆) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mulgnn0subcl 19117 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
10 | 9 | 3expa 1117 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0) ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
11 | 10 | an32s 652 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆) |
12 | 11 | 3adantl2 1166 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆) |
13 | simp2 1136 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈ ℤ) | |
14 | 13 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℤ) |
15 | 14 | zcnd 12720 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
16 | 15 | negnegd 11608 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → --𝑁 = 𝑁) |
17 | 16 | oveq1d 7445 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝑁 · 𝑋)) |
18 | id 22 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ) | |
19 | 5 | 3ad2ant1 1132 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
20 | simp3 1137 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
21 | 19, 20 | sseldd 3995 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
22 | mulgsubcl.i | . . . . . . 7 ⊢ 𝐼 = (invg‘𝐺) | |
23 | 1, 2, 22 | mulgnegnn 19114 | . . . . . 6 ⊢ ((-𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋))) |
24 | 18, 21, 23 | syl2anr 597 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋))) |
25 | 17, 24 | eqtr3d 2776 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋))) |
26 | fveq2 6906 | . . . . . 6 ⊢ (𝑥 = (-𝑁 · 𝑋) → (𝐼‘𝑥) = (𝐼‘(-𝑁 · 𝑋))) | |
27 | 26 | eleq1d 2823 | . . . . 5 ⊢ (𝑥 = (-𝑁 · 𝑋) → ((𝐼‘𝑥) ∈ 𝑆 ↔ (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆)) |
28 | mulgsubcl.c | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐼‘𝑥) ∈ 𝑆) | |
29 | 28 | ralrimiva 3143 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
30 | 29 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
31 | 30 | adantr 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
32 | 1, 2, 3, 4, 5, 6 | mulgnnsubcl 19116 | . . . . . . . 8 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (-𝑁 · 𝑋) ∈ 𝑆) |
33 | 32 | 3expa 1117 | . . . . . . 7 ⊢ (((𝜑 ∧ -𝑁 ∈ ℕ) ∧ 𝑋 ∈ 𝑆) → (-𝑁 · 𝑋) ∈ 𝑆) |
34 | 33 | an32s 652 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆) |
35 | 34 | 3adantl2 1166 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆) |
36 | 27, 31, 35 | rspcdva 3622 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆) |
37 | 25, 36 | eqeltrd 2838 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆) |
38 | 37 | adantrl 716 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑁 · 𝑋) ∈ 𝑆) |
39 | elznn0nn 12624 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | |
40 | 13, 39 | sylib 218 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) |
41 | 12, 38, 40 | mpjaodan 960 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ⊆ wss 3962 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 -cneg 11490 ℕcn 12263 ℕ0cn0 12523 ℤcz 12610 Basecbs 17244 +gcplusg 17297 0gc0g 17485 invgcminusg 18964 .gcmg 19097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-seq 14039 df-mulg 19098 |
This theorem is referenced by: mulgcl 19121 subgmulgcl 19169 |
Copyright terms: Public domain | W3C validator |