Step | Hyp | Ref
| Expression |
1 | | fourierdlem54.n |
. . 3
⊢ 𝑁 = ((♯‘𝐻) − 1) |
2 | | 2z 12361 |
. . . . . 6
⊢ 2 ∈
ℤ |
3 | 2 | a1i 11 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℤ) |
4 | | fourierdlem54.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℝ) |
5 | | prid1g 4697 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℝ → 𝐶 ∈ {𝐶, 𝐷}) |
6 | | elun1 4111 |
. . . . . . . . . 10
⊢ (𝐶 ∈ {𝐶, 𝐷} → 𝐶 ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})) |
7 | 4, 5, 6 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})) |
8 | | fourierdlem54.h |
. . . . . . . . 9
⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
9 | 7, 8 | eleqtrrdi 2851 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ 𝐻) |
10 | 9 | ne0d 4270 |
. . . . . . 7
⊢ (𝜑 → 𝐻 ≠ ∅) |
11 | | prfi 9098 |
. . . . . . . . . 10
⊢ {𝐶, 𝐷} ∈ Fin |
12 | | fourierdlem54.p |
. . . . . . . . . . . . 13
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
13 | | fourierdlem54.m |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℕ) |
14 | | fourierdlem54.q |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
15 | 12, 13, 14 | fourierdlem11 43666 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)) |
16 | 15 | simp1d 1141 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℝ) |
17 | 15 | simp2d 1142 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℝ) |
18 | 15 | simp3d 1143 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 < 𝐵) |
19 | | fourierdlem54.t |
. . . . . . . . . . 11
⊢ 𝑇 = (𝐵 − 𝐴) |
20 | 12, 13, 14 | fourierdlem15 43670 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
21 | | frn 6616 |
. . . . . . . . . . . 12
⊢ (𝑄:(0...𝑀)⟶(𝐴[,]𝐵) → ran 𝑄 ⊆ (𝐴[,]𝐵)) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝑄 ⊆ (𝐴[,]𝐵)) |
23 | 12 | fourierdlem2 43657 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
24 | 13, 23 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
25 | 14, 24 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
26 | 25 | simpld 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
27 | | elmapi 8646 |
. . . . . . . . . . . . . 14
⊢ (𝑄 ∈ (ℝ
↑m (0...𝑀))
→ 𝑄:(0...𝑀)⟶ℝ) |
28 | | ffn 6609 |
. . . . . . . . . . . . . 14
⊢ (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀)) |
29 | 26, 27, 28 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑄 Fn (0...𝑀)) |
30 | | fzfid 13702 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0...𝑀) ∈ Fin) |
31 | | fnfi 8973 |
. . . . . . . . . . . . 13
⊢ ((𝑄 Fn (0...𝑀) ∧ (0...𝑀) ∈ Fin) → 𝑄 ∈ Fin) |
32 | 29, 30, 31 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈ Fin) |
33 | | rnfi 9111 |
. . . . . . . . . . . 12
⊢ (𝑄 ∈ Fin → ran 𝑄 ∈ Fin) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝑄 ∈ Fin) |
35 | 25 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
36 | 35 | simpld 495 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
37 | 36 | simpld 495 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
38 | 13 | nnnn0d 12302 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
39 | | nn0uz 12629 |
. . . . . . . . . . . . . . 15
⊢
ℕ0 = (ℤ≥‘0) |
40 | 38, 39 | eleqtrdi 2850 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
41 | | eluzfz1 13272 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑀)) |
42 | 40, 41 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
43 | | fnfvelrn 6967 |
. . . . . . . . . . . . 13
⊢ ((𝑄 Fn (0...𝑀) ∧ 0 ∈ (0...𝑀)) → (𝑄‘0) ∈ ran 𝑄) |
44 | 29, 42, 43 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘0) ∈ ran 𝑄) |
45 | 37, 44 | eqeltrrd 2841 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ran 𝑄) |
46 | 36 | simprd 496 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
47 | | eluzfz2 13273 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈
(ℤ≥‘0) → 𝑀 ∈ (0...𝑀)) |
48 | 40, 47 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
49 | | fnfvelrn 6967 |
. . . . . . . . . . . . 13
⊢ ((𝑄 Fn (0...𝑀) ∧ 𝑀 ∈ (0...𝑀)) → (𝑄‘𝑀) ∈ ran 𝑄) |
50 | 29, 48, 49 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘𝑀) ∈ ran 𝑄) |
51 | 46, 50 | eqeltrrd 2841 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ran 𝑄) |
52 | | eqid 2739 |
. . . . . . . . . . 11
⊢ (abs
∘ − ) = (abs ∘ − ) |
53 | | eqid 2739 |
. . . . . . . . . . 11
⊢ ((ran
𝑄 × ran 𝑄) ∖ I ) = ((ran 𝑄 × ran 𝑄) ∖ I ) |
54 | | eqid 2739 |
. . . . . . . . . . 11
⊢ ran ((abs
∘ − ) ↾ ((ran 𝑄 × ran 𝑄) ∖ I )) = ran ((abs ∘ − )
↾ ((ran 𝑄 × ran
𝑄) ∖ I
)) |
55 | | eqid 2739 |
. . . . . . . . . . 11
⊢ inf(ran
((abs ∘ − ) ↾ ((ran 𝑄 × ran 𝑄) ∖ I )), ℝ, < ) = inf(ran
((abs ∘ − ) ↾ ((ran 𝑄 × ran 𝑄) ∖ I )), ℝ, <
) |
56 | | fourierdlem54.d |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ∈ ℝ) |
57 | | eqid 2739 |
. . . . . . . . . . 11
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
58 | | eqid 2739 |
. . . . . . . . . . 11
⊢
((topGen‘ran (,)) ↾t (𝐶[,]𝐷)) = ((topGen‘ran (,))
↾t (𝐶[,]𝐷)) |
59 | | oveq1 7291 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝑥 + (𝑘 · 𝑇)) = (𝑤 + (𝑘 · 𝑇))) |
60 | 59 | eleq1d 2824 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → ((𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
61 | 60 | rexbidv 3227 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
62 | 61 | cbvrabv 3427 |
. . . . . . . . . . 11
⊢ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄} |
63 | | oveq1 7291 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → (𝑖 · 𝑇) = (𝑗 · 𝑇)) |
64 | 63 | oveq2d 7300 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → (𝑦 + (𝑖 · 𝑇)) = (𝑦 + (𝑗 · 𝑇))) |
65 | 64 | eleq1d 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → ((𝑦 + (𝑖 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄)) |
66 | 65 | anbi1d 630 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (((𝑦 + (𝑖 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄) ↔ ((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄))) |
67 | | oveq1 7291 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝑘 → (𝑙 · 𝑇) = (𝑘 · 𝑇)) |
68 | 67 | oveq2d 7300 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 𝑘 → (𝑧 + (𝑙 · 𝑇)) = (𝑧 + (𝑘 · 𝑇))) |
69 | 68 | eleq1d 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑘 → ((𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑧 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
70 | 69 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑘 → (((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄) ↔ ((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ ran 𝑄))) |
71 | 66, 70 | cbvrex2vw 3398 |
. . . . . . . . . . . 12
⊢
(∃𝑖 ∈
ℤ ∃𝑙 ∈
ℤ ((𝑦 + (𝑖 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ ran 𝑄)) |
72 | 71 | anbi2i 623 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑖 ∈ ℤ ∃𝑙 ∈ ℤ ((𝑦 + (𝑖 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄)) ↔ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ ran 𝑄))) |
73 | 16, 17, 18, 19, 22, 34, 45, 51, 52, 53, 54, 55, 4, 56, 57, 58, 62, 72 | fourierdlem42 43697 |
. . . . . . . . . 10
⊢ (𝜑 → {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ∈ Fin) |
74 | | unfi 8964 |
. . . . . . . . . 10
⊢ (({𝐶, 𝐷} ∈ Fin ∧ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ∈ Fin) → ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) ∈ Fin) |
75 | 11, 73, 74 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) ∈ Fin) |
76 | 8, 75 | eqeltrid 2844 |
. . . . . . . 8
⊢ (𝜑 → 𝐻 ∈ Fin) |
77 | | hashnncl 14090 |
. . . . . . . 8
⊢ (𝐻 ∈ Fin →
((♯‘𝐻) ∈
ℕ ↔ 𝐻 ≠
∅)) |
78 | 76, 77 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅)) |
79 | 10, 78 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐻) ∈
ℕ) |
80 | 79 | nnzd 12434 |
. . . . 5
⊢ (𝜑 → (♯‘𝐻) ∈
ℤ) |
81 | | fourierdlem54.cd |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 < 𝐷) |
82 | 4, 81 | ltned 11120 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ≠ 𝐷) |
83 | | hashprg 14119 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 ≠ 𝐷 ↔ (♯‘{𝐶, 𝐷}) = 2)) |
84 | 4, 56, 83 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝐶 ≠ 𝐷 ↔ (♯‘{𝐶, 𝐷}) = 2)) |
85 | 82, 84 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (♯‘{𝐶, 𝐷}) = 2) |
86 | 85 | eqcomd 2745 |
. . . . . 6
⊢ (𝜑 → 2 = (♯‘{𝐶, 𝐷})) |
87 | | ssun1 4107 |
. . . . . . . . 9
⊢ {𝐶, 𝐷} ⊆ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
88 | 87 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → {𝐶, 𝐷} ⊆ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})) |
89 | 88, 8 | sseqtrrdi 3973 |
. . . . . . 7
⊢ (𝜑 → {𝐶, 𝐷} ⊆ 𝐻) |
90 | | hashssle 42844 |
. . . . . . 7
⊢ ((𝐻 ∈ Fin ∧ {𝐶, 𝐷} ⊆ 𝐻) → (♯‘{𝐶, 𝐷}) ≤ (♯‘𝐻)) |
91 | 76, 89, 90 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (♯‘{𝐶, 𝐷}) ≤ (♯‘𝐻)) |
92 | 86, 91 | eqbrtrd 5097 |
. . . . 5
⊢ (𝜑 → 2 ≤
(♯‘𝐻)) |
93 | | eluz2 12597 |
. . . . 5
⊢
((♯‘𝐻)
∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧
(♯‘𝐻) ∈
ℤ ∧ 2 ≤ (♯‘𝐻))) |
94 | 3, 80, 92, 93 | syl3anbrc 1342 |
. . . 4
⊢ (𝜑 → (♯‘𝐻) ∈
(ℤ≥‘2)) |
95 | | uz2m1nn 12672 |
. . . 4
⊢
((♯‘𝐻)
∈ (ℤ≥‘2) → ((♯‘𝐻) − 1) ∈
ℕ) |
96 | 94, 95 | syl 17 |
. . 3
⊢ (𝜑 → ((♯‘𝐻) − 1) ∈
ℕ) |
97 | 1, 96 | eqeltrid 2844 |
. 2
⊢ (𝜑 → 𝑁 ∈ ℕ) |
98 | | prssg 4753 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ↔ {𝐶, 𝐷} ⊆ ℝ)) |
99 | 4, 56, 98 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ↔ {𝐶, 𝐷} ⊆ ℝ)) |
100 | 4, 56, 99 | mpbi2and 709 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝐶, 𝐷} ⊆ ℝ) |
101 | | ssrab2 4014 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ⊆ (𝐶[,]𝐷) |
102 | 4, 56 | iccssred 13175 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐶[,]𝐷) ⊆ ℝ) |
103 | 101, 102 | sstrid 3933 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ⊆ ℝ) |
104 | 100, 103 | unssd 4121 |
. . . . . . . . . 10
⊢ (𝜑 → ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) ⊆ ℝ) |
105 | 8, 104 | eqsstrid 3970 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ⊆ ℝ) |
106 | | fourierdlem54.s |
. . . . . . . . 9
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) |
107 | 76, 105, 106, 1 | fourierdlem36 43691 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 Isom < , < ((0...𝑁), 𝐻)) |
108 | | df-isom 6446 |
. . . . . . . 8
⊢ (𝑆 Isom < , < ((0...𝑁), 𝐻) ↔ (𝑆:(0...𝑁)–1-1-onto→𝐻 ∧ ∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆‘𝑥) < (𝑆‘𝑦)))) |
109 | 107, 108 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → (𝑆:(0...𝑁)–1-1-onto→𝐻 ∧ ∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆‘𝑥) < (𝑆‘𝑦)))) |
110 | 109 | simpld 495 |
. . . . . 6
⊢ (𝜑 → 𝑆:(0...𝑁)–1-1-onto→𝐻) |
111 | | f1of 6725 |
. . . . . 6
⊢ (𝑆:(0...𝑁)–1-1-onto→𝐻 → 𝑆:(0...𝑁)⟶𝐻) |
112 | 110, 111 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑆:(0...𝑁)⟶𝐻) |
113 | 112, 105 | fssd 6627 |
. . . 4
⊢ (𝜑 → 𝑆:(0...𝑁)⟶ℝ) |
114 | | reex 10971 |
. . . . 5
⊢ ℝ
∈ V |
115 | | ovex 7317 |
. . . . . 6
⊢
(0...𝑁) ∈
V |
116 | 115 | a1i 11 |
. . . . 5
⊢ (𝜑 → (0...𝑁) ∈ V) |
117 | | elmapg 8637 |
. . . . 5
⊢ ((ℝ
∈ V ∧ (0...𝑁)
∈ V) → (𝑆 ∈
(ℝ ↑m (0...𝑁)) ↔ 𝑆:(0...𝑁)⟶ℝ)) |
118 | 114, 116,
117 | sylancr 587 |
. . . 4
⊢ (𝜑 → (𝑆 ∈ (ℝ ↑m
(0...𝑁)) ↔ 𝑆:(0...𝑁)⟶ℝ)) |
119 | 113, 118 | mpbird 256 |
. . 3
⊢ (𝜑 → 𝑆 ∈ (ℝ ↑m
(0...𝑁))) |
120 | | df-f1o 6444 |
. . . . . . . . . . 11
⊢ (𝑆:(0...𝑁)–1-1-onto→𝐻 ↔ (𝑆:(0...𝑁)–1-1→𝐻 ∧ 𝑆:(0...𝑁)–onto→𝐻)) |
121 | 110, 120 | sylib 217 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑆:(0...𝑁)–1-1→𝐻 ∧ 𝑆:(0...𝑁)–onto→𝐻)) |
122 | 121 | simprd 496 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆:(0...𝑁)–onto→𝐻) |
123 | | dffo3 6987 |
. . . . . . . . 9
⊢ (𝑆:(0...𝑁)–onto→𝐻 ↔ (𝑆:(0...𝑁)⟶𝐻 ∧ ∀ℎ ∈ 𝐻 ∃𝑦 ∈ (0...𝑁)ℎ = (𝑆‘𝑦))) |
124 | 122, 123 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → (𝑆:(0...𝑁)⟶𝐻 ∧ ∀ℎ ∈ 𝐻 ∃𝑦 ∈ (0...𝑁)ℎ = (𝑆‘𝑦))) |
125 | 124 | simprd 496 |
. . . . . . 7
⊢ (𝜑 → ∀ℎ ∈ 𝐻 ∃𝑦 ∈ (0...𝑁)ℎ = (𝑆‘𝑦)) |
126 | | eqeq1 2743 |
. . . . . . . . . 10
⊢ (ℎ = 𝐶 → (ℎ = (𝑆‘𝑦) ↔ 𝐶 = (𝑆‘𝑦))) |
127 | | eqcom 2746 |
. . . . . . . . . 10
⊢ (𝐶 = (𝑆‘𝑦) ↔ (𝑆‘𝑦) = 𝐶) |
128 | 126, 127 | bitrdi 287 |
. . . . . . . . 9
⊢ (ℎ = 𝐶 → (ℎ = (𝑆‘𝑦) ↔ (𝑆‘𝑦) = 𝐶)) |
129 | 128 | rexbidv 3227 |
. . . . . . . 8
⊢ (ℎ = 𝐶 → (∃𝑦 ∈ (0...𝑁)ℎ = (𝑆‘𝑦) ↔ ∃𝑦 ∈ (0...𝑁)(𝑆‘𝑦) = 𝐶)) |
130 | 129 | rspcv 3558 |
. . . . . . 7
⊢ (𝐶 ∈ 𝐻 → (∀ℎ ∈ 𝐻 ∃𝑦 ∈ (0...𝑁)ℎ = (𝑆‘𝑦) → ∃𝑦 ∈ (0...𝑁)(𝑆‘𝑦) = 𝐶)) |
131 | 9, 125, 130 | sylc 65 |
. . . . . 6
⊢ (𝜑 → ∃𝑦 ∈ (0...𝑁)(𝑆‘𝑦) = 𝐶) |
132 | | fveq2 6783 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 0 → (𝑆‘𝑦) = (𝑆‘0)) |
133 | 132 | eqcomd 2745 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 0 → (𝑆‘0) = (𝑆‘𝑦)) |
134 | 133 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑆‘𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆‘0) = (𝑆‘𝑦)) |
135 | | simplr 766 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑆‘𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆‘𝑦) = 𝐶) |
136 | 134, 135 | eqtrd 2779 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑆‘𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆‘0) = 𝐶) |
137 | 4 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑆‘𝑦) = 𝐶) ∧ 𝑦 = 0) → 𝐶 ∈ ℝ) |
138 | 136, 137 | eqeltrd 2840 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑆‘𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆‘0) ∈ ℝ) |
139 | 138, 136 | eqled 11087 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑆‘𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆‘0) ≤ 𝐶) |
140 | 139 | 3adantl2 1166 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (0...𝑁) ∧ (𝑆‘𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆‘0) ≤ 𝐶) |
141 | 4 | rexrd 11034 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐶 ∈
ℝ*) |
142 | 56 | rexrd 11034 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐷 ∈
ℝ*) |
143 | 4, 56, 81 | ltled 11132 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐶 ≤ 𝐷) |
144 | | lbicc2 13205 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
≤ 𝐷) → 𝐶 ∈ (𝐶[,]𝐷)) |
145 | 141, 142,
143, 144 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐶 ∈ (𝐶[,]𝐷)) |
146 | | ubicc2 13206 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ ℝ*
∧ 𝐷 ∈
ℝ* ∧ 𝐶
≤ 𝐷) → 𝐷 ∈ (𝐶[,]𝐷)) |
147 | 141, 142,
143, 146 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐷 ∈ (𝐶[,]𝐷)) |
148 | | prssg 4753 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ (𝐶[,]𝐷) ∧ 𝐷 ∈ (𝐶[,]𝐷)) → ((𝐶 ∈ (𝐶[,]𝐷) ∧ 𝐷 ∈ (𝐶[,]𝐷)) ↔ {𝐶, 𝐷} ⊆ (𝐶[,]𝐷))) |
149 | 145, 147,
148 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐶 ∈ (𝐶[,]𝐷) ∧ 𝐷 ∈ (𝐶[,]𝐷)) ↔ {𝐶, 𝐷} ⊆ (𝐶[,]𝐷))) |
150 | 145, 147,
149 | mpbi2and 709 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → {𝐶, 𝐷} ⊆ (𝐶[,]𝐷)) |
151 | 101 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ⊆ (𝐶[,]𝐷)) |
152 | 150, 151 | unssd 4121 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) ⊆ (𝐶[,]𝐷)) |
153 | 8, 152 | eqsstrid 3970 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐻 ⊆ (𝐶[,]𝐷)) |
154 | | nnm1nn0 12283 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝐻)
∈ ℕ → ((♯‘𝐻) − 1) ∈
ℕ0) |
155 | 79, 154 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((♯‘𝐻) − 1) ∈
ℕ0) |
156 | 1, 155 | eqeltrid 2844 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
157 | 156, 39 | eleqtrdi 2850 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
158 | | eluzfz1 13272 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑁)) |
159 | 157, 158 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈ (0...𝑁)) |
160 | 112, 159 | ffvelrnd 6971 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑆‘0) ∈ 𝐻) |
161 | 153, 160 | sseldd 3923 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆‘0) ∈ (𝐶[,]𝐷)) |
162 | 102, 161 | sseldd 3923 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆‘0) ∈ ℝ) |
163 | 162 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑦 = 0) → (𝑆‘0) ∈ ℝ) |
164 | 163 | 3ad2antl1 1184 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (0...𝑁) ∧ (𝑆‘𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (𝑆‘0) ∈ ℝ) |
165 | 4 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ 𝑦 = 0) → 𝐶 ∈ ℝ) |
166 | 165 | 3ad2antl1 1184 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (0...𝑁) ∧ (𝑆‘𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → 𝐶 ∈ ℝ) |
167 | | elfzelz 13265 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0...𝑁) → 𝑦 ∈ ℤ) |
168 | 167 | zred 12435 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...𝑁) → 𝑦 ∈ ℝ) |
169 | 168 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ (0...𝑁) ∧ ¬ 𝑦 = 0) → 𝑦 ∈ ℝ) |
170 | | elfzle1 13268 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...𝑁) → 0 ≤ 𝑦) |
171 | 170 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ (0...𝑁) ∧ ¬ 𝑦 = 0) → 0 ≤ 𝑦) |
172 | | neqne 2952 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑦 = 0 → 𝑦 ≠ 0) |
173 | 172 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ (0...𝑁) ∧ ¬ 𝑦 = 0) → 𝑦 ≠ 0) |
174 | 169, 171,
173 | ne0gt0d 11121 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ (0...𝑁) ∧ ¬ 𝑦 = 0) → 0 < 𝑦) |
175 | 174 | 3ad2antl2 1185 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...𝑁) ∧ (𝑆‘𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → 0 < 𝑦) |
176 | | simpl1 1190 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...𝑁) ∧ (𝑆‘𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → 𝜑) |
177 | | simpl2 1191 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...𝑁) ∧ (𝑆‘𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → 𝑦 ∈ (0...𝑁)) |
178 | 109 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆‘𝑥) < (𝑆‘𝑦))) |
179 | | breq1 5078 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 0 → (𝑥 < 𝑦 ↔ 0 < 𝑦)) |
180 | | fveq2 6783 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 0 → (𝑆‘𝑥) = (𝑆‘0)) |
181 | 180 | breq1d 5085 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 0 → ((𝑆‘𝑥) < (𝑆‘𝑦) ↔ (𝑆‘0) < (𝑆‘𝑦))) |
182 | 179, 181 | bibi12d 346 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 0 → ((𝑥 < 𝑦 ↔ (𝑆‘𝑥) < (𝑆‘𝑦)) ↔ (0 < 𝑦 ↔ (𝑆‘0) < (𝑆‘𝑦)))) |
183 | 182 | ralbidv 3113 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 0 → (∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆‘𝑥) < (𝑆‘𝑦)) ↔ ∀𝑦 ∈ (0...𝑁)(0 < 𝑦 ↔ (𝑆‘0) < (𝑆‘𝑦)))) |
184 | 183 | rspcv 3558 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
(0...𝑁) →
(∀𝑥 ∈
(0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆‘𝑥) < (𝑆‘𝑦)) → ∀𝑦 ∈ (0...𝑁)(0 < 𝑦 ↔ (𝑆‘0) < (𝑆‘𝑦)))) |
185 | 159, 178,
184 | sylc 65 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑦 ∈ (0...𝑁)(0 < 𝑦 ↔ (𝑆‘0) < (𝑆‘𝑦))) |
186 | 185 | r19.21bi 3135 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...𝑁)) → (0 < 𝑦 ↔ (𝑆‘0) < (𝑆‘𝑦))) |
187 | 176, 177,
186 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...𝑁) ∧ (𝑆‘𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (0 < 𝑦 ↔ (𝑆‘0) < (𝑆‘𝑦))) |
188 | 175, 187 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (0...𝑁) ∧ (𝑆‘𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (𝑆‘0) < (𝑆‘𝑦)) |
189 | | simpl3 1192 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (0...𝑁) ∧ (𝑆‘𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (𝑆‘𝑦) = 𝐶) |
190 | 188, 189 | breqtrd 5101 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (0...𝑁) ∧ (𝑆‘𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (𝑆‘0) < 𝐶) |
191 | 164, 166,
190 | ltled 11132 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (0...𝑁) ∧ (𝑆‘𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (𝑆‘0) ≤ 𝐶) |
192 | 140, 191 | pm2.61dan 810 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...𝑁) ∧ (𝑆‘𝑦) = 𝐶) → (𝑆‘0) ≤ 𝐶) |
193 | 192 | rexlimdv3a 3216 |
. . . . . 6
⊢ (𝜑 → (∃𝑦 ∈ (0...𝑁)(𝑆‘𝑦) = 𝐶 → (𝑆‘0) ≤ 𝐶)) |
194 | 131, 193 | mpd 15 |
. . . . 5
⊢ (𝜑 → (𝑆‘0) ≤ 𝐶) |
195 | | elicc2 13153 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑆‘0) ∈ (𝐶[,]𝐷) ↔ ((𝑆‘0) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘0) ∧ (𝑆‘0) ≤ 𝐷))) |
196 | 4, 56, 195 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘0) ∈ (𝐶[,]𝐷) ↔ ((𝑆‘0) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘0) ∧ (𝑆‘0) ≤ 𝐷))) |
197 | 161, 196 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → ((𝑆‘0) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘0) ∧ (𝑆‘0) ≤ 𝐷)) |
198 | 197 | simp2d 1142 |
. . . . 5
⊢ (𝜑 → 𝐶 ≤ (𝑆‘0)) |
199 | 162, 4 | letri3d 11126 |
. . . . 5
⊢ (𝜑 → ((𝑆‘0) = 𝐶 ↔ ((𝑆‘0) ≤ 𝐶 ∧ 𝐶 ≤ (𝑆‘0)))) |
200 | 194, 198,
199 | mpbir2and 710 |
. . . 4
⊢ (𝜑 → (𝑆‘0) = 𝐶) |
201 | | eluzfz2 13273 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘0) → 𝑁 ∈ (0...𝑁)) |
202 | 157, 201 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
203 | 112, 202 | ffvelrnd 6971 |
. . . . . . . 8
⊢ (𝜑 → (𝑆‘𝑁) ∈ 𝐻) |
204 | 153, 203 | sseldd 3923 |
. . . . . . 7
⊢ (𝜑 → (𝑆‘𝑁) ∈ (𝐶[,]𝐷)) |
205 | | elicc2 13153 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑆‘𝑁) ∈ (𝐶[,]𝐷) ↔ ((𝑆‘𝑁) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘𝑁) ∧ (𝑆‘𝑁) ≤ 𝐷))) |
206 | 4, 56, 205 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝑆‘𝑁) ∈ (𝐶[,]𝐷) ↔ ((𝑆‘𝑁) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘𝑁) ∧ (𝑆‘𝑁) ≤ 𝐷))) |
207 | 204, 206 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → ((𝑆‘𝑁) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘𝑁) ∧ (𝑆‘𝑁) ≤ 𝐷)) |
208 | 207 | simp3d 1143 |
. . . . 5
⊢ (𝜑 → (𝑆‘𝑁) ≤ 𝐷) |
209 | | prid2g 4698 |
. . . . . . . . 9
⊢ (𝐷 ∈ ℝ → 𝐷 ∈ {𝐶, 𝐷}) |
210 | | elun1 4111 |
. . . . . . . . 9
⊢ (𝐷 ∈ {𝐶, 𝐷} → 𝐷 ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})) |
211 | 56, 209, 210 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})) |
212 | 211, 8 | eleqtrrdi 2851 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ 𝐻) |
213 | | eqeq1 2743 |
. . . . . . . . . 10
⊢ (ℎ = 𝐷 → (ℎ = (𝑆‘𝑦) ↔ 𝐷 = (𝑆‘𝑦))) |
214 | | eqcom 2746 |
. . . . . . . . . 10
⊢ (𝐷 = (𝑆‘𝑦) ↔ (𝑆‘𝑦) = 𝐷) |
215 | 213, 214 | bitrdi 287 |
. . . . . . . . 9
⊢ (ℎ = 𝐷 → (ℎ = (𝑆‘𝑦) ↔ (𝑆‘𝑦) = 𝐷)) |
216 | 215 | rexbidv 3227 |
. . . . . . . 8
⊢ (ℎ = 𝐷 → (∃𝑦 ∈ (0...𝑁)ℎ = (𝑆‘𝑦) ↔ ∃𝑦 ∈ (0...𝑁)(𝑆‘𝑦) = 𝐷)) |
217 | 216 | rspcv 3558 |
. . . . . . 7
⊢ (𝐷 ∈ 𝐻 → (∀ℎ ∈ 𝐻 ∃𝑦 ∈ (0...𝑁)ℎ = (𝑆‘𝑦) → ∃𝑦 ∈ (0...𝑁)(𝑆‘𝑦) = 𝐷)) |
218 | 212, 125,
217 | sylc 65 |
. . . . . 6
⊢ (𝜑 → ∃𝑦 ∈ (0...𝑁)(𝑆‘𝑦) = 𝐷) |
219 | 214 | biimpri 227 |
. . . . . . . . 9
⊢ ((𝑆‘𝑦) = 𝐷 → 𝐷 = (𝑆‘𝑦)) |
220 | 219 | 3ad2ant3 1134 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...𝑁) ∧ (𝑆‘𝑦) = 𝐷) → 𝐷 = (𝑆‘𝑦)) |
221 | 113 | ffvelrnda 6970 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (0...𝑁)) → (𝑆‘𝑦) ∈ ℝ) |
222 | 102, 204 | sseldd 3923 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆‘𝑁) ∈ ℝ) |
223 | 222 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (0...𝑁)) → (𝑆‘𝑁) ∈ ℝ) |
224 | 168 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...𝑁)) → 𝑦 ∈ ℝ) |
225 | | elfzel2 13263 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...𝑁) → 𝑁 ∈ ℤ) |
226 | 225 | zred 12435 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0...𝑁) → 𝑁 ∈ ℝ) |
227 | 226 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...𝑁)) → 𝑁 ∈ ℝ) |
228 | | elfzle2 13269 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0...𝑁) → 𝑦 ≤ 𝑁) |
229 | 228 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...𝑁)) → 𝑦 ≤ 𝑁) |
230 | 224, 227,
229 | lensymd 11135 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (0...𝑁)) → ¬ 𝑁 < 𝑦) |
231 | | breq1 5078 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑁 → (𝑥 < 𝑦 ↔ 𝑁 < 𝑦)) |
232 | | fveq2 6783 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑁 → (𝑆‘𝑥) = (𝑆‘𝑁)) |
233 | 232 | breq1d 5085 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑁 → ((𝑆‘𝑥) < (𝑆‘𝑦) ↔ (𝑆‘𝑁) < (𝑆‘𝑦))) |
234 | 231, 233 | bibi12d 346 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑁 → ((𝑥 < 𝑦 ↔ (𝑆‘𝑥) < (𝑆‘𝑦)) ↔ (𝑁 < 𝑦 ↔ (𝑆‘𝑁) < (𝑆‘𝑦)))) |
235 | 234 | ralbidv 3113 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑁 → (∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆‘𝑥) < (𝑆‘𝑦)) ↔ ∀𝑦 ∈ (0...𝑁)(𝑁 < 𝑦 ↔ (𝑆‘𝑁) < (𝑆‘𝑦)))) |
236 | 235 | rspcv 3558 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ (0...𝑁) → (∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆‘𝑥) < (𝑆‘𝑦)) → ∀𝑦 ∈ (0...𝑁)(𝑁 < 𝑦 ↔ (𝑆‘𝑁) < (𝑆‘𝑦)))) |
237 | 202, 178,
236 | sylc 65 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑦 ∈ (0...𝑁)(𝑁 < 𝑦 ↔ (𝑆‘𝑁) < (𝑆‘𝑦))) |
238 | 237 | r19.21bi 3135 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (0...𝑁)) → (𝑁 < 𝑦 ↔ (𝑆‘𝑁) < (𝑆‘𝑦))) |
239 | 230, 238 | mtbid 324 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (0...𝑁)) → ¬ (𝑆‘𝑁) < (𝑆‘𝑦)) |
240 | 221, 223,
239 | nltled 11134 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...𝑁)) → (𝑆‘𝑦) ≤ (𝑆‘𝑁)) |
241 | 240 | 3adant3 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...𝑁) ∧ (𝑆‘𝑦) = 𝐷) → (𝑆‘𝑦) ≤ (𝑆‘𝑁)) |
242 | 220, 241 | eqbrtrd 5097 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...𝑁) ∧ (𝑆‘𝑦) = 𝐷) → 𝐷 ≤ (𝑆‘𝑁)) |
243 | 242 | rexlimdv3a 3216 |
. . . . . 6
⊢ (𝜑 → (∃𝑦 ∈ (0...𝑁)(𝑆‘𝑦) = 𝐷 → 𝐷 ≤ (𝑆‘𝑁))) |
244 | 218, 243 | mpd 15 |
. . . . 5
⊢ (𝜑 → 𝐷 ≤ (𝑆‘𝑁)) |
245 | 222, 56 | letri3d 11126 |
. . . . 5
⊢ (𝜑 → ((𝑆‘𝑁) = 𝐷 ↔ ((𝑆‘𝑁) ≤ 𝐷 ∧ 𝐷 ≤ (𝑆‘𝑁)))) |
246 | 208, 244,
245 | mpbir2and 710 |
. . . 4
⊢ (𝜑 → (𝑆‘𝑁) = 𝐷) |
247 | | elfzoelz 13396 |
. . . . . . . . 9
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℤ) |
248 | 247 | zred 12435 |
. . . . . . . 8
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℝ) |
249 | 248 | ltp1d 11914 |
. . . . . . 7
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 < (𝑖 + 1)) |
250 | 249 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 < (𝑖 + 1)) |
251 | 178 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → ∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆‘𝑥) < (𝑆‘𝑦))) |
252 | | elfzofz 13412 |
. . . . . . . . 9
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0...𝑁)) |
253 | 252 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0...𝑁)) |
254 | | fzofzp1 13493 |
. . . . . . . . 9
⊢ (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0...𝑁)) |
255 | 254 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0...𝑁)) |
256 | | breq1 5078 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑖 → (𝑥 < 𝑦 ↔ 𝑖 < 𝑦)) |
257 | | fveq2 6783 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑖 → (𝑆‘𝑥) = (𝑆‘𝑖)) |
258 | 257 | breq1d 5085 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑖 → ((𝑆‘𝑥) < (𝑆‘𝑦) ↔ (𝑆‘𝑖) < (𝑆‘𝑦))) |
259 | 256, 258 | bibi12d 346 |
. . . . . . . . 9
⊢ (𝑥 = 𝑖 → ((𝑥 < 𝑦 ↔ (𝑆‘𝑥) < (𝑆‘𝑦)) ↔ (𝑖 < 𝑦 ↔ (𝑆‘𝑖) < (𝑆‘𝑦)))) |
260 | | breq2 5079 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑖 + 1) → (𝑖 < 𝑦 ↔ 𝑖 < (𝑖 + 1))) |
261 | | fveq2 6783 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑖 + 1) → (𝑆‘𝑦) = (𝑆‘(𝑖 + 1))) |
262 | 261 | breq2d 5087 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑖 + 1) → ((𝑆‘𝑖) < (𝑆‘𝑦) ↔ (𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))) |
263 | 260, 262 | bibi12d 346 |
. . . . . . . . 9
⊢ (𝑦 = (𝑖 + 1) → ((𝑖 < 𝑦 ↔ (𝑆‘𝑖) < (𝑆‘𝑦)) ↔ (𝑖 < (𝑖 + 1) ↔ (𝑆‘𝑖) < (𝑆‘(𝑖 + 1))))) |
264 | 259, 263 | rspc2v 3571 |
. . . . . . . 8
⊢ ((𝑖 ∈ (0...𝑁) ∧ (𝑖 + 1) ∈ (0...𝑁)) → (∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆‘𝑥) < (𝑆‘𝑦)) → (𝑖 < (𝑖 + 1) ↔ (𝑆‘𝑖) < (𝑆‘(𝑖 + 1))))) |
265 | 253, 255,
264 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆‘𝑥) < (𝑆‘𝑦)) → (𝑖 < (𝑖 + 1) ↔ (𝑆‘𝑖) < (𝑆‘(𝑖 + 1))))) |
266 | 251, 265 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖 < (𝑖 + 1) ↔ (𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))) |
267 | 250, 266 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (𝑆‘𝑖) < (𝑆‘(𝑖 + 1))) |
268 | 267 | ralrimiva 3104 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1))) |
269 | 200, 246,
268 | jca31 515 |
. . 3
⊢ (𝜑 → (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))) |
270 | | fourierdlem54.o |
. . . . 5
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
271 | 270 | fourierdlem2 43657 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂‘𝑁) ↔ (𝑆 ∈ (ℝ ↑m
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))))) |
272 | 97, 271 | syl 17 |
. . 3
⊢ (𝜑 → (𝑆 ∈ (𝑂‘𝑁) ↔ (𝑆 ∈ (ℝ ↑m
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))))) |
273 | 119, 269,
272 | mpbir2and 710 |
. 2
⊢ (𝜑 → 𝑆 ∈ (𝑂‘𝑁)) |
274 | 97, 273, 107 | jca31 515 |
1
⊢ (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻))) |