| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| mulgnnsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnnsubcl.t | ⊢ · = (.g‘𝐺) |
| mulgnnsubcl.p | ⊢ + = (+g‘𝐺) |
| mulgnnsubcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| mulgnnsubcl.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| mulgnnsubcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
| mulgnn0subcl.z | ⊢ 0 = (0g‘𝐺) |
| mulgnn0subcl.c | ⊢ (𝜑 → 0 ∈ 𝑆) |
| mulgsubcl.i | ⊢ 𝐼 = (invg‘𝐺) |
| mulgsubcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐼‘𝑥) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| mulgsubcl | ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnnsubcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mulgnnsubcl.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 3 | mulgnnsubcl.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
| 4 | mulgnnsubcl.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 5 | mulgnnsubcl.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 6 | mulgnnsubcl.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 7 | mulgnn0subcl.z | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
| 8 | mulgnn0subcl.c | . . . . . 6 ⊢ (𝜑 → 0 ∈ 𝑆) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mulgnn0subcl 19002 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
| 10 | 9 | 3expa 1118 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0) ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
| 11 | 10 | an32s 652 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆) |
| 12 | 11 | 3adantl2 1168 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑁 · 𝑋) ∈ 𝑆) |
| 13 | simp2 1137 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈ ℤ) | |
| 14 | 13 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℤ) |
| 15 | 14 | zcnd 12584 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
| 16 | 15 | negnegd 11470 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → --𝑁 = 𝑁) |
| 17 | 16 | oveq1d 7367 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝑁 · 𝑋)) |
| 18 | id 22 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ) | |
| 19 | 5 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
| 20 | simp3 1138 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 21 | 19, 20 | sseldd 3931 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
| 22 | mulgsubcl.i | . . . . . . 7 ⊢ 𝐼 = (invg‘𝐺) | |
| 23 | 1, 2, 22 | mulgnegnn 18999 | . . . . . 6 ⊢ ((-𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋))) |
| 24 | 18, 21, 23 | syl2anr 597 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (--𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋))) |
| 25 | 17, 24 | eqtr3d 2770 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) = (𝐼‘(-𝑁 · 𝑋))) |
| 26 | fveq2 6828 | . . . . . 6 ⊢ (𝑥 = (-𝑁 · 𝑋) → (𝐼‘𝑥) = (𝐼‘(-𝑁 · 𝑋))) | |
| 27 | 26 | eleq1d 2818 | . . . . 5 ⊢ (𝑥 = (-𝑁 · 𝑋) → ((𝐼‘𝑥) ∈ 𝑆 ↔ (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆)) |
| 28 | mulgsubcl.c | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐼‘𝑥) ∈ 𝑆) | |
| 29 | 28 | ralrimiva 3125 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
| 30 | 29 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
| 31 | 30 | adantr 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆) |
| 32 | 1, 2, 3, 4, 5, 6 | mulgnnsubcl 19001 | . . . . . . . 8 ⊢ ((𝜑 ∧ -𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (-𝑁 · 𝑋) ∈ 𝑆) |
| 33 | 32 | 3expa 1118 | . . . . . . 7 ⊢ (((𝜑 ∧ -𝑁 ∈ ℕ) ∧ 𝑋 ∈ 𝑆) → (-𝑁 · 𝑋) ∈ 𝑆) |
| 34 | 33 | an32s 652 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆) |
| 35 | 34 | 3adantl2 1168 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (-𝑁 · 𝑋) ∈ 𝑆) |
| 36 | 27, 31, 35 | rspcdva 3574 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (𝐼‘(-𝑁 · 𝑋)) ∈ 𝑆) |
| 37 | 25, 36 | eqeltrd 2833 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ -𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆) |
| 38 | 37 | adantrl 716 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑁 · 𝑋) ∈ 𝑆) |
| 39 | elznn0nn 12489 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | |
| 40 | 13, 39 | sylib 218 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) |
| 41 | 12, 38, 40 | mpjaodan 960 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 -cneg 11352 ℕcn 12132 ℕ0cn0 12388 ℤcz 12475 Basecbs 17122 +gcplusg 17163 0gc0g 17345 invgcminusg 18849 .gcmg 18982 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-seq 13911 df-mulg 18983 |
| This theorem is referenced by: mulgcl 19006 subgmulgcl 19054 |
| Copyright terms: Public domain | W3C validator |