![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgsubcl | Structured version Visualization version GIF version |
Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
mulgnnsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnnsubcl.t | ⊢ · = (.g‘𝐺) |
mulgnnsubcl.p | ⊢ + = (+g‘𝐺) |
mulgnnsubcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
mulgnnsubcl.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
mulgnnsubcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
mulgnn0subcl.z | ⊢ 0 = (0g‘𝐺) |
mulgnn0subcl.c | ⊢ (𝜑 → 0 ∈ 𝑆) |
mulgsubcl.i | ⊢ 𝐼 = (invg‘𝐺) |
mulgsubcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐼‘𝑥) ∈ 𝑆) |
Ref | Expression |
---|---|
mulgsubcl | ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgnnsubcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mulgnnsubcl.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
3 | mulgnnsubcl.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
4 | mulgnnsubcl.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
5 | mulgnnsubcl.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
6 | mulgnnsubcl.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | |
7 | mulgnn0subcl.z | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
8 | mulgnn0subcl.c | . . . . . 6 ⊢ (𝜑 → 0 ∈ 𝑆) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mulgnn0subcl 19010 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
10 | 9 | 3expa 1117 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0) ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
11 | 10 | an32s 649 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆) |
12 | 11 | 3adantl2 1166 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆) |
13 | simp2 1136 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈ ℤ) | |
14 | 13 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℤ) |
15 | 14 | zcnd 12674 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
16 | 15 | negnegd 11569 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → --𝑁 = 𝑁) |
17 | 16 | oveq1d 7427 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝑁 · 𝑋)) |
18 | id 22 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ) | |
19 | 5 | 3ad2ant1 1132 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
20 | simp3 1137 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
21 | 19, 20 | sseldd 3983 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
22 | mulgsubcl.i | . . . . . . 7 ⊢ 𝐼 = (invg‘𝐺) | |
23 | 1, 2, 22 | mulgnegnn 19007 | . . . . . 6 ⊢ ((-𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋))) |
24 | 18, 21, 23 | syl2anr 596 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋))) |
25 | 17, 24 | eqtr3d 2773 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋))) |
26 | fveq2 6891 | . . . . . 6 ⊢ (𝑥 = (-𝑁 · 𝑋) → (𝐼‘𝑥) = (𝐼‘(-𝑁 · 𝑋))) | |
27 | 26 | eleq1d 2817 | . . . . 5 ⊢ (𝑥 = (-𝑁 · 𝑋) → ((𝐼‘𝑥) ∈ 𝑆 ↔ (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆)) |
28 | mulgsubcl.c | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐼‘𝑥) ∈ 𝑆) | |
29 | 28 | ralrimiva 3145 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
30 | 29 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
31 | 30 | adantr 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
32 | 1, 2, 3, 4, 5, 6 | mulgnnsubcl 19009 | . . . . . . . 8 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (-𝑁 · 𝑋) ∈ 𝑆) |
33 | 32 | 3expa 1117 | . . . . . . 7 ⊢ (((𝜑 ∧ -𝑁 ∈ ℕ) ∧ 𝑋 ∈ 𝑆) → (-𝑁 · 𝑋) ∈ 𝑆) |
34 | 33 | an32s 649 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆) |
35 | 34 | 3adantl2 1166 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆) |
36 | 27, 31, 35 | rspcdva 3613 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆) |
37 | 25, 36 | eqeltrd 2832 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆) |
38 | 37 | adantrl 713 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑁 · 𝑋) ∈ 𝑆) |
39 | elznn0nn 12579 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | |
40 | 13, 39 | sylib 217 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) |
41 | 12, 38, 40 | mpjaodan 956 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7412 ℝcr 11115 -cneg 11452 ℕcn 12219 ℕ0cn0 12479 ℤcz 12565 Basecbs 17151 +gcplusg 17204 0gc0g 17392 invgcminusg 18862 .gcmg 18993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-seq 13974 df-mulg 18994 |
This theorem is referenced by: mulgcl 19014 subgmulgcl 19062 |
Copyright terms: Public domain | W3C validator |