MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgsubcl Structured version   Visualization version   GIF version

Theorem mulgsubcl 18985
Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b 𝐵 = (Base‘𝐺)
mulgnnsubcl.t · = (.g𝐺)
mulgnnsubcl.p + = (+g𝐺)
mulgnnsubcl.g (𝜑𝐺𝑉)
mulgnnsubcl.s (𝜑𝑆𝐵)
mulgnnsubcl.c ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
mulgnn0subcl.z 0 = (0g𝐺)
mulgnn0subcl.c (𝜑0𝑆)
mulgsubcl.i 𝐼 = (invg𝐺)
mulgsubcl.c ((𝜑𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)
Assertion
Ref Expression
mulgsubcl ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝐼   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥, ·   𝑥,𝑋,𝑦
Allowed substitution hints:   · (𝑦)   𝐼(𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem mulgsubcl
StepHypRef Expression
1 mulgnnsubcl.b . . . . . 6 𝐵 = (Base‘𝐺)
2 mulgnnsubcl.t . . . . . 6 · = (.g𝐺)
3 mulgnnsubcl.p . . . . . 6 + = (+g𝐺)
4 mulgnnsubcl.g . . . . . 6 (𝜑𝐺𝑉)
5 mulgnnsubcl.s . . . . . 6 (𝜑𝑆𝐵)
6 mulgnnsubcl.c . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
7 mulgnn0subcl.z . . . . . 6 0 = (0g𝐺)
8 mulgnn0subcl.c . . . . . 6 (𝜑0𝑆)
91, 2, 3, 4, 5, 6, 7, 8mulgnn0subcl 18984 . . . . 5 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
1093expa 1118 . . . 4 (((𝜑𝑁 ∈ ℕ0) ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
1110an32s 652 . . 3 (((𝜑𝑋𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆)
12113adantl2 1168 . 2 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆)
13 simp2 1137 . . . . . . . . 9 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑁 ∈ ℤ)
1413adantr 480 . . . . . . . 8 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
1514zcnd 12599 . . . . . . 7 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
1615negnegd 11484 . . . . . 6 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → --𝑁 = 𝑁)
1716oveq1d 7368 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
18 id 22 . . . . . 6 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ)
1953ad2ant1 1133 . . . . . . 7 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑆𝐵)
20 simp3 1138 . . . . . . 7 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋𝑆)
2119, 20sseldd 3938 . . . . . 6 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋𝐵)
22 mulgsubcl.i . . . . . . 7 𝐼 = (invg𝐺)
231, 2, 22mulgnegnn 18981 . . . . . 6 ((-𝑁 ∈ ℕ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
2418, 21, 23syl2anr 597 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
2517, 24eqtr3d 2766 . . . 4 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
26 fveq2 6826 . . . . . 6 (𝑥 = (-𝑁 · 𝑋) → (𝐼𝑥) = (𝐼‘(-𝑁 · 𝑋)))
2726eleq1d 2813 . . . . 5 (𝑥 = (-𝑁 · 𝑋) → ((𝐼𝑥) ∈ 𝑆 ↔ (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆))
28 mulgsubcl.c . . . . . . . 8 ((𝜑𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)
2928ralrimiva 3121 . . . . . . 7 (𝜑 → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
30293ad2ant1 1133 . . . . . 6 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
3130adantr 480 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
321, 2, 3, 4, 5, 6mulgnnsubcl 18983 . . . . . . . 8 ((𝜑 ∧ -𝑁 ∈ ℕ ∧ 𝑋𝑆) → (-𝑁 · 𝑋) ∈ 𝑆)
33323expa 1118 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ) ∧ 𝑋𝑆) → (-𝑁 · 𝑋) ∈ 𝑆)
3433an32s 652 . . . . . 6 (((𝜑𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆)
35343adantl2 1168 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆)
3627, 31, 35rspcdva 3580 . . . 4 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆)
3725, 36eqeltrd 2828 . . 3 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆)
3837adantrl 716 . 2 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑁 · 𝑋) ∈ 𝑆)
39 elznn0nn 12503 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4013, 39sylib 218 . 2 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4112, 38, 40mpjaodan 960 1 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3905  cfv 6486  (class class class)co 7353  cr 11027  -cneg 11366  cn 12146  0cn0 12402  cz 12489  Basecbs 17138  +gcplusg 17179  0gc0g 17361  invgcminusg 18831  .gcmg 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-seq 13927  df-mulg 18965
This theorem is referenced by:  mulgcl  18988  subgmulgcl  19036
  Copyright terms: Public domain W3C validator