Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem54 Structured version   Visualization version   GIF version

Theorem fourierdlem54 43591
Description: Given a partition 𝑄 and an arbitrary interval [𝐶, 𝐷], a partition 𝑆 on [𝐶, 𝐷] is built such that it preserves any periodic function piecewise continuous on 𝑄 will be piecewise continuous on 𝑆, with the same limits. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem54.t 𝑇 = (𝐵𝐴)
fourierdlem54.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem54.m (𝜑𝑀 ∈ ℕ)
fourierdlem54.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem54.c (𝜑𝐶 ∈ ℝ)
fourierdlem54.d (𝜑𝐷 ∈ ℝ)
fourierdlem54.cd (𝜑𝐶 < 𝐷)
fourierdlem54.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem54.h 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem54.n 𝑁 = ((♯‘𝐻) − 1)
fourierdlem54.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
Assertion
Ref Expression
fourierdlem54 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻)))
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝐵,𝑖,𝑚,𝑝   𝐶,𝑚,𝑝   𝑥,𝐶   𝐷,𝑚,𝑝   𝑥,𝐷   𝑓,𝐻   𝑥,𝐻   𝑖,𝑀,𝑚,𝑝   𝑓,𝑁   𝑖,𝑁,𝑚,𝑝   𝑥,𝑁,𝑖   𝑄,𝑖,𝑘   𝑄,𝑝   𝑥,𝑄,𝑘   𝑆,𝑓   𝑆,𝑖,𝑝   𝑥,𝑆   𝑇,𝑖,𝑘,𝑥   𝜑,𝑓   𝜑,𝑖,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑝)   𝐴(𝑥,𝑓,𝑘)   𝐵(𝑥,𝑓,𝑘)   𝐶(𝑓,𝑖,𝑘)   𝐷(𝑓,𝑖,𝑘)   𝑃(𝑥,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑓,𝑚)   𝑆(𝑘,𝑚)   𝑇(𝑓,𝑚,𝑝)   𝐻(𝑖,𝑘,𝑚,𝑝)   𝑀(𝑥,𝑓,𝑘)   𝑁(𝑘)   𝑂(𝑥,𝑓,𝑖,𝑘,𝑚,𝑝)

Proof of Theorem fourierdlem54
Dummy variables 𝑤 𝑦 𝑧 𝑗 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem54.n . . 3 𝑁 = ((♯‘𝐻) − 1)
2 2z 12282 . . . . . 6 2 ∈ ℤ
32a1i 11 . . . . 5 (𝜑 → 2 ∈ ℤ)
4 fourierdlem54.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ)
5 prid1g 4693 . . . . . . . . . 10 (𝐶 ∈ ℝ → 𝐶 ∈ {𝐶, 𝐷})
6 elun1 4106 . . . . . . . . . 10 (𝐶 ∈ {𝐶, 𝐷} → 𝐶 ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
74, 5, 63syl 18 . . . . . . . . 9 (𝜑𝐶 ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
8 fourierdlem54.h . . . . . . . . 9 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
97, 8eleqtrrdi 2850 . . . . . . . 8 (𝜑𝐶𝐻)
109ne0d 4266 . . . . . . 7 (𝜑𝐻 ≠ ∅)
11 prfi 9019 . . . . . . . . . 10 {𝐶, 𝐷} ∈ Fin
12 fourierdlem54.p . . . . . . . . . . . . 13 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
13 fourierdlem54.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
14 fourierdlem54.q . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (𝑃𝑀))
1512, 13, 14fourierdlem11 43549 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
1615simp1d 1140 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
1715simp2d 1141 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
1815simp3d 1142 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
19 fourierdlem54.t . . . . . . . . . . 11 𝑇 = (𝐵𝐴)
2012, 13, 14fourierdlem15 43553 . . . . . . . . . . . 12 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
21 frn 6591 . . . . . . . . . . . 12 (𝑄:(0...𝑀)⟶(𝐴[,]𝐵) → ran 𝑄 ⊆ (𝐴[,]𝐵))
2220, 21syl 17 . . . . . . . . . . 11 (𝜑 → ran 𝑄 ⊆ (𝐴[,]𝐵))
2312fourierdlem2 43540 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2413, 23syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
2514, 24mpbid 231 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
2625simpld 494 . . . . . . . . . . . . . 14 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
27 elmapi 8595 . . . . . . . . . . . . . 14 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
28 ffn 6584 . . . . . . . . . . . . . 14 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
2926, 27, 283syl 18 . . . . . . . . . . . . 13 (𝜑𝑄 Fn (0...𝑀))
30 fzfid 13621 . . . . . . . . . . . . 13 (𝜑 → (0...𝑀) ∈ Fin)
31 fnfi 8925 . . . . . . . . . . . . 13 ((𝑄 Fn (0...𝑀) ∧ (0...𝑀) ∈ Fin) → 𝑄 ∈ Fin)
3229, 30, 31syl2anc 583 . . . . . . . . . . . 12 (𝜑𝑄 ∈ Fin)
33 rnfi 9032 . . . . . . . . . . . 12 (𝑄 ∈ Fin → ran 𝑄 ∈ Fin)
3432, 33syl 17 . . . . . . . . . . 11 (𝜑 → ran 𝑄 ∈ Fin)
3525simprd 495 . . . . . . . . . . . . . 14 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
3635simpld 494 . . . . . . . . . . . . 13 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
3736simpld 494 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) = 𝐴)
3813nnnn0d 12223 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ ℕ0)
39 nn0uz 12549 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
4038, 39eleqtrdi 2849 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (ℤ‘0))
41 eluzfz1 13192 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
4240, 41syl 17 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ (0...𝑀))
43 fnfvelrn 6940 . . . . . . . . . . . . 13 ((𝑄 Fn (0...𝑀) ∧ 0 ∈ (0...𝑀)) → (𝑄‘0) ∈ ran 𝑄)
4429, 42, 43syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (𝑄‘0) ∈ ran 𝑄)
4537, 44eqeltrrd 2840 . . . . . . . . . . 11 (𝜑𝐴 ∈ ran 𝑄)
4636simprd 495 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑀) = 𝐵)
47 eluzfz2 13193 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ‘0) → 𝑀 ∈ (0...𝑀))
4840, 47syl 17 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (0...𝑀))
49 fnfvelrn 6940 . . . . . . . . . . . . 13 ((𝑄 Fn (0...𝑀) ∧ 𝑀 ∈ (0...𝑀)) → (𝑄𝑀) ∈ ran 𝑄)
5029, 48, 49syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (𝑄𝑀) ∈ ran 𝑄)
5146, 50eqeltrrd 2840 . . . . . . . . . . 11 (𝜑𝐵 ∈ ran 𝑄)
52 eqid 2738 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
53 eqid 2738 . . . . . . . . . . 11 ((ran 𝑄 × ran 𝑄) ∖ I ) = ((ran 𝑄 × ran 𝑄) ∖ I )
54 eqid 2738 . . . . . . . . . . 11 ran ((abs ∘ − ) ↾ ((ran 𝑄 × ran 𝑄) ∖ I )) = ran ((abs ∘ − ) ↾ ((ran 𝑄 × ran 𝑄) ∖ I ))
55 eqid 2738 . . . . . . . . . . 11 inf(ran ((abs ∘ − ) ↾ ((ran 𝑄 × ran 𝑄) ∖ I )), ℝ, < ) = inf(ran ((abs ∘ − ) ↾ ((ran 𝑄 × ran 𝑄) ∖ I )), ℝ, < )
56 fourierdlem54.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
57 eqid 2738 . . . . . . . . . . 11 (topGen‘ran (,)) = (topGen‘ran (,))
58 eqid 2738 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t (𝐶[,]𝐷)) = ((topGen‘ran (,)) ↾t (𝐶[,]𝐷))
59 oveq1 7262 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑥 + (𝑘 · 𝑇)) = (𝑤 + (𝑘 · 𝑇)))
6059eleq1d 2823 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄))
6160rexbidv 3225 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄))
6261cbvrabv 3416 . . . . . . . . . . 11 {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} = {𝑤 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑤 + (𝑘 · 𝑇)) ∈ ran 𝑄}
63 oveq1 7262 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑗 → (𝑖 · 𝑇) = (𝑗 · 𝑇))
6463oveq2d 7271 . . . . . . . . . . . . . . 15 (𝑖 = 𝑗 → (𝑦 + (𝑖 · 𝑇)) = (𝑦 + (𝑗 · 𝑇)))
6564eleq1d 2823 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((𝑦 + (𝑖 · 𝑇)) ∈ ran 𝑄 ↔ (𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄))
6665anbi1d 629 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (((𝑦 + (𝑖 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄) ↔ ((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄)))
67 oveq1 7262 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑘 → (𝑙 · 𝑇) = (𝑘 · 𝑇))
6867oveq2d 7271 . . . . . . . . . . . . . . 15 (𝑙 = 𝑘 → (𝑧 + (𝑙 · 𝑇)) = (𝑧 + (𝑘 · 𝑇)))
6968eleq1d 2823 . . . . . . . . . . . . . 14 (𝑙 = 𝑘 → ((𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄 ↔ (𝑧 + (𝑘 · 𝑇)) ∈ ran 𝑄))
7069anbi2d 628 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → (((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄) ↔ ((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ ran 𝑄)))
7166, 70cbvrex2vw 3386 . . . . . . . . . . . 12 (∃𝑖 ∈ ℤ ∃𝑙 ∈ ℤ ((𝑦 + (𝑖 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄) ↔ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ ran 𝑄))
7271anbi2i 622 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑖 ∈ ℤ ∃𝑙 ∈ ℤ ((𝑦 + (𝑖 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑙 · 𝑇)) ∈ ran 𝑄)) ↔ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑦 < 𝑧)) ∧ ∃𝑗 ∈ ℤ ∃𝑘 ∈ ℤ ((𝑦 + (𝑗 · 𝑇)) ∈ ran 𝑄 ∧ (𝑧 + (𝑘 · 𝑇)) ∈ ran 𝑄)))
7316, 17, 18, 19, 22, 34, 45, 51, 52, 53, 54, 55, 4, 56, 57, 58, 62, 72fourierdlem42 43580 . . . . . . . . . 10 (𝜑 → {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ∈ Fin)
74 unfi 8917 . . . . . . . . . 10 (({𝐶, 𝐷} ∈ Fin ∧ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ∈ Fin) → ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) ∈ Fin)
7511, 73, 74sylancr 586 . . . . . . . . 9 (𝜑 → ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) ∈ Fin)
768, 75eqeltrid 2843 . . . . . . . 8 (𝜑𝐻 ∈ Fin)
77 hashnncl 14009 . . . . . . . 8 (𝐻 ∈ Fin → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
7876, 77syl 17 . . . . . . 7 (𝜑 → ((♯‘𝐻) ∈ ℕ ↔ 𝐻 ≠ ∅))
7910, 78mpbird 256 . . . . . 6 (𝜑 → (♯‘𝐻) ∈ ℕ)
8079nnzd 12354 . . . . 5 (𝜑 → (♯‘𝐻) ∈ ℤ)
81 fourierdlem54.cd . . . . . . . . 9 (𝜑𝐶 < 𝐷)
824, 81ltned 11041 . . . . . . . 8 (𝜑𝐶𝐷)
83 hashprg 14038 . . . . . . . . 9 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶𝐷 ↔ (♯‘{𝐶, 𝐷}) = 2))
844, 56, 83syl2anc 583 . . . . . . . 8 (𝜑 → (𝐶𝐷 ↔ (♯‘{𝐶, 𝐷}) = 2))
8582, 84mpbid 231 . . . . . . 7 (𝜑 → (♯‘{𝐶, 𝐷}) = 2)
8685eqcomd 2744 . . . . . 6 (𝜑 → 2 = (♯‘{𝐶, 𝐷}))
87 ssun1 4102 . . . . . . . . 9 {𝐶, 𝐷} ⊆ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
8887a1i 11 . . . . . . . 8 (𝜑 → {𝐶, 𝐷} ⊆ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
8988, 8sseqtrrdi 3968 . . . . . . 7 (𝜑 → {𝐶, 𝐷} ⊆ 𝐻)
90 hashssle 42727 . . . . . . 7 ((𝐻 ∈ Fin ∧ {𝐶, 𝐷} ⊆ 𝐻) → (♯‘{𝐶, 𝐷}) ≤ (♯‘𝐻))
9176, 89, 90syl2anc 583 . . . . . 6 (𝜑 → (♯‘{𝐶, 𝐷}) ≤ (♯‘𝐻))
9286, 91eqbrtrd 5092 . . . . 5 (𝜑 → 2 ≤ (♯‘𝐻))
93 eluz2 12517 . . . . 5 ((♯‘𝐻) ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ (♯‘𝐻) ∈ ℤ ∧ 2 ≤ (♯‘𝐻)))
943, 80, 92, 93syl3anbrc 1341 . . . 4 (𝜑 → (♯‘𝐻) ∈ (ℤ‘2))
95 uz2m1nn 12592 . . . 4 ((♯‘𝐻) ∈ (ℤ‘2) → ((♯‘𝐻) − 1) ∈ ℕ)
9694, 95syl 17 . . 3 (𝜑 → ((♯‘𝐻) − 1) ∈ ℕ)
971, 96eqeltrid 2843 . 2 (𝜑𝑁 ∈ ℕ)
98 prssg 4749 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ↔ {𝐶, 𝐷} ⊆ ℝ))
994, 56, 98syl2anc 583 . . . . . . . . . . . 12 (𝜑 → ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ↔ {𝐶, 𝐷} ⊆ ℝ))
1004, 56, 99mpbi2and 708 . . . . . . . . . . 11 (𝜑 → {𝐶, 𝐷} ⊆ ℝ)
101 ssrab2 4009 . . . . . . . . . . . 12 {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ⊆ (𝐶[,]𝐷)
1024, 56iccssred 13095 . . . . . . . . . . . 12 (𝜑 → (𝐶[,]𝐷) ⊆ ℝ)
103101, 102sstrid 3928 . . . . . . . . . . 11 (𝜑 → {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ⊆ ℝ)
104100, 103unssd 4116 . . . . . . . . . 10 (𝜑 → ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) ⊆ ℝ)
1058, 104eqsstrid 3965 . . . . . . . . 9 (𝜑𝐻 ⊆ ℝ)
106 fourierdlem54.s . . . . . . . . 9 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
10776, 105, 106, 1fourierdlem36 43574 . . . . . . . 8 (𝜑𝑆 Isom < , < ((0...𝑁), 𝐻))
108 df-isom 6427 . . . . . . . 8 (𝑆 Isom < , < ((0...𝑁), 𝐻) ↔ (𝑆:(0...𝑁)–1-1-onto𝐻 ∧ ∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦))))
109107, 108sylib 217 . . . . . . 7 (𝜑 → (𝑆:(0...𝑁)–1-1-onto𝐻 ∧ ∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦))))
110109simpld 494 . . . . . 6 (𝜑𝑆:(0...𝑁)–1-1-onto𝐻)
111 f1of 6700 . . . . . 6 (𝑆:(0...𝑁)–1-1-onto𝐻𝑆:(0...𝑁)⟶𝐻)
112110, 111syl 17 . . . . 5 (𝜑𝑆:(0...𝑁)⟶𝐻)
113112, 105fssd 6602 . . . 4 (𝜑𝑆:(0...𝑁)⟶ℝ)
114 reex 10893 . . . . 5 ℝ ∈ V
115 ovex 7288 . . . . . 6 (0...𝑁) ∈ V
116115a1i 11 . . . . 5 (𝜑 → (0...𝑁) ∈ V)
117 elmapg 8586 . . . . 5 ((ℝ ∈ V ∧ (0...𝑁) ∈ V) → (𝑆 ∈ (ℝ ↑m (0...𝑁)) ↔ 𝑆:(0...𝑁)⟶ℝ))
118114, 116, 117sylancr 586 . . . 4 (𝜑 → (𝑆 ∈ (ℝ ↑m (0...𝑁)) ↔ 𝑆:(0...𝑁)⟶ℝ))
119113, 118mpbird 256 . . 3 (𝜑𝑆 ∈ (ℝ ↑m (0...𝑁)))
120 df-f1o 6425 . . . . . . . . . . 11 (𝑆:(0...𝑁)–1-1-onto𝐻 ↔ (𝑆:(0...𝑁)–1-1𝐻𝑆:(0...𝑁)–onto𝐻))
121110, 120sylib 217 . . . . . . . . . 10 (𝜑 → (𝑆:(0...𝑁)–1-1𝐻𝑆:(0...𝑁)–onto𝐻))
122121simprd 495 . . . . . . . . 9 (𝜑𝑆:(0...𝑁)–onto𝐻)
123 dffo3 6960 . . . . . . . . 9 (𝑆:(0...𝑁)–onto𝐻 ↔ (𝑆:(0...𝑁)⟶𝐻 ∧ ∀𝐻𝑦 ∈ (0...𝑁) = (𝑆𝑦)))
124122, 123sylib 217 . . . . . . . 8 (𝜑 → (𝑆:(0...𝑁)⟶𝐻 ∧ ∀𝐻𝑦 ∈ (0...𝑁) = (𝑆𝑦)))
125124simprd 495 . . . . . . 7 (𝜑 → ∀𝐻𝑦 ∈ (0...𝑁) = (𝑆𝑦))
126 eqeq1 2742 . . . . . . . . . 10 ( = 𝐶 → ( = (𝑆𝑦) ↔ 𝐶 = (𝑆𝑦)))
127 eqcom 2745 . . . . . . . . . 10 (𝐶 = (𝑆𝑦) ↔ (𝑆𝑦) = 𝐶)
128126, 127bitrdi 286 . . . . . . . . 9 ( = 𝐶 → ( = (𝑆𝑦) ↔ (𝑆𝑦) = 𝐶))
129128rexbidv 3225 . . . . . . . 8 ( = 𝐶 → (∃𝑦 ∈ (0...𝑁) = (𝑆𝑦) ↔ ∃𝑦 ∈ (0...𝑁)(𝑆𝑦) = 𝐶))
130129rspcv 3547 . . . . . . 7 (𝐶𝐻 → (∀𝐻𝑦 ∈ (0...𝑁) = (𝑆𝑦) → ∃𝑦 ∈ (0...𝑁)(𝑆𝑦) = 𝐶))
1319, 125, 130sylc 65 . . . . . 6 (𝜑 → ∃𝑦 ∈ (0...𝑁)(𝑆𝑦) = 𝐶)
132 fveq2 6756 . . . . . . . . . . . . . 14 (𝑦 = 0 → (𝑆𝑦) = (𝑆‘0))
133132eqcomd 2744 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑆‘0) = (𝑆𝑦))
134133adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑆𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆‘0) = (𝑆𝑦))
135 simplr 765 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑆𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆𝑦) = 𝐶)
136134, 135eqtrd 2778 . . . . . . . . . . 11 (((𝜑 ∧ (𝑆𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆‘0) = 𝐶)
1374ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑆𝑦) = 𝐶) ∧ 𝑦 = 0) → 𝐶 ∈ ℝ)
138136, 137eqeltrd 2839 . . . . . . . . . 10 (((𝜑 ∧ (𝑆𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆‘0) ∈ ℝ)
139138, 136eqled 11008 . . . . . . . . 9 (((𝜑 ∧ (𝑆𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆‘0) ≤ 𝐶)
1401393adantl2 1165 . . . . . . . 8 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ 𝑦 = 0) → (𝑆‘0) ≤ 𝐶)
1414rexrd 10956 . . . . . . . . . . . . . . . . 17 (𝜑𝐶 ∈ ℝ*)
14256rexrd 10956 . . . . . . . . . . . . . . . . 17 (𝜑𝐷 ∈ ℝ*)
1434, 56, 81ltled 11053 . . . . . . . . . . . . . . . . 17 (𝜑𝐶𝐷)
144 lbicc2 13125 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶𝐷) → 𝐶 ∈ (𝐶[,]𝐷))
145141, 142, 143, 144syl3anc 1369 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ (𝐶[,]𝐷))
146 ubicc2 13126 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*𝐶𝐷) → 𝐷 ∈ (𝐶[,]𝐷))
147141, 142, 143, 146syl3anc 1369 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ (𝐶[,]𝐷))
148 prssg 4749 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ (𝐶[,]𝐷) ∧ 𝐷 ∈ (𝐶[,]𝐷)) → ((𝐶 ∈ (𝐶[,]𝐷) ∧ 𝐷 ∈ (𝐶[,]𝐷)) ↔ {𝐶, 𝐷} ⊆ (𝐶[,]𝐷)))
149145, 147, 148syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐶 ∈ (𝐶[,]𝐷) ∧ 𝐷 ∈ (𝐶[,]𝐷)) ↔ {𝐶, 𝐷} ⊆ (𝐶[,]𝐷)))
150145, 147, 149mpbi2and 708 . . . . . . . . . . . . . . 15 (𝜑 → {𝐶, 𝐷} ⊆ (𝐶[,]𝐷))
151101a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ⊆ (𝐶[,]𝐷))
152150, 151unssd 4116 . . . . . . . . . . . . . 14 (𝜑 → ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) ⊆ (𝐶[,]𝐷))
1538, 152eqsstrid 3965 . . . . . . . . . . . . 13 (𝜑𝐻 ⊆ (𝐶[,]𝐷))
154 nnm1nn0 12204 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐻) ∈ ℕ → ((♯‘𝐻) − 1) ∈ ℕ0)
15579, 154syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((♯‘𝐻) − 1) ∈ ℕ0)
1561, 155eqeltrid 2843 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
157156, 39eleqtrdi 2849 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ (ℤ‘0))
158 eluzfz1 13192 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘0) → 0 ∈ (0...𝑁))
159157, 158syl 17 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ (0...𝑁))
160112, 159ffvelrnd 6944 . . . . . . . . . . . . 13 (𝜑 → (𝑆‘0) ∈ 𝐻)
161153, 160sseldd 3918 . . . . . . . . . . . 12 (𝜑 → (𝑆‘0) ∈ (𝐶[,]𝐷))
162102, 161sseldd 3918 . . . . . . . . . . 11 (𝜑 → (𝑆‘0) ∈ ℝ)
163162adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑦 = 0) → (𝑆‘0) ∈ ℝ)
1641633ad2antl1 1183 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (𝑆‘0) ∈ ℝ)
1654adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝑦 = 0) → 𝐶 ∈ ℝ)
1661653ad2antl1 1183 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → 𝐶 ∈ ℝ)
167 elfzelz 13185 . . . . . . . . . . . . . . 15 (𝑦 ∈ (0...𝑁) → 𝑦 ∈ ℤ)
168167zred 12355 . . . . . . . . . . . . . 14 (𝑦 ∈ (0...𝑁) → 𝑦 ∈ ℝ)
169168adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ (0...𝑁) ∧ ¬ 𝑦 = 0) → 𝑦 ∈ ℝ)
170 elfzle1 13188 . . . . . . . . . . . . . 14 (𝑦 ∈ (0...𝑁) → 0 ≤ 𝑦)
171170adantr 480 . . . . . . . . . . . . 13 ((𝑦 ∈ (0...𝑁) ∧ ¬ 𝑦 = 0) → 0 ≤ 𝑦)
172 neqne 2950 . . . . . . . . . . . . . 14 𝑦 = 0 → 𝑦 ≠ 0)
173172adantl 481 . . . . . . . . . . . . 13 ((𝑦 ∈ (0...𝑁) ∧ ¬ 𝑦 = 0) → 𝑦 ≠ 0)
174169, 171, 173ne0gt0d 11042 . . . . . . . . . . . 12 ((𝑦 ∈ (0...𝑁) ∧ ¬ 𝑦 = 0) → 0 < 𝑦)
1751743ad2antl2 1184 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → 0 < 𝑦)
176 simpl1 1189 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → 𝜑)
177 simpl2 1190 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → 𝑦 ∈ (0...𝑁))
178109simprd 495 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)))
179 breq1 5073 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (𝑥 < 𝑦 ↔ 0 < 𝑦))
180 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → (𝑆𝑥) = (𝑆‘0))
181180breq1d 5080 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → ((𝑆𝑥) < (𝑆𝑦) ↔ (𝑆‘0) < (𝑆𝑦)))
182179, 181bibi12d 345 . . . . . . . . . . . . . . . 16 (𝑥 = 0 → ((𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) ↔ (0 < 𝑦 ↔ (𝑆‘0) < (𝑆𝑦))))
183182ralbidv 3120 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) ↔ ∀𝑦 ∈ (0...𝑁)(0 < 𝑦 ↔ (𝑆‘0) < (𝑆𝑦))))
184183rspcv 3547 . . . . . . . . . . . . . 14 (0 ∈ (0...𝑁) → (∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) → ∀𝑦 ∈ (0...𝑁)(0 < 𝑦 ↔ (𝑆‘0) < (𝑆𝑦))))
185159, 178, 184sylc 65 . . . . . . . . . . . . 13 (𝜑 → ∀𝑦 ∈ (0...𝑁)(0 < 𝑦 ↔ (𝑆‘0) < (𝑆𝑦)))
186185r19.21bi 3132 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...𝑁)) → (0 < 𝑦 ↔ (𝑆‘0) < (𝑆𝑦)))
187176, 177, 186syl2anc 583 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (0 < 𝑦 ↔ (𝑆‘0) < (𝑆𝑦)))
188175, 187mpbid 231 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (𝑆‘0) < (𝑆𝑦))
189 simpl3 1191 . . . . . . . . . 10 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (𝑆𝑦) = 𝐶)
190188, 189breqtrd 5096 . . . . . . . . 9 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (𝑆‘0) < 𝐶)
191164, 166, 190ltled 11053 . . . . . . . 8 (((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) ∧ ¬ 𝑦 = 0) → (𝑆‘0) ≤ 𝐶)
192140, 191pm2.61dan 809 . . . . . . 7 ((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐶) → (𝑆‘0) ≤ 𝐶)
193192rexlimdv3a 3214 . . . . . 6 (𝜑 → (∃𝑦 ∈ (0...𝑁)(𝑆𝑦) = 𝐶 → (𝑆‘0) ≤ 𝐶))
194131, 193mpd 15 . . . . 5 (𝜑 → (𝑆‘0) ≤ 𝐶)
195 elicc2 13073 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑆‘0) ∈ (𝐶[,]𝐷) ↔ ((𝑆‘0) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘0) ∧ (𝑆‘0) ≤ 𝐷)))
1964, 56, 195syl2anc 583 . . . . . . 7 (𝜑 → ((𝑆‘0) ∈ (𝐶[,]𝐷) ↔ ((𝑆‘0) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘0) ∧ (𝑆‘0) ≤ 𝐷)))
197161, 196mpbid 231 . . . . . 6 (𝜑 → ((𝑆‘0) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘0) ∧ (𝑆‘0) ≤ 𝐷))
198197simp2d 1141 . . . . 5 (𝜑𝐶 ≤ (𝑆‘0))
199162, 4letri3d 11047 . . . . 5 (𝜑 → ((𝑆‘0) = 𝐶 ↔ ((𝑆‘0) ≤ 𝐶𝐶 ≤ (𝑆‘0))))
200194, 198, 199mpbir2and 709 . . . 4 (𝜑 → (𝑆‘0) = 𝐶)
201 eluzfz2 13193 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
202157, 201syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ (0...𝑁))
203112, 202ffvelrnd 6944 . . . . . . . 8 (𝜑 → (𝑆𝑁) ∈ 𝐻)
204153, 203sseldd 3918 . . . . . . 7 (𝜑 → (𝑆𝑁) ∈ (𝐶[,]𝐷))
205 elicc2 13073 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑆𝑁) ∈ (𝐶[,]𝐷) ↔ ((𝑆𝑁) ∈ ℝ ∧ 𝐶 ≤ (𝑆𝑁) ∧ (𝑆𝑁) ≤ 𝐷)))
2064, 56, 205syl2anc 583 . . . . . . 7 (𝜑 → ((𝑆𝑁) ∈ (𝐶[,]𝐷) ↔ ((𝑆𝑁) ∈ ℝ ∧ 𝐶 ≤ (𝑆𝑁) ∧ (𝑆𝑁) ≤ 𝐷)))
207204, 206mpbid 231 . . . . . 6 (𝜑 → ((𝑆𝑁) ∈ ℝ ∧ 𝐶 ≤ (𝑆𝑁) ∧ (𝑆𝑁) ≤ 𝐷))
208207simp3d 1142 . . . . 5 (𝜑 → (𝑆𝑁) ≤ 𝐷)
209 prid2g 4694 . . . . . . . . 9 (𝐷 ∈ ℝ → 𝐷 ∈ {𝐶, 𝐷})
210 elun1 4106 . . . . . . . . 9 (𝐷 ∈ {𝐶, 𝐷} → 𝐷 ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
21156, 209, 2103syl 18 . . . . . . . 8 (𝜑𝐷 ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
212211, 8eleqtrrdi 2850 . . . . . . 7 (𝜑𝐷𝐻)
213 eqeq1 2742 . . . . . . . . . 10 ( = 𝐷 → ( = (𝑆𝑦) ↔ 𝐷 = (𝑆𝑦)))
214 eqcom 2745 . . . . . . . . . 10 (𝐷 = (𝑆𝑦) ↔ (𝑆𝑦) = 𝐷)
215213, 214bitrdi 286 . . . . . . . . 9 ( = 𝐷 → ( = (𝑆𝑦) ↔ (𝑆𝑦) = 𝐷))
216215rexbidv 3225 . . . . . . . 8 ( = 𝐷 → (∃𝑦 ∈ (0...𝑁) = (𝑆𝑦) ↔ ∃𝑦 ∈ (0...𝑁)(𝑆𝑦) = 𝐷))
217216rspcv 3547 . . . . . . 7 (𝐷𝐻 → (∀𝐻𝑦 ∈ (0...𝑁) = (𝑆𝑦) → ∃𝑦 ∈ (0...𝑁)(𝑆𝑦) = 𝐷))
218212, 125, 217sylc 65 . . . . . 6 (𝜑 → ∃𝑦 ∈ (0...𝑁)(𝑆𝑦) = 𝐷)
219214biimpri 227 . . . . . . . . 9 ((𝑆𝑦) = 𝐷𝐷 = (𝑆𝑦))
2202193ad2ant3 1133 . . . . . . . 8 ((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐷) → 𝐷 = (𝑆𝑦))
221113ffvelrnda 6943 . . . . . . . . . 10 ((𝜑𝑦 ∈ (0...𝑁)) → (𝑆𝑦) ∈ ℝ)
222102, 204sseldd 3918 . . . . . . . . . . 11 (𝜑 → (𝑆𝑁) ∈ ℝ)
223222adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ (0...𝑁)) → (𝑆𝑁) ∈ ℝ)
224168adantl 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...𝑁)) → 𝑦 ∈ ℝ)
225 elfzel2 13183 . . . . . . . . . . . . . 14 (𝑦 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
226225zred 12355 . . . . . . . . . . . . 13 (𝑦 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
227226adantl 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
228 elfzle2 13189 . . . . . . . . . . . . 13 (𝑦 ∈ (0...𝑁) → 𝑦𝑁)
229228adantl 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (0...𝑁)) → 𝑦𝑁)
230224, 227, 229lensymd 11056 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (0...𝑁)) → ¬ 𝑁 < 𝑦)
231 breq1 5073 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑁 → (𝑥 < 𝑦𝑁 < 𝑦))
232 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑁 → (𝑆𝑥) = (𝑆𝑁))
233232breq1d 5080 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑁 → ((𝑆𝑥) < (𝑆𝑦) ↔ (𝑆𝑁) < (𝑆𝑦)))
234231, 233bibi12d 345 . . . . . . . . . . . . . . 15 (𝑥 = 𝑁 → ((𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) ↔ (𝑁 < 𝑦 ↔ (𝑆𝑁) < (𝑆𝑦))))
235234ralbidv 3120 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) ↔ ∀𝑦 ∈ (0...𝑁)(𝑁 < 𝑦 ↔ (𝑆𝑁) < (𝑆𝑦))))
236235rspcv 3547 . . . . . . . . . . . . 13 (𝑁 ∈ (0...𝑁) → (∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) → ∀𝑦 ∈ (0...𝑁)(𝑁 < 𝑦 ↔ (𝑆𝑁) < (𝑆𝑦))))
237202, 178, 236sylc 65 . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (0...𝑁)(𝑁 < 𝑦 ↔ (𝑆𝑁) < (𝑆𝑦)))
238237r19.21bi 3132 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (0...𝑁)) → (𝑁 < 𝑦 ↔ (𝑆𝑁) < (𝑆𝑦)))
239230, 238mtbid 323 . . . . . . . . . 10 ((𝜑𝑦 ∈ (0...𝑁)) → ¬ (𝑆𝑁) < (𝑆𝑦))
240221, 223, 239nltled 11055 . . . . . . . . 9 ((𝜑𝑦 ∈ (0...𝑁)) → (𝑆𝑦) ≤ (𝑆𝑁))
2412403adant3 1130 . . . . . . . 8 ((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐷) → (𝑆𝑦) ≤ (𝑆𝑁))
242220, 241eqbrtrd 5092 . . . . . . 7 ((𝜑𝑦 ∈ (0...𝑁) ∧ (𝑆𝑦) = 𝐷) → 𝐷 ≤ (𝑆𝑁))
243242rexlimdv3a 3214 . . . . . 6 (𝜑 → (∃𝑦 ∈ (0...𝑁)(𝑆𝑦) = 𝐷𝐷 ≤ (𝑆𝑁)))
244218, 243mpd 15 . . . . 5 (𝜑𝐷 ≤ (𝑆𝑁))
245222, 56letri3d 11047 . . . . 5 (𝜑 → ((𝑆𝑁) = 𝐷 ↔ ((𝑆𝑁) ≤ 𝐷𝐷 ≤ (𝑆𝑁))))
246208, 244, 245mpbir2and 709 . . . 4 (𝜑 → (𝑆𝑁) = 𝐷)
247 elfzoelz 13316 . . . . . . . . 9 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℤ)
248247zred 12355 . . . . . . . 8 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℝ)
249248ltp1d 11835 . . . . . . 7 (𝑖 ∈ (0..^𝑁) → 𝑖 < (𝑖 + 1))
250249adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑖 < (𝑖 + 1))
251178adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑁)) → ∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)))
252 elfzofz 13331 . . . . . . . . 9 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ (0...𝑁))
253252adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0...𝑁))
254 fzofzp1 13412 . . . . . . . . 9 (𝑖 ∈ (0..^𝑁) → (𝑖 + 1) ∈ (0...𝑁))
255254adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑖 + 1) ∈ (0...𝑁))
256 breq1 5073 . . . . . . . . . 10 (𝑥 = 𝑖 → (𝑥 < 𝑦𝑖 < 𝑦))
257 fveq2 6756 . . . . . . . . . . 11 (𝑥 = 𝑖 → (𝑆𝑥) = (𝑆𝑖))
258257breq1d 5080 . . . . . . . . . 10 (𝑥 = 𝑖 → ((𝑆𝑥) < (𝑆𝑦) ↔ (𝑆𝑖) < (𝑆𝑦)))
259256, 258bibi12d 345 . . . . . . . . 9 (𝑥 = 𝑖 → ((𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) ↔ (𝑖 < 𝑦 ↔ (𝑆𝑖) < (𝑆𝑦))))
260 breq2 5074 . . . . . . . . . 10 (𝑦 = (𝑖 + 1) → (𝑖 < 𝑦𝑖 < (𝑖 + 1)))
261 fveq2 6756 . . . . . . . . . . 11 (𝑦 = (𝑖 + 1) → (𝑆𝑦) = (𝑆‘(𝑖 + 1)))
262261breq2d 5082 . . . . . . . . . 10 (𝑦 = (𝑖 + 1) → ((𝑆𝑖) < (𝑆𝑦) ↔ (𝑆𝑖) < (𝑆‘(𝑖 + 1))))
263260, 262bibi12d 345 . . . . . . . . 9 (𝑦 = (𝑖 + 1) → ((𝑖 < 𝑦 ↔ (𝑆𝑖) < (𝑆𝑦)) ↔ (𝑖 < (𝑖 + 1) ↔ (𝑆𝑖) < (𝑆‘(𝑖 + 1)))))
264259, 263rspc2v 3562 . . . . . . . 8 ((𝑖 ∈ (0...𝑁) ∧ (𝑖 + 1) ∈ (0...𝑁)) → (∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) → (𝑖 < (𝑖 + 1) ↔ (𝑆𝑖) < (𝑆‘(𝑖 + 1)))))
265253, 255, 264syl2anc 583 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑁)) → (∀𝑥 ∈ (0...𝑁)∀𝑦 ∈ (0...𝑁)(𝑥 < 𝑦 ↔ (𝑆𝑥) < (𝑆𝑦)) → (𝑖 < (𝑖 + 1) ↔ (𝑆𝑖) < (𝑆‘(𝑖 + 1)))))
266251, 265mpd 15 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑖 < (𝑖 + 1) ↔ (𝑆𝑖) < (𝑆‘(𝑖 + 1))))
267250, 266mpbid 231 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑆𝑖) < (𝑆‘(𝑖 + 1)))
268267ralrimiva 3107 . . . 4 (𝜑 → ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))
269200, 246, 268jca31 514 . . 3 (𝜑 → (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))
270 fourierdlem54.o . . . . 5 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
271270fourierdlem2 43540 . . . 4 (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
27297, 271syl 17 . . 3 (𝜑 → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
273119, 269, 272mpbir2and 709 . 2 (𝜑𝑆 ∈ (𝑂𝑁))
27497, 273, 107jca31 514 1 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  wss 3883  c0 4253  {cpr 4560   class class class wbr 5070  cmpt 5153   I cid 5479   × cxp 5578  ran crn 5581  cres 5582  ccom 5584  cio 6374   Fn wfn 6413  wf 6414  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418   Isom wiso 6419  (class class class)co 7255  m cmap 8573  Fincfn 8691  infcinf 9130  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  (,)cioo 13008  [,]cicc 13011  ...cfz 13168  ..^cfzo 13311  chash 13972  abscabs 14873  t crest 17048  topGenctg 17065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-cmp 22446
This theorem is referenced by:  fourierdlem63  43600  fourierdlem64  43601  fourierdlem65  43602  fourierdlem79  43616  fourierdlem89  43626  fourierdlem90  43627  fourierdlem91  43628  fourierdlem100  43637  fourierdlem107  43644  fourierdlem109  43646  fourierdlem112  43649
  Copyright terms: Public domain W3C validator