MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zdiv Structured version   Visualization version   GIF version

Theorem zdiv 12320
Description: Two ways to express "𝑀 divides 𝑁. (Contributed by NM, 3-Oct-2008.)
Assertion
Ref Expression
zdiv ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem zdiv
StepHypRef Expression
1 nnne0 11937 . . 3 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
21adantr 480 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑀 ≠ 0)
3 nncn 11911 . . 3 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
4 zcn 12254 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5 zcn 12254 . . . . . . . . . 10 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
6 divcan3 11589 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
763coml 1125 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
873expa 1116 . . . . . . . . . 10 (((𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
95, 8sylan2 592 . . . . . . . . 9 (((𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
1093adantl2 1165 . . . . . . . 8 (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘)
11 oveq1 7262 . . . . . . . 8 ((𝑀 · 𝑘) = 𝑁 → ((𝑀 · 𝑘) / 𝑀) = (𝑁 / 𝑀))
1210, 11sylan9req 2800 . . . . . . 7 ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 = (𝑁 / 𝑀))
13 simplr 765 . . . . . . 7 ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 ∈ ℤ)
1412, 13eqeltrrd 2840 . . . . . 6 ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → (𝑁 / 𝑀) ∈ ℤ)
1514rexlimdva2 3215 . . . . 5 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ))
16 divcan2 11571 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁)
17163com12 1121 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁)
18 oveq2 7263 . . . . . . . . 9 (𝑘 = (𝑁 / 𝑀) → (𝑀 · 𝑘) = (𝑀 · (𝑁 / 𝑀)))
1918eqeq1d 2740 . . . . . . . 8 (𝑘 = (𝑁 / 𝑀) → ((𝑀 · 𝑘) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁))
2019rspcev 3552 . . . . . . 7 (((𝑁 / 𝑀) ∈ ℤ ∧ (𝑀 · (𝑁 / 𝑀)) = 𝑁) → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁)
2120expcom 413 . . . . . 6 ((𝑀 · (𝑁 / 𝑀)) = 𝑁 → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁))
2217, 21syl 17 . . . . 5 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0) → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁))
2315, 22impbid 211 . . . 4 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
24233expia 1119 . . 3 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 ≠ 0 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)))
253, 4, 24syl2an 595 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 ≠ 0 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)))
262, 25mpd 15 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  (class class class)co 7255  cc 10800  0cc0 10802   · cmul 10807   / cdiv 11562  cn 11903  cz 12249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-z 12250
This theorem is referenced by:  addmodlteq  13594  fmtnoprmfac2lem1  44906
  Copyright terms: Public domain W3C validator