MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmmulg Structured version   Visualization version   GIF version

Theorem ghmmulg 19211
Description: A group homomorphism preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
ghmmulg.b 𝐵 = (Base‘𝐺)
ghmmulg.s · = (.g𝐺)
ghmmulg.t × = (.g𝐻)
Assertion
Ref Expression
ghmmulg ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))

Proof of Theorem ghmmulg
StepHypRef Expression
1 ghmmhm 19209 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹 ∈ (𝐺 MndHom 𝐻))
2 ghmmulg.b . . . . . . 7 𝐵 = (Base‘𝐺)
3 ghmmulg.s . . . . . . 7 · = (.g𝐺)
4 ghmmulg.t . . . . . . 7 × = (.g𝐻)
52, 3, 4mhmmulg 19098 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
61, 5syl3an1 1163 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
763expa 1118 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℕ0) ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
87an32s 652 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
983adantl2 1168 . 2 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
10 simpl1 1192 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
1110, 1syl 17 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐹 ∈ (𝐺 MndHom 𝐻))
12 nnnn0 12508 . . . . . . . 8 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
1312ad2antll 729 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ0)
14 simpl3 1194 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑋𝐵)
152, 3, 4mhmmulg 19098 . . . . . . 7 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ -𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(-𝑁 · 𝑋)) = (-𝑁 × (𝐹𝑋)))
1611, 13, 14, 15syl3anc 1373 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘(-𝑁 · 𝑋)) = (-𝑁 × (𝐹𝑋)))
1716fveq2d 6880 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((invg𝐻)‘(𝐹‘(-𝑁 · 𝑋))) = ((invg𝐻)‘(-𝑁 × (𝐹𝑋))))
18 ghmgrp1 19201 . . . . . . . 8 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
1910, 18syl 17 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐺 ∈ Grp)
20 nnz 12609 . . . . . . . 8 (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
2120ad2antll 729 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
222, 3mulgcl 19074 . . . . . . 7 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
2319, 21, 14, 22syl3anc 1373 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑁 · 𝑋) ∈ 𝐵)
24 eqid 2735 . . . . . . 7 (invg𝐺) = (invg𝐺)
25 eqid 2735 . . . . . . 7 (invg𝐻) = (invg𝐻)
262, 24, 25ghminv 19206 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ (-𝑁 · 𝑋) ∈ 𝐵) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = ((invg𝐻)‘(𝐹‘(-𝑁 · 𝑋))))
2710, 23, 26syl2anc 584 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = ((invg𝐻)‘(𝐹‘(-𝑁 · 𝑋))))
28 ghmgrp2 19202 . . . . . . 7 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
2910, 28syl 17 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐻 ∈ Grp)
30 eqid 2735 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
312, 30ghmf 19203 . . . . . . . 8 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻))
3210, 31syl 17 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐹:𝐵⟶(Base‘𝐻))
3332, 14ffvelcdmd 7075 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹𝑋) ∈ (Base‘𝐻))
3430, 4, 25mulgneg 19075 . . . . . 6 ((𝐻 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ (𝐹𝑋) ∈ (Base‘𝐻)) → (--𝑁 × (𝐹𝑋)) = ((invg𝐻)‘(-𝑁 × (𝐹𝑋))))
3529, 21, 33, 34syl3anc 1373 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 × (𝐹𝑋)) = ((invg𝐻)‘(-𝑁 × (𝐹𝑋))))
3617, 27, 353eqtr4d 2780 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = (--𝑁 × (𝐹𝑋)))
372, 3, 24mulgneg 19075 . . . . . . 7 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
3819, 21, 14, 37syl3anc 1373 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
39 simprl 770 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
4039recnd 11263 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
4140negnegd 11585 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → --𝑁 = 𝑁)
4241oveq1d 7420 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
4338, 42eqtr3d 2772 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((invg𝐺)‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
4443fveq2d 6880 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = (𝐹‘(𝑁 · 𝑋)))
4536, 44eqtr3d 2772 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 × (𝐹𝑋)) = (𝐹‘(𝑁 · 𝑋)))
4641oveq1d 7420 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 × (𝐹𝑋)) = (𝑁 × (𝐹𝑋)))
4745, 46eqtr3d 2772 . 2 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
48 simp2 1137 . . 3 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → 𝑁 ∈ ℤ)
49 elznn0nn 12602 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
5048, 49sylib 218 . 2 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
519, 47, 50mpjaodan 960 1 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wf 6527  cfv 6531  (class class class)co 7405  cr 11128  -cneg 11467  cn 12240  0cn0 12501  cz 12588  Basecbs 17228   MndHom cmhm 18759  Grpcgrp 18916  invgcminusg 18917  .gcmg 19050   GrpHom cghm 19195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-seq 14020  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-mulg 19051  df-ghm 19196
This theorem is referenced by:  ghmcyg  19877  mulgrhm2  21439  dchrabs  27223  rhmzrhval  41984
  Copyright terms: Public domain W3C validator