MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv2a Structured version   Visualization version   GIF version

Theorem lediv2a 11528
Description: Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.)
Assertion
Ref Expression
lediv2a ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))

Proof of Theorem lediv2a
StepHypRef Expression
1 pm3.2 472 . . . . . . 7 (𝐶 ∈ ℝ → (𝐶 ∈ ℝ → (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ)))
21pm2.43i 52 . . . . . 6 (𝐶 ∈ ℝ → (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ))
32adantr 483 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → (𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ))
4 leid 10730 . . . . . 6 (𝐶 ∈ ℝ → 𝐶𝐶)
54anim1ci 617 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → (0 ≤ 𝐶𝐶𝐶))
63, 5jca 514 . . . 4 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → ((𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶𝐶)))
76ad2antlr 725 . . 3 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → ((𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶𝐶)))
873adantl2 1163 . 2 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → ((𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶𝐶)))
9 id 22 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
109ad2ant2r 745 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
1110adantr 483 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ 𝐴𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
12 simplr 767 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < 𝐴)
1312anim1i 616 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ 𝐴𝐵) → (0 < 𝐴𝐴𝐵))
1411, 13jca 514 . . 3 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ 𝐴𝐵) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴𝐴𝐵)))
15143adantl3 1164 . 2 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴𝐴𝐵)))
16 lediv12a 11527 . 2 ((((𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶𝐶)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴𝐴𝐵))) → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))
178, 15, 16syl2anc 586 1 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083  wcel 2110   class class class wbr 5058  (class class class)co 7150  cr 10530  0cc0 10531   < clt 10669  cle 10670   / cdiv 11291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292
This theorem is referenced by:  lediv2ad  12447  dchrisum0lem1b  26085  pntrmax  26134
  Copyright terms: Public domain W3C validator