MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caublcls Structured version   Visualization version   GIF version

Theorem caublcls 24817
Description: The convergent point of a sequence of nested balls is in the closures of any of the balls (i.e. it is in the intersection of the closures). Indeed, it is the only point in the intersection because a metric space is Hausdorff, but we don't prove this here. (Contributed by Mario Carneiro, 21-Jan-2014.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
caubl.2 (πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
caubl.3 (πœ‘ β†’ 𝐹:β„•βŸΆ(𝑋 Γ— ℝ+))
caubl.4 (πœ‘ β†’ βˆ€π‘› ∈ β„• ((ballβ€˜π·)β€˜(πΉβ€˜(𝑛 + 1))) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π‘›)))
caublcls.6 𝐽 = (MetOpenβ€˜π·)
Assertion
Ref Expression
caublcls ((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) β†’ 𝑃 ∈ ((clsβ€˜π½)β€˜((ballβ€˜π·)β€˜(πΉβ€˜π΄))))
Distinct variable groups:   𝐷,𝑛   𝑛,𝐹   𝑛,𝑋
Allowed substitution hints:   πœ‘(𝑛)   𝐴(𝑛)   𝑃(𝑛)   𝐽(𝑛)

Proof of Theorem caublcls
Dummy variables π‘˜ π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . 2 (β„€β‰₯β€˜π΄) = (β„€β‰₯β€˜π΄)
2 caubl.2 . . . 4 (πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
323ad2ant1 1133 . . 3 ((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
4 caublcls.6 . . . 4 𝐽 = (MetOpenβ€˜π·)
54mopntopon 23936 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
63, 5syl 17 . 2 ((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
7 simp3 1138 . . 3 ((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) β†’ 𝐴 ∈ β„•)
87nnzd 12581 . 2 ((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) β†’ 𝐴 ∈ β„€)
9 simp2 1137 . 2 ((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) β†’ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃)
10 2fveq3 6893 . . . . . . . 8 (π‘Ÿ = 𝐴 β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π‘Ÿ)) = ((ballβ€˜π·)β€˜(πΉβ€˜π΄)))
1110sseq1d 4012 . . . . . . 7 (π‘Ÿ = 𝐴 β†’ (((ballβ€˜π·)β€˜(πΉβ€˜π‘Ÿ)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄)) ↔ ((ballβ€˜π·)β€˜(πΉβ€˜π΄)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄))))
1211imbi2d 340 . . . . . 6 (π‘Ÿ = 𝐴 β†’ (((πœ‘ ∧ 𝐴 ∈ β„•) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π‘Ÿ)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄))) ↔ ((πœ‘ ∧ 𝐴 ∈ β„•) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π΄)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄)))))
13 2fveq3 6893 . . . . . . . 8 (π‘Ÿ = π‘˜ β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π‘Ÿ)) = ((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)))
1413sseq1d 4012 . . . . . . 7 (π‘Ÿ = π‘˜ β†’ (((ballβ€˜π·)β€˜(πΉβ€˜π‘Ÿ)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄)) ↔ ((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄))))
1514imbi2d 340 . . . . . 6 (π‘Ÿ = π‘˜ β†’ (((πœ‘ ∧ 𝐴 ∈ β„•) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π‘Ÿ)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄))) ↔ ((πœ‘ ∧ 𝐴 ∈ β„•) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄)))))
16 2fveq3 6893 . . . . . . . 8 (π‘Ÿ = (π‘˜ + 1) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π‘Ÿ)) = ((ballβ€˜π·)β€˜(πΉβ€˜(π‘˜ + 1))))
1716sseq1d 4012 . . . . . . 7 (π‘Ÿ = (π‘˜ + 1) β†’ (((ballβ€˜π·)β€˜(πΉβ€˜π‘Ÿ)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄)) ↔ ((ballβ€˜π·)β€˜(πΉβ€˜(π‘˜ + 1))) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄))))
1817imbi2d 340 . . . . . 6 (π‘Ÿ = (π‘˜ + 1) β†’ (((πœ‘ ∧ 𝐴 ∈ β„•) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π‘Ÿ)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄))) ↔ ((πœ‘ ∧ 𝐴 ∈ β„•) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜(π‘˜ + 1))) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄)))))
19 ssid 4003 . . . . . . 7 ((ballβ€˜π·)β€˜(πΉβ€˜π΄)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄))
20192a1i 12 . . . . . 6 (𝐴 ∈ β„€ β†’ ((πœ‘ ∧ 𝐴 ∈ β„•) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π΄)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄))))
21 caubl.4 . . . . . . . . . . 11 (πœ‘ β†’ βˆ€π‘› ∈ β„• ((ballβ€˜π·)β€˜(πΉβ€˜(𝑛 + 1))) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π‘›)))
22 eluznn 12898 . . . . . . . . . . 11 ((𝐴 ∈ β„• ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ π‘˜ ∈ β„•)
23 fvoveq1 7428 . . . . . . . . . . . . . 14 (𝑛 = π‘˜ β†’ (πΉβ€˜(𝑛 + 1)) = (πΉβ€˜(π‘˜ + 1)))
2423fveq2d 6892 . . . . . . . . . . . . 13 (𝑛 = π‘˜ β†’ ((ballβ€˜π·)β€˜(πΉβ€˜(𝑛 + 1))) = ((ballβ€˜π·)β€˜(πΉβ€˜(π‘˜ + 1))))
25 2fveq3 6893 . . . . . . . . . . . . 13 (𝑛 = π‘˜ β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π‘›)) = ((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)))
2624, 25sseq12d 4014 . . . . . . . . . . . 12 (𝑛 = π‘˜ β†’ (((ballβ€˜π·)β€˜(πΉβ€˜(𝑛 + 1))) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π‘›)) ↔ ((ballβ€˜π·)β€˜(πΉβ€˜(π‘˜ + 1))) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π‘˜))))
2726rspccva 3611 . . . . . . . . . . 11 ((βˆ€π‘› ∈ β„• ((ballβ€˜π·)β€˜(πΉβ€˜(𝑛 + 1))) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π‘›)) ∧ π‘˜ ∈ β„•) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜(π‘˜ + 1))) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)))
2821, 22, 27syl2an 596 . . . . . . . . . 10 ((πœ‘ ∧ (𝐴 ∈ β„• ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄))) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜(π‘˜ + 1))) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)))
2928anassrs 468 . . . . . . . . 9 (((πœ‘ ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜(π‘˜ + 1))) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)))
30 sstr2 3988 . . . . . . . . 9 (((ballβ€˜π·)β€˜(πΉβ€˜(π‘˜ + 1))) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)) β†’ (((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄)) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜(π‘˜ + 1))) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄))))
3129, 30syl 17 . . . . . . . 8 (((πœ‘ ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ (((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄)) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜(π‘˜ + 1))) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄))))
3231expcom 414 . . . . . . 7 (π‘˜ ∈ (β„€β‰₯β€˜π΄) β†’ ((πœ‘ ∧ 𝐴 ∈ β„•) β†’ (((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄)) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜(π‘˜ + 1))) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄)))))
3332a2d 29 . . . . . 6 (π‘˜ ∈ (β„€β‰₯β€˜π΄) β†’ (((πœ‘ ∧ 𝐴 ∈ β„•) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄))) β†’ ((πœ‘ ∧ 𝐴 ∈ β„•) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜(π‘˜ + 1))) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄)))))
3412, 15, 18, 15, 20, 33uzind4 12886 . . . . 5 (π‘˜ ∈ (β„€β‰₯β€˜π΄) β†’ ((πœ‘ ∧ 𝐴 ∈ β„•) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄))))
3534impcom 408 . . . 4 (((πœ‘ ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄)))
36353adantl2 1167 . . 3 (((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)) βŠ† ((ballβ€˜π·)β€˜(πΉβ€˜π΄)))
373adantr 481 . . . . 5 (((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
38 simpl1 1191 . . . . . . . 8 (((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ πœ‘)
39 caubl.3 . . . . . . . 8 (πœ‘ β†’ 𝐹:β„•βŸΆ(𝑋 Γ— ℝ+))
4038, 39syl 17 . . . . . . 7 (((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ 𝐹:β„•βŸΆ(𝑋 Γ— ℝ+))
41223ad2antl3 1187 . . . . . . 7 (((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ π‘˜ ∈ β„•)
4240, 41ffvelcdmd 7084 . . . . . 6 (((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ (πΉβ€˜π‘˜) ∈ (𝑋 Γ— ℝ+))
43 xp1st 8003 . . . . . 6 ((πΉβ€˜π‘˜) ∈ (𝑋 Γ— ℝ+) β†’ (1st β€˜(πΉβ€˜π‘˜)) ∈ 𝑋)
4442, 43syl 17 . . . . 5 (((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ (1st β€˜(πΉβ€˜π‘˜)) ∈ 𝑋)
45 xp2nd 8004 . . . . . 6 ((πΉβ€˜π‘˜) ∈ (𝑋 Γ— ℝ+) β†’ (2nd β€˜(πΉβ€˜π‘˜)) ∈ ℝ+)
4642, 45syl 17 . . . . 5 (((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ (2nd β€˜(πΉβ€˜π‘˜)) ∈ ℝ+)
47 blcntr 23910 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (1st β€˜(πΉβ€˜π‘˜)) ∈ 𝑋 ∧ (2nd β€˜(πΉβ€˜π‘˜)) ∈ ℝ+) β†’ (1st β€˜(πΉβ€˜π‘˜)) ∈ ((1st β€˜(πΉβ€˜π‘˜))(ballβ€˜π·)(2nd β€˜(πΉβ€˜π‘˜))))
4837, 44, 46, 47syl3anc 1371 . . . 4 (((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ (1st β€˜(πΉβ€˜π‘˜)) ∈ ((1st β€˜(πΉβ€˜π‘˜))(ballβ€˜π·)(2nd β€˜(πΉβ€˜π‘˜))))
49 fvco3 6987 . . . . 5 ((𝐹:β„•βŸΆ(𝑋 Γ— ℝ+) ∧ π‘˜ ∈ β„•) β†’ ((1st ∘ 𝐹)β€˜π‘˜) = (1st β€˜(πΉβ€˜π‘˜)))
5040, 41, 49syl2anc 584 . . . 4 (((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ ((1st ∘ 𝐹)β€˜π‘˜) = (1st β€˜(πΉβ€˜π‘˜)))
51 1st2nd2 8010 . . . . . . 7 ((πΉβ€˜π‘˜) ∈ (𝑋 Γ— ℝ+) β†’ (πΉβ€˜π‘˜) = ⟨(1st β€˜(πΉβ€˜π‘˜)), (2nd β€˜(πΉβ€˜π‘˜))⟩)
5242, 51syl 17 . . . . . 6 (((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ (πΉβ€˜π‘˜) = ⟨(1st β€˜(πΉβ€˜π‘˜)), (2nd β€˜(πΉβ€˜π‘˜))⟩)
5352fveq2d 6892 . . . . 5 (((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)) = ((ballβ€˜π·)β€˜βŸ¨(1st β€˜(πΉβ€˜π‘˜)), (2nd β€˜(πΉβ€˜π‘˜))⟩))
54 df-ov 7408 . . . . 5 ((1st β€˜(πΉβ€˜π‘˜))(ballβ€˜π·)(2nd β€˜(πΉβ€˜π‘˜))) = ((ballβ€˜π·)β€˜βŸ¨(1st β€˜(πΉβ€˜π‘˜)), (2nd β€˜(πΉβ€˜π‘˜))⟩)
5553, 54eqtr4di 2790 . . . 4 (((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)) = ((1st β€˜(πΉβ€˜π‘˜))(ballβ€˜π·)(2nd β€˜(πΉβ€˜π‘˜))))
5648, 50, 553eltr4d 2848 . . 3 (((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ ((1st ∘ 𝐹)β€˜π‘˜) ∈ ((ballβ€˜π·)β€˜(πΉβ€˜π‘˜)))
5736, 56sseldd 3982 . 2 (((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) ∧ π‘˜ ∈ (β„€β‰₯β€˜π΄)) β†’ ((1st ∘ 𝐹)β€˜π‘˜) ∈ ((ballβ€˜π·)β€˜(πΉβ€˜π΄)))
5839ffvelcdmda 7083 . . . . . . 7 ((πœ‘ ∧ 𝐴 ∈ β„•) β†’ (πΉβ€˜π΄) ∈ (𝑋 Γ— ℝ+))
59583adant2 1131 . . . . . 6 ((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) β†’ (πΉβ€˜π΄) ∈ (𝑋 Γ— ℝ+))
60 1st2nd2 8010 . . . . . 6 ((πΉβ€˜π΄) ∈ (𝑋 Γ— ℝ+) β†’ (πΉβ€˜π΄) = ⟨(1st β€˜(πΉβ€˜π΄)), (2nd β€˜(πΉβ€˜π΄))⟩)
6159, 60syl 17 . . . . 5 ((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) β†’ (πΉβ€˜π΄) = ⟨(1st β€˜(πΉβ€˜π΄)), (2nd β€˜(πΉβ€˜π΄))⟩)
6261fveq2d 6892 . . . 4 ((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π΄)) = ((ballβ€˜π·)β€˜βŸ¨(1st β€˜(πΉβ€˜π΄)), (2nd β€˜(πΉβ€˜π΄))⟩))
63 df-ov 7408 . . . 4 ((1st β€˜(πΉβ€˜π΄))(ballβ€˜π·)(2nd β€˜(πΉβ€˜π΄))) = ((ballβ€˜π·)β€˜βŸ¨(1st β€˜(πΉβ€˜π΄)), (2nd β€˜(πΉβ€˜π΄))⟩)
6462, 63eqtr4di 2790 . . 3 ((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π΄)) = ((1st β€˜(πΉβ€˜π΄))(ballβ€˜π·)(2nd β€˜(πΉβ€˜π΄))))
65 xp1st 8003 . . . . 5 ((πΉβ€˜π΄) ∈ (𝑋 Γ— ℝ+) β†’ (1st β€˜(πΉβ€˜π΄)) ∈ 𝑋)
6659, 65syl 17 . . . 4 ((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) β†’ (1st β€˜(πΉβ€˜π΄)) ∈ 𝑋)
67 xp2nd 8004 . . . . . 6 ((πΉβ€˜π΄) ∈ (𝑋 Γ— ℝ+) β†’ (2nd β€˜(πΉβ€˜π΄)) ∈ ℝ+)
6859, 67syl 17 . . . . 5 ((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) β†’ (2nd β€˜(πΉβ€˜π΄)) ∈ ℝ+)
6968rpxrd 13013 . . . 4 ((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) β†’ (2nd β€˜(πΉβ€˜π΄)) ∈ ℝ*)
70 blssm 23915 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (1st β€˜(πΉβ€˜π΄)) ∈ 𝑋 ∧ (2nd β€˜(πΉβ€˜π΄)) ∈ ℝ*) β†’ ((1st β€˜(πΉβ€˜π΄))(ballβ€˜π·)(2nd β€˜(πΉβ€˜π΄))) βŠ† 𝑋)
713, 66, 69, 70syl3anc 1371 . . 3 ((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) β†’ ((1st β€˜(πΉβ€˜π΄))(ballβ€˜π·)(2nd β€˜(πΉβ€˜π΄))) βŠ† 𝑋)
7264, 71eqsstrd 4019 . 2 ((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) β†’ ((ballβ€˜π·)β€˜(πΉβ€˜π΄)) βŠ† 𝑋)
731, 6, 8, 9, 57, 72lmcls 22797 1 ((πœ‘ ∧ (1st ∘ 𝐹)(β‡π‘‘β€˜π½)𝑃 ∧ 𝐴 ∈ β„•) β†’ 𝑃 ∈ ((clsβ€˜π½)β€˜((ballβ€˜π·)β€˜(πΉβ€˜π΄))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3947  βŸ¨cop 4633   class class class wbr 5147   Γ— cxp 5673   ∘ ccom 5679  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  1c1 11107   + caddc 11109  β„*cxr 11243  β„•cn 12208  β„€cz 12554  β„€β‰₯cuz 12818  β„+crp 12970  βˆžMetcxmet 20921  ballcbl 20923  MetOpencmopn 20926  TopOnctopon 22403  clsccl 22513  β‡π‘‘clm 22721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-topgen 17385  df-psmet 20928  df-xmet 20929  df-bl 20931  df-mopn 20932  df-top 22387  df-topon 22404  df-bases 22440  df-cld 22514  df-ntr 22515  df-cls 22516  df-lm 22724
This theorem is referenced by:  bcthlem3  24834  heiborlem8  36674
  Copyright terms: Public domain W3C validator