MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgsubcl Structured version   Visualization version   GIF version

Theorem mulgsubcl 19011
Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b 𝐵 = (Base‘𝐺)
mulgnnsubcl.t · = (.g𝐺)
mulgnnsubcl.p + = (+g𝐺)
mulgnnsubcl.g (𝜑𝐺𝑉)
mulgnnsubcl.s (𝜑𝑆𝐵)
mulgnnsubcl.c ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
mulgnn0subcl.z 0 = (0g𝐺)
mulgnn0subcl.c (𝜑0𝑆)
mulgsubcl.i 𝐼 = (invg𝐺)
mulgsubcl.c ((𝜑𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)
Assertion
Ref Expression
mulgsubcl ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝐼   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥, ·   𝑥,𝑋,𝑦
Allowed substitution hints:   · (𝑦)   𝐼(𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem mulgsubcl
StepHypRef Expression
1 mulgnnsubcl.b . . . . . 6 𝐵 = (Base‘𝐺)
2 mulgnnsubcl.t . . . . . 6 · = (.g𝐺)
3 mulgnnsubcl.p . . . . . 6 + = (+g𝐺)
4 mulgnnsubcl.g . . . . . 6 (𝜑𝐺𝑉)
5 mulgnnsubcl.s . . . . . 6 (𝜑𝑆𝐵)
6 mulgnnsubcl.c . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
7 mulgnn0subcl.z . . . . . 6 0 = (0g𝐺)
8 mulgnn0subcl.c . . . . . 6 (𝜑0𝑆)
91, 2, 3, 4, 5, 6, 7, 8mulgnn0subcl 19010 . . . . 5 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
1093expa 1117 . . . 4 (((𝜑𝑁 ∈ ℕ0) ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
1110an32s 649 . . 3 (((𝜑𝑋𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆)
12113adantl2 1166 . 2 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆)
13 simp2 1136 . . . . . . . . 9 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑁 ∈ ℤ)
1413adantr 480 . . . . . . . 8 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
1514zcnd 12674 . . . . . . 7 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
1615negnegd 11569 . . . . . 6 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → --𝑁 = 𝑁)
1716oveq1d 7427 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
18 id 22 . . . . . 6 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ)
1953ad2ant1 1132 . . . . . . 7 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑆𝐵)
20 simp3 1137 . . . . . . 7 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋𝑆)
2119, 20sseldd 3983 . . . . . 6 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → 𝑋𝐵)
22 mulgsubcl.i . . . . . . 7 𝐼 = (invg𝐺)
231, 2, 22mulgnegnn 19007 . . . . . 6 ((-𝑁 ∈ ℕ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
2418, 21, 23syl2anr 596 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
2517, 24eqtr3d 2773 . . . 4 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋)))
26 fveq2 6891 . . . . . 6 (𝑥 = (-𝑁 · 𝑋) → (𝐼𝑥) = (𝐼‘(-𝑁 · 𝑋)))
2726eleq1d 2817 . . . . 5 (𝑥 = (-𝑁 · 𝑋) → ((𝐼𝑥) ∈ 𝑆 ↔ (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆))
28 mulgsubcl.c . . . . . . . 8 ((𝜑𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)
2928ralrimiva 3145 . . . . . . 7 (𝜑 → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
30293ad2ant1 1132 . . . . . 6 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
3130adantr 480 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)
321, 2, 3, 4, 5, 6mulgnnsubcl 19009 . . . . . . . 8 ((𝜑 ∧ -𝑁 ∈ ℕ ∧ 𝑋𝑆) → (-𝑁 · 𝑋) ∈ 𝑆)
33323expa 1117 . . . . . . 7 (((𝜑 ∧ -𝑁 ∈ ℕ) ∧ 𝑋𝑆) → (-𝑁 · 𝑋) ∈ 𝑆)
3433an32s 649 . . . . . 6 (((𝜑𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆)
35343adantl2 1166 . . . . 5 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆)
3627, 31, 35rspcdva 3613 . . . 4 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆)
3725, 36eqeltrd 2832 . . 3 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆)
3837adantrl 713 . 2 (((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑁 · 𝑋) ∈ 𝑆)
39 elznn0nn 12579 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4013, 39sylib 217 . 2 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
4112, 38, 40mpjaodan 956 1 ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wss 3948  cfv 6543  (class class class)co 7412  cr 11115  -cneg 11452  cn 12219  0cn0 12479  cz 12565  Basecbs 17151  +gcplusg 17204  0gc0g 17392  invgcminusg 18862  .gcmg 18993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-n0 12480  df-z 12566  df-uz 12830  df-fz 13492  df-seq 13974  df-mulg 18994
This theorem is referenced by:  mulgcl  19014  subgmulgcl  19062
  Copyright terms: Public domain W3C validator