MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caublcls Structured version   Visualization version   GIF version

Theorem caublcls 25362
Description: The convergent point of a sequence of nested balls is in the closures of any of the balls (i.e. it is in the intersection of the closures). Indeed, it is the only point in the intersection because a metric space is Hausdorff, but we don't prove this here. (Contributed by Mario Carneiro, 21-Jan-2014.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
caubl.2 (𝜑𝐷 ∈ (∞Met‘𝑋))
caubl.3 (𝜑𝐹:ℕ⟶(𝑋 × ℝ+))
caubl.4 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))
caublcls.6 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
caublcls ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → 𝑃 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝐹𝐴))))
Distinct variable groups:   𝐷,𝑛   𝑛,𝐹   𝑛,𝑋
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝑃(𝑛)   𝐽(𝑛)

Proof of Theorem caublcls
Dummy variables 𝑘 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . 2 (ℤ𝐴) = (ℤ𝐴)
2 caubl.2 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
323ad2ant1 1133 . . 3 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋))
4 caublcls.6 . . . 4 𝐽 = (MetOpen‘𝐷)
54mopntopon 24470 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
63, 5syl 17 . 2 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → 𝐽 ∈ (TopOn‘𝑋))
7 simp3 1138 . . 3 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → 𝐴 ∈ ℕ)
87nnzd 12666 . 2 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → 𝐴 ∈ ℤ)
9 simp2 1137 . 2 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → (1st𝐹)(⇝𝑡𝐽)𝑃)
10 2fveq3 6925 . . . . . . . 8 (𝑟 = 𝐴 → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹𝐴)))
1110sseq1d 4040 . . . . . . 7 (𝑟 = 𝐴 → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)) ↔ ((ball‘𝐷)‘(𝐹𝐴)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))))
1211imbi2d 340 . . . . . 6 (𝑟 = 𝐴 → (((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))) ↔ ((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝐴)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)))))
13 2fveq3 6925 . . . . . . . 8 (𝑟 = 𝑘 → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹𝑘)))
1413sseq1d 4040 . . . . . . 7 (𝑟 = 𝑘 → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)) ↔ ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))))
1514imbi2d 340 . . . . . 6 (𝑟 = 𝑘 → (((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))) ↔ ((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)))))
16 2fveq3 6925 . . . . . . . 8 (𝑟 = (𝑘 + 1) → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))))
1716sseq1d 4040 . . . . . . 7 (𝑟 = (𝑘 + 1) → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)) ↔ ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝐴))))
1817imbi2d 340 . . . . . 6 (𝑟 = (𝑘 + 1) → (((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))) ↔ ((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝐴)))))
19 ssid 4031 . . . . . . 7 ((ball‘𝐷)‘(𝐹𝐴)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))
20192a1i 12 . . . . . 6 (𝐴 ∈ ℤ → ((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝐴)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))))
21 caubl.4 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))
22 eluznn 12983 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝐴)) → 𝑘 ∈ ℕ)
23 fvoveq1 7471 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1)))
2423fveq2d 6924 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) = ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))))
25 2fveq3 6925 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((ball‘𝐷)‘(𝐹𝑛)) = ((ball‘𝐷)‘(𝐹𝑘)))
2624, 25sseq12d 4042 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘))))
2726rspccva 3634 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ∧ 𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
2821, 22, 27syl2an 595 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝐴))) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
2928anassrs 467 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
30 sstr2 4015 . . . . . . . . 9 (((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝐴))))
3129, 30syl 17 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝐴))))
3231expcom 413 . . . . . . 7 (𝑘 ∈ (ℤ𝐴) → ((𝜑𝐴 ∈ ℕ) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝐴)))))
3332a2d 29 . . . . . 6 (𝑘 ∈ (ℤ𝐴) → (((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))) → ((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝐴)))))
3412, 15, 18, 15, 20, 33uzind4 12971 . . . . 5 (𝑘 ∈ (ℤ𝐴) → ((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))))
3534impcom 407 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)))
36353adantl2 1167 . . 3 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)))
373adantr 480 . . . . 5 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
38 simpl1 1191 . . . . . . . 8 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → 𝜑)
39 caubl.3 . . . . . . . 8 (𝜑𝐹:ℕ⟶(𝑋 × ℝ+))
4038, 39syl 17 . . . . . . 7 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → 𝐹:ℕ⟶(𝑋 × ℝ+))
41223ad2antl3 1187 . . . . . . 7 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → 𝑘 ∈ ℕ)
4240, 41ffvelcdmd 7119 . . . . . 6 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (𝐹𝑘) ∈ (𝑋 × ℝ+))
43 xp1st 8062 . . . . . 6 ((𝐹𝑘) ∈ (𝑋 × ℝ+) → (1st ‘(𝐹𝑘)) ∈ 𝑋)
4442, 43syl 17 . . . . 5 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (1st ‘(𝐹𝑘)) ∈ 𝑋)
45 xp2nd 8063 . . . . . 6 ((𝐹𝑘) ∈ (𝑋 × ℝ+) → (2nd ‘(𝐹𝑘)) ∈ ℝ+)
4642, 45syl 17 . . . . 5 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (2nd ‘(𝐹𝑘)) ∈ ℝ+)
47 blcntr 24444 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝐹𝑘)) ∈ 𝑋 ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ+) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
4837, 44, 46, 47syl3anc 1371 . . . 4 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
49 fvco3 7021 . . . . 5 ((𝐹:ℕ⟶(𝑋 × ℝ+) ∧ 𝑘 ∈ ℕ) → ((1st𝐹)‘𝑘) = (1st ‘(𝐹𝑘)))
5040, 41, 49syl2anc 583 . . . 4 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((1st𝐹)‘𝑘) = (1st ‘(𝐹𝑘)))
51 1st2nd2 8069 . . . . . . 7 ((𝐹𝑘) ∈ (𝑋 × ℝ+) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
5242, 51syl 17 . . . . . 6 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
5352fveq2d 6924 . . . . 5 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((ball‘𝐷)‘(𝐹𝑘)) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩))
54 df-ov 7451 . . . . 5 ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
5553, 54eqtr4di 2798 . . . 4 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((ball‘𝐷)‘(𝐹𝑘)) = ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
5648, 50, 553eltr4d 2859 . . 3 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((1st𝐹)‘𝑘) ∈ ((ball‘𝐷)‘(𝐹𝑘)))
5736, 56sseldd 4009 . 2 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((1st𝐹)‘𝑘) ∈ ((ball‘𝐷)‘(𝐹𝐴)))
5839ffvelcdmda 7118 . . . . . . 7 ((𝜑𝐴 ∈ ℕ) → (𝐹𝐴) ∈ (𝑋 × ℝ+))
59583adant2 1131 . . . . . 6 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → (𝐹𝐴) ∈ (𝑋 × ℝ+))
60 1st2nd2 8069 . . . . . 6 ((𝐹𝐴) ∈ (𝑋 × ℝ+) → (𝐹𝐴) = ⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
6159, 60syl 17 . . . . 5 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → (𝐹𝐴) = ⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
6261fveq2d 6924 . . . 4 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝐴)) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩))
63 df-ov 7451 . . . 4 ((1st ‘(𝐹𝐴))(ball‘𝐷)(2nd ‘(𝐹𝐴))) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
6462, 63eqtr4di 2798 . . 3 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝐴)) = ((1st ‘(𝐹𝐴))(ball‘𝐷)(2nd ‘(𝐹𝐴))))
65 xp1st 8062 . . . . 5 ((𝐹𝐴) ∈ (𝑋 × ℝ+) → (1st ‘(𝐹𝐴)) ∈ 𝑋)
6659, 65syl 17 . . . 4 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → (1st ‘(𝐹𝐴)) ∈ 𝑋)
67 xp2nd 8063 . . . . . 6 ((𝐹𝐴) ∈ (𝑋 × ℝ+) → (2nd ‘(𝐹𝐴)) ∈ ℝ+)
6859, 67syl 17 . . . . 5 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → (2nd ‘(𝐹𝐴)) ∈ ℝ+)
6968rpxrd 13100 . . . 4 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → (2nd ‘(𝐹𝐴)) ∈ ℝ*)
70 blssm 24449 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝐹𝐴)) ∈ 𝑋 ∧ (2nd ‘(𝐹𝐴)) ∈ ℝ*) → ((1st ‘(𝐹𝐴))(ball‘𝐷)(2nd ‘(𝐹𝐴))) ⊆ 𝑋)
713, 66, 69, 70syl3anc 1371 . . 3 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → ((1st ‘(𝐹𝐴))(ball‘𝐷)(2nd ‘(𝐹𝐴))) ⊆ 𝑋)
7264, 71eqsstrd 4047 . 2 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝐴)) ⊆ 𝑋)
731, 6, 8, 9, 57, 72lmcls 23331 1 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → 𝑃 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝐹𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976  cop 4654   class class class wbr 5166   × cxp 5698  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  1c1 11185   + caddc 11187  *cxr 11323  cn 12293  cz 12639  cuz 12903  +crp 13057  ∞Metcxmet 21372  ballcbl 21374  MetOpencmopn 21377  TopOnctopon 22937  clsccl 23047  𝑡clm 23255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-lm 23258
This theorem is referenced by:  bcthlem3  25379  heiborlem8  37778
  Copyright terms: Public domain W3C validator