Step | Hyp | Ref
| Expression |
1 | | eqid 2737 |
. 2
⊢
(ℤ≥‘𝐴) = (ℤ≥‘𝐴) |
2 | | caubl.2 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
3 | 2 | 3ad2ant1 1135 |
. . 3
⊢ ((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋)) |
4 | | caublcls.6 |
. . . 4
⊢ 𝐽 = (MetOpen‘𝐷) |
5 | 4 | mopntopon 23337 |
. . 3
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
6 | 3, 5 | syl 17 |
. 2
⊢ ((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) → 𝐽 ∈ (TopOn‘𝑋)) |
7 | | simp3 1140 |
. . 3
⊢ ((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) → 𝐴 ∈ ℕ) |
8 | 7 | nnzd 12281 |
. 2
⊢ ((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) → 𝐴 ∈ ℤ) |
9 | | simp2 1139 |
. 2
⊢ ((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) → (1st
∘ 𝐹)(⇝𝑡‘𝐽)𝑃) |
10 | | 2fveq3 6722 |
. . . . . . . 8
⊢ (𝑟 = 𝐴 → ((ball‘𝐷)‘(𝐹‘𝑟)) = ((ball‘𝐷)‘(𝐹‘𝐴))) |
11 | 10 | sseq1d 3932 |
. . . . . . 7
⊢ (𝑟 = 𝐴 → (((ball‘𝐷)‘(𝐹‘𝑟)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴)) ↔ ((ball‘𝐷)‘(𝐹‘𝐴)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴)))) |
12 | 11 | imbi2d 344 |
. . . . . 6
⊢ (𝑟 = 𝐴 → (((𝜑 ∧ 𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘𝑟)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴))) ↔ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘𝐴)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴))))) |
13 | | 2fveq3 6722 |
. . . . . . . 8
⊢ (𝑟 = 𝑘 → ((ball‘𝐷)‘(𝐹‘𝑟)) = ((ball‘𝐷)‘(𝐹‘𝑘))) |
14 | 13 | sseq1d 3932 |
. . . . . . 7
⊢ (𝑟 = 𝑘 → (((ball‘𝐷)‘(𝐹‘𝑟)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴)) ↔ ((ball‘𝐷)‘(𝐹‘𝑘)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴)))) |
15 | 14 | imbi2d 344 |
. . . . . 6
⊢ (𝑟 = 𝑘 → (((𝜑 ∧ 𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘𝑟)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴))) ↔ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘𝑘)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴))))) |
16 | | 2fveq3 6722 |
. . . . . . . 8
⊢ (𝑟 = (𝑘 + 1) → ((ball‘𝐷)‘(𝐹‘𝑟)) = ((ball‘𝐷)‘(𝐹‘(𝑘 + 1)))) |
17 | 16 | sseq1d 3932 |
. . . . . . 7
⊢ (𝑟 = (𝑘 + 1) → (((ball‘𝐷)‘(𝐹‘𝑟)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴)) ↔ ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴)))) |
18 | 17 | imbi2d 344 |
. . . . . 6
⊢ (𝑟 = (𝑘 + 1) → (((𝜑 ∧ 𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘𝑟)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴))) ↔ ((𝜑 ∧ 𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴))))) |
19 | | ssid 3923 |
. . . . . . 7
⊢
((ball‘𝐷)‘(𝐹‘𝐴)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴)) |
20 | 19 | 2a1i 12 |
. . . . . 6
⊢ (𝐴 ∈ ℤ → ((𝜑 ∧ 𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘𝐴)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴)))) |
21 | | caubl.4 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹‘𝑛))) |
22 | | eluznn 12514 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝐴)) → 𝑘 ∈ ℕ) |
23 | | fvoveq1 7236 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1))) |
24 | 23 | fveq2d 6721 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) = ((ball‘𝐷)‘(𝐹‘(𝑘 + 1)))) |
25 | | 2fveq3 6722 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → ((ball‘𝐷)‘(𝐹‘𝑛)) = ((ball‘𝐷)‘(𝐹‘𝑘))) |
26 | 24, 25 | sseq12d 3934 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹‘𝑛)) ↔ ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹‘𝑘)))) |
27 | 26 | rspccva 3536 |
. . . . . . . . . . 11
⊢
((∀𝑛 ∈
ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹‘𝑛)) ∧ 𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹‘𝑘))) |
28 | 21, 22, 27 | syl2an 599 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝐴))) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹‘𝑘))) |
29 | 28 | anassrs 471 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹‘𝑘))) |
30 | | sstr2 3908 |
. . . . . . . . 9
⊢
(((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹‘𝑘)) → (((ball‘𝐷)‘(𝐹‘𝑘)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴)))) |
31 | 29, 30 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → (((ball‘𝐷)‘(𝐹‘𝑘)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴)))) |
32 | 31 | expcom 417 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘𝐴) → ((𝜑 ∧ 𝐴 ∈ ℕ) → (((ball‘𝐷)‘(𝐹‘𝑘)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴))))) |
33 | 32 | a2d 29 |
. . . . . 6
⊢ (𝑘 ∈
(ℤ≥‘𝐴) → (((𝜑 ∧ 𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘𝑘)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴))) → ((𝜑 ∧ 𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴))))) |
34 | 12, 15, 18, 15, 20, 33 | uzind4 12502 |
. . . . 5
⊢ (𝑘 ∈
(ℤ≥‘𝐴) → ((𝜑 ∧ 𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘𝑘)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴)))) |
35 | 34 | impcom 411 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → ((ball‘𝐷)‘(𝐹‘𝑘)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴))) |
36 | 35 | 3adantl2 1169 |
. . 3
⊢ (((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → ((ball‘𝐷)‘(𝐹‘𝑘)) ⊆ ((ball‘𝐷)‘(𝐹‘𝐴))) |
37 | 3 | adantr 484 |
. . . . 5
⊢ (((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → 𝐷 ∈ (∞Met‘𝑋)) |
38 | | simpl1 1193 |
. . . . . . . 8
⊢ (((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → 𝜑) |
39 | | caubl.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℕ⟶(𝑋 ×
ℝ+)) |
40 | 38, 39 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → 𝐹:ℕ⟶(𝑋 ×
ℝ+)) |
41 | 22 | 3ad2antl3 1189 |
. . . . . . 7
⊢ (((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → 𝑘 ∈ ℕ) |
42 | 40, 41 | ffvelrnd 6905 |
. . . . . 6
⊢ (((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → (𝐹‘𝑘) ∈ (𝑋 ×
ℝ+)) |
43 | | xp1st 7793 |
. . . . . 6
⊢ ((𝐹‘𝑘) ∈ (𝑋 × ℝ+) →
(1st ‘(𝐹‘𝑘)) ∈ 𝑋) |
44 | 42, 43 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → (1st
‘(𝐹‘𝑘)) ∈ 𝑋) |
45 | | xp2nd 7794 |
. . . . . 6
⊢ ((𝐹‘𝑘) ∈ (𝑋 × ℝ+) →
(2nd ‘(𝐹‘𝑘)) ∈
ℝ+) |
46 | 42, 45 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → (2nd
‘(𝐹‘𝑘)) ∈
ℝ+) |
47 | | blcntr 23311 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘(𝐹‘𝑘)) ∈ 𝑋 ∧ (2nd ‘(𝐹‘𝑘)) ∈ ℝ+) →
(1st ‘(𝐹‘𝑘)) ∈ ((1st ‘(𝐹‘𝑘))(ball‘𝐷)(2nd ‘(𝐹‘𝑘)))) |
48 | 37, 44, 46, 47 | syl3anc 1373 |
. . . 4
⊢ (((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → (1st
‘(𝐹‘𝑘)) ∈ ((1st
‘(𝐹‘𝑘))(ball‘𝐷)(2nd ‘(𝐹‘𝑘)))) |
49 | | fvco3 6810 |
. . . . 5
⊢ ((𝐹:ℕ⟶(𝑋 × ℝ+)
∧ 𝑘 ∈ ℕ)
→ ((1st ∘ 𝐹)‘𝑘) = (1st ‘(𝐹‘𝑘))) |
50 | 40, 41, 49 | syl2anc 587 |
. . . 4
⊢ (((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → ((1st
∘ 𝐹)‘𝑘) = (1st
‘(𝐹‘𝑘))) |
51 | | 1st2nd2 7800 |
. . . . . . 7
⊢ ((𝐹‘𝑘) ∈ (𝑋 × ℝ+) → (𝐹‘𝑘) = 〈(1st ‘(𝐹‘𝑘)), (2nd ‘(𝐹‘𝑘))〉) |
52 | 42, 51 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → (𝐹‘𝑘) = 〈(1st ‘(𝐹‘𝑘)), (2nd ‘(𝐹‘𝑘))〉) |
53 | 52 | fveq2d 6721 |
. . . . 5
⊢ (((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → ((ball‘𝐷)‘(𝐹‘𝑘)) = ((ball‘𝐷)‘〈(1st ‘(𝐹‘𝑘)), (2nd ‘(𝐹‘𝑘))〉)) |
54 | | df-ov 7216 |
. . . . 5
⊢
((1st ‘(𝐹‘𝑘))(ball‘𝐷)(2nd ‘(𝐹‘𝑘))) = ((ball‘𝐷)‘〈(1st ‘(𝐹‘𝑘)), (2nd ‘(𝐹‘𝑘))〉) |
55 | 53, 54 | eqtr4di 2796 |
. . . 4
⊢ (((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → ((ball‘𝐷)‘(𝐹‘𝑘)) = ((1st ‘(𝐹‘𝑘))(ball‘𝐷)(2nd ‘(𝐹‘𝑘)))) |
56 | 48, 50, 55 | 3eltr4d 2853 |
. . 3
⊢ (((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → ((1st
∘ 𝐹)‘𝑘) ∈ ((ball‘𝐷)‘(𝐹‘𝑘))) |
57 | 36, 56 | sseldd 3902 |
. 2
⊢ (((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝐴)) → ((1st
∘ 𝐹)‘𝑘) ∈ ((ball‘𝐷)‘(𝐹‘𝐴))) |
58 | 39 | ffvelrnda 6904 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝐹‘𝐴) ∈ (𝑋 ×
ℝ+)) |
59 | 58 | 3adant2 1133 |
. . . . . 6
⊢ ((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) → (𝐹‘𝐴) ∈ (𝑋 ×
ℝ+)) |
60 | | 1st2nd2 7800 |
. . . . . 6
⊢ ((𝐹‘𝐴) ∈ (𝑋 × ℝ+) → (𝐹‘𝐴) = 〈(1st ‘(𝐹‘𝐴)), (2nd ‘(𝐹‘𝐴))〉) |
61 | 59, 60 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) → (𝐹‘𝐴) = 〈(1st ‘(𝐹‘𝐴)), (2nd ‘(𝐹‘𝐴))〉) |
62 | 61 | fveq2d 6721 |
. . . 4
⊢ ((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘𝐴)) = ((ball‘𝐷)‘〈(1st ‘(𝐹‘𝐴)), (2nd ‘(𝐹‘𝐴))〉)) |
63 | | df-ov 7216 |
. . . 4
⊢
((1st ‘(𝐹‘𝐴))(ball‘𝐷)(2nd ‘(𝐹‘𝐴))) = ((ball‘𝐷)‘〈(1st ‘(𝐹‘𝐴)), (2nd ‘(𝐹‘𝐴))〉) |
64 | 62, 63 | eqtr4di 2796 |
. . 3
⊢ ((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘𝐴)) = ((1st ‘(𝐹‘𝐴))(ball‘𝐷)(2nd ‘(𝐹‘𝐴)))) |
65 | | xp1st 7793 |
. . . . 5
⊢ ((𝐹‘𝐴) ∈ (𝑋 × ℝ+) →
(1st ‘(𝐹‘𝐴)) ∈ 𝑋) |
66 | 59, 65 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) → (1st
‘(𝐹‘𝐴)) ∈ 𝑋) |
67 | | xp2nd 7794 |
. . . . . 6
⊢ ((𝐹‘𝐴) ∈ (𝑋 × ℝ+) →
(2nd ‘(𝐹‘𝐴)) ∈
ℝ+) |
68 | 59, 67 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) → (2nd
‘(𝐹‘𝐴)) ∈
ℝ+) |
69 | 68 | rpxrd 12629 |
. . . 4
⊢ ((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) → (2nd
‘(𝐹‘𝐴)) ∈
ℝ*) |
70 | | blssm 23316 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘(𝐹‘𝐴)) ∈ 𝑋 ∧ (2nd ‘(𝐹‘𝐴)) ∈ ℝ*) →
((1st ‘(𝐹‘𝐴))(ball‘𝐷)(2nd ‘(𝐹‘𝐴))) ⊆ 𝑋) |
71 | 3, 66, 69, 70 | syl3anc 1373 |
. . 3
⊢ ((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) → ((1st
‘(𝐹‘𝐴))(ball‘𝐷)(2nd ‘(𝐹‘𝐴))) ⊆ 𝑋) |
72 | 64, 71 | eqsstrd 3939 |
. 2
⊢ ((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘𝐴)) ⊆ 𝑋) |
73 | 1, 6, 8, 9, 57, 72 | lmcls 22199 |
1
⊢ ((𝜑 ∧ (1st ∘
𝐹)(⇝𝑡‘𝐽)𝑃 ∧ 𝐴 ∈ ℕ) → 𝑃 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝐹‘𝐴)))) |