MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caublcls Structured version   Visualization version   GIF version

Theorem caublcls 23324
Description: The convergent point of a sequence of nested balls is in the closures of any of the balls (i.e. it is in the intersection of the closures). Indeed, it is the only point in the intersection because a metric space is Hausdorff, but we don't prove this here. (Contributed by Mario Carneiro, 21-Jan-2014.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
caubl.2 (𝜑𝐷 ∈ (∞Met‘𝑋))
caubl.3 (𝜑𝐹:ℕ⟶(𝑋 × ℝ+))
caubl.4 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))
caublcls.6 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
caublcls ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → 𝑃 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝐹𝐴))))
Distinct variable groups:   𝐷,𝑛   𝑛,𝐹   𝑛,𝑋
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝑃(𝑛)   𝐽(𝑛)

Proof of Theorem caublcls
Dummy variables 𝑘 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2813 . 2 (ℤ𝐴) = (ℤ𝐴)
2 caubl.2 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
323ad2ant1 1156 . . 3 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → 𝐷 ∈ (∞Met‘𝑋))
4 caublcls.6 . . . 4 𝐽 = (MetOpen‘𝐷)
54mopntopon 22461 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
63, 5syl 17 . 2 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → 𝐽 ∈ (TopOn‘𝑋))
7 simp3 1161 . . 3 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → 𝐴 ∈ ℕ)
87nnzd 11750 . 2 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → 𝐴 ∈ ℤ)
9 simp2 1160 . 2 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → (1st𝐹)(⇝𝑡𝐽)𝑃)
10 2fveq3 6416 . . . . . . . 8 (𝑟 = 𝐴 → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹𝐴)))
1110sseq1d 3836 . . . . . . 7 (𝑟 = 𝐴 → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)) ↔ ((ball‘𝐷)‘(𝐹𝐴)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))))
1211imbi2d 331 . . . . . 6 (𝑟 = 𝐴 → (((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))) ↔ ((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝐴)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)))))
13 2fveq3 6416 . . . . . . . 8 (𝑟 = 𝑘 → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹𝑘)))
1413sseq1d 3836 . . . . . . 7 (𝑟 = 𝑘 → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)) ↔ ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))))
1514imbi2d 331 . . . . . 6 (𝑟 = 𝑘 → (((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))) ↔ ((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)))))
16 2fveq3 6416 . . . . . . . 8 (𝑟 = (𝑘 + 1) → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))))
1716sseq1d 3836 . . . . . . 7 (𝑟 = (𝑘 + 1) → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)) ↔ ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝐴))))
1817imbi2d 331 . . . . . 6 (𝑟 = (𝑘 + 1) → (((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))) ↔ ((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝐴)))))
19 ssid 3827 . . . . . . 7 ((ball‘𝐷)‘(𝐹𝐴)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))
20192a1i 12 . . . . . 6 (𝐴 ∈ ℤ → ((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝐴)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))))
21 caubl.4 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))
22 eluznn 11980 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝐴)) → 𝑘 ∈ ℕ)
23 fvoveq1 6900 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1)))
2423fveq2d 6415 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) = ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))))
25 2fveq3 6416 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → ((ball‘𝐷)‘(𝐹𝑛)) = ((ball‘𝐷)‘(𝐹𝑘)))
2624, 25sseq12d 3838 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘))))
2726rspccva 3508 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ∧ 𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
2821, 22, 27syl2an 585 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝐴))) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
2928anassrs 455 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
30 sstr2 3812 . . . . . . . . 9 (((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝐴))))
3129, 30syl 17 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝐴))))
3231expcom 400 . . . . . . 7 (𝑘 ∈ (ℤ𝐴) → ((𝜑𝐴 ∈ ℕ) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝐴)))))
3332a2d 29 . . . . . 6 (𝑘 ∈ (ℤ𝐴) → (((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))) → ((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝐴)))))
3412, 15, 18, 15, 20, 33uzind4 11967 . . . . 5 (𝑘 ∈ (ℤ𝐴) → ((𝜑𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴))))
3534impcom 396 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)))
36353adantl2 1201 . . 3 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝐴)))
373adantr 468 . . . . 5 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
38 simpl1 1235 . . . . . . . 8 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → 𝜑)
39 caubl.3 . . . . . . . 8 (𝜑𝐹:ℕ⟶(𝑋 × ℝ+))
4038, 39syl 17 . . . . . . 7 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → 𝐹:ℕ⟶(𝑋 × ℝ+))
41223ad2antl3 1231 . . . . . . 7 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → 𝑘 ∈ ℕ)
4240, 41ffvelrnd 6585 . . . . . 6 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (𝐹𝑘) ∈ (𝑋 × ℝ+))
43 xp1st 7433 . . . . . 6 ((𝐹𝑘) ∈ (𝑋 × ℝ+) → (1st ‘(𝐹𝑘)) ∈ 𝑋)
4442, 43syl 17 . . . . 5 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (1st ‘(𝐹𝑘)) ∈ 𝑋)
45 xp2nd 7434 . . . . . 6 ((𝐹𝑘) ∈ (𝑋 × ℝ+) → (2nd ‘(𝐹𝑘)) ∈ ℝ+)
4642, 45syl 17 . . . . 5 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (2nd ‘(𝐹𝑘)) ∈ ℝ+)
47 blcntr 22435 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝐹𝑘)) ∈ 𝑋 ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ+) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
4837, 44, 46, 47syl3anc 1483 . . . 4 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
49 fvco3 6499 . . . . 5 ((𝐹:ℕ⟶(𝑋 × ℝ+) ∧ 𝑘 ∈ ℕ) → ((1st𝐹)‘𝑘) = (1st ‘(𝐹𝑘)))
5040, 41, 49syl2anc 575 . . . 4 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((1st𝐹)‘𝑘) = (1st ‘(𝐹𝑘)))
51 1st2nd2 7440 . . . . . . 7 ((𝐹𝑘) ∈ (𝑋 × ℝ+) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
5242, 51syl 17 . . . . . 6 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
5352fveq2d 6415 . . . . 5 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((ball‘𝐷)‘(𝐹𝑘)) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩))
54 df-ov 6880 . . . . 5 ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
5553, 54syl6eqr 2865 . . . 4 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((ball‘𝐷)‘(𝐹𝑘)) = ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
5648, 50, 553eltr4d 2907 . . 3 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((1st𝐹)‘𝑘) ∈ ((ball‘𝐷)‘(𝐹𝑘)))
5736, 56sseldd 3806 . 2 (((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝐴)) → ((1st𝐹)‘𝑘) ∈ ((ball‘𝐷)‘(𝐹𝐴)))
5839ffvelrnda 6584 . . . . . . 7 ((𝜑𝐴 ∈ ℕ) → (𝐹𝐴) ∈ (𝑋 × ℝ+))
59583adant2 1154 . . . . . 6 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → (𝐹𝐴) ∈ (𝑋 × ℝ+))
60 1st2nd2 7440 . . . . . 6 ((𝐹𝐴) ∈ (𝑋 × ℝ+) → (𝐹𝐴) = ⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
6159, 60syl 17 . . . . 5 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → (𝐹𝐴) = ⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
6261fveq2d 6415 . . . 4 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝐴)) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩))
63 df-ov 6880 . . . 4 ((1st ‘(𝐹𝐴))(ball‘𝐷)(2nd ‘(𝐹𝐴))) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝐴)), (2nd ‘(𝐹𝐴))⟩)
6462, 63syl6eqr 2865 . . 3 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝐴)) = ((1st ‘(𝐹𝐴))(ball‘𝐷)(2nd ‘(𝐹𝐴))))
65 xp1st 7433 . . . . 5 ((𝐹𝐴) ∈ (𝑋 × ℝ+) → (1st ‘(𝐹𝐴)) ∈ 𝑋)
6659, 65syl 17 . . . 4 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → (1st ‘(𝐹𝐴)) ∈ 𝑋)
67 xp2nd 7434 . . . . . 6 ((𝐹𝐴) ∈ (𝑋 × ℝ+) → (2nd ‘(𝐹𝐴)) ∈ ℝ+)
6859, 67syl 17 . . . . 5 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → (2nd ‘(𝐹𝐴)) ∈ ℝ+)
6968rpxrd 12090 . . . 4 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → (2nd ‘(𝐹𝐴)) ∈ ℝ*)
70 blssm 22440 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝐹𝐴)) ∈ 𝑋 ∧ (2nd ‘(𝐹𝐴)) ∈ ℝ*) → ((1st ‘(𝐹𝐴))(ball‘𝐷)(2nd ‘(𝐹𝐴))) ⊆ 𝑋)
713, 66, 69, 70syl3anc 1483 . . 3 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → ((1st ‘(𝐹𝐴))(ball‘𝐷)(2nd ‘(𝐹𝐴))) ⊆ 𝑋)
7264, 71eqsstrd 3843 . 2 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝐴)) ⊆ 𝑋)
731, 6, 8, 9, 57, 72lmcls 21324 1 ((𝜑 ∧ (1st𝐹)(⇝𝑡𝐽)𝑃𝐴 ∈ ℕ) → 𝑃 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝐹𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100   = wceq 1637  wcel 2157  wral 3103  wss 3776  cop 4383   class class class wbr 4851   × cxp 5316  ccom 5322  wf 6100  cfv 6104  (class class class)co 6877  1st c1st 7399  2nd c2nd 7400  1c1 10225   + caddc 10227  *cxr 10361  cn 11308  cz 11646  cuz 11907  +crp 12049  ∞Metcxmt 19942  ballcbl 19944  MetOpencmopn 19947  TopOnctopon 20932  clsccl 21040  𝑡clm 21248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-int 4677  df-iun 4721  df-iin 4722  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-map 8097  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-inf 8591  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-div 10973  df-nn 11309  df-2 11367  df-n0 11563  df-z 11647  df-uz 11908  df-q 12011  df-rp 12050  df-xneg 12165  df-xadd 12166  df-xmul 12167  df-topgen 16312  df-psmet 19949  df-xmet 19950  df-bl 19952  df-mopn 19953  df-top 20916  df-topon 20933  df-bases 20968  df-cld 21041  df-ntr 21042  df-cls 21043  df-lm 21251
This theorem is referenced by:  bcthlem3  23340  heiborlem8  33930
  Copyright terms: Public domain W3C validator