Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zdiv | Structured version Visualization version GIF version |
Description: Two ways to express "𝑀 divides 𝑁. (Contributed by NM, 3-Oct-2008.) |
Ref | Expression |
---|---|
zdiv | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnne0 11937 | . . 3 ⊢ (𝑀 ∈ ℕ → 𝑀 ≠ 0) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑀 ≠ 0) |
3 | nncn 11911 | . . 3 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℂ) | |
4 | zcn 12254 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
5 | zcn 12254 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℂ) | |
6 | divcan3 11589 | . . . . . . . . . . . 12 ⊢ ((𝑘 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) → ((𝑀 · 𝑘) / 𝑀) = 𝑘) | |
7 | 6 | 3coml 1125 | . . . . . . . . . . 11 ⊢ ((𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘) |
8 | 7 | 3expa 1116 | . . . . . . . . . 10 ⊢ (((𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ 𝑘 ∈ ℂ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘) |
9 | 5, 8 | sylan2 592 | . . . . . . . . 9 ⊢ (((𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘) |
10 | 9 | 3adantl2 1165 | . . . . . . . 8 ⊢ (((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ 𝑘 ∈ ℤ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘) |
11 | oveq1 7262 | . . . . . . . 8 ⊢ ((𝑀 · 𝑘) = 𝑁 → ((𝑀 · 𝑘) / 𝑀) = (𝑁 / 𝑀)) | |
12 | 10, 11 | sylan9req 2800 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 = (𝑁 / 𝑀)) |
13 | simplr 765 | . . . . . . 7 ⊢ ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 ∈ ℤ) | |
14 | 12, 13 | eqeltrrd 2840 | . . . . . 6 ⊢ ((((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → (𝑁 / 𝑀) ∈ ℤ) |
15 | 14 | rexlimdva2 3215 | . . . . 5 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ)) |
16 | divcan2 11571 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁) | |
17 | 16 | 3com12 1121 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0) → (𝑀 · (𝑁 / 𝑀)) = 𝑁) |
18 | oveq2 7263 | . . . . . . . . 9 ⊢ (𝑘 = (𝑁 / 𝑀) → (𝑀 · 𝑘) = (𝑀 · (𝑁 / 𝑀))) | |
19 | 18 | eqeq1d 2740 | . . . . . . . 8 ⊢ (𝑘 = (𝑁 / 𝑀) → ((𝑀 · 𝑘) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁)) |
20 | 19 | rspcev 3552 | . . . . . . 7 ⊢ (((𝑁 / 𝑀) ∈ ℤ ∧ (𝑀 · (𝑁 / 𝑀)) = 𝑁) → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁) |
21 | 20 | expcom 413 | . . . . . 6 ⊢ ((𝑀 · (𝑁 / 𝑀)) = 𝑁 → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁)) |
22 | 17, 21 | syl 17 | . . . . 5 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0) → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁)) |
23 | 15, 22 | impbid 211 | . . . 4 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝑀 ≠ 0) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
24 | 23 | 3expia 1119 | . . 3 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 ≠ 0 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))) |
25 | 3, 4, 24 | syl2an 595 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 ≠ 0 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ))) |
26 | 2, 25 | mpd 15 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 (class class class)co 7255 ℂcc 10800 0cc0 10802 · cmul 10807 / cdiv 11562 ℕcn 11903 ℤcz 12249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-z 12250 |
This theorem is referenced by: addmodlteq 13594 fmtnoprmfac2lem1 44906 |
Copyright terms: Public domain | W3C validator |