MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv2a Structured version   Visualization version   GIF version

Theorem lediv2a 11117
Description: Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.)
Assertion
Ref Expression
lediv2a ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))

Proof of Theorem lediv2a
StepHypRef Expression
1 pm3.2 455 . . . . . . 7 (𝐶 ∈ ℝ → (𝐶 ∈ ℝ → (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ)))
21pm2.43i 52 . . . . . 6 (𝐶 ∈ ℝ → (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ))
32adantr 466 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ))
4 leid 10333 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶𝐶)
54anim2i 603 . . . . . 6 ((0 ≤ 𝐶𝐶 ∈ ℝ) → (0 ≤ 𝐶𝐶𝐶))
65ancoms 446 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → (0 ≤ 𝐶𝐶𝐶))
73, 6jca 501 . . . 4 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → ((𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶𝐶)))
87ad2antlr 706 . . 3 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → ((𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶𝐶)))
983adantl2 1172 . 2 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → ((𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶𝐶)))
10 id 22 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1110ad2ant2r 741 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1211adantr 466 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ 𝐴𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
13 simplr 752 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < 𝐴)
1413anim1i 602 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ 𝐴𝐵) → (0 < 𝐴𝐴𝐵))
1512, 14jca 501 . . 3 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ 𝐴𝐵) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴𝐴𝐵)))
16153adantl3 1173 . 2 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴𝐴𝐵)))
17 lediv12a 11116 . 2 ((((𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶𝐶)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴𝐴𝐵))) → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))
189, 16, 17syl2anc 573 1 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071  wcel 2145   class class class wbr 4786  (class class class)co 6791  cr 10135  0cc0 10136   < clt 10274  cle 10275   / cdiv 10884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885
This theorem is referenced by:  lediv2ad  12090  dchrisum0lem1b  25418  pntrmax  25467
  Copyright terms: Public domain W3C validator