MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmmulg Structured version   Visualization version   GIF version

Theorem ghmmulg 18846
Description: A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
ghmmulg.b 𝐵 = (Base‘𝐺)
ghmmulg.s · = (.g𝐺)
ghmmulg.t × = (.g𝐻)
Assertion
Ref Expression
ghmmulg ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))

Proof of Theorem ghmmulg
StepHypRef Expression
1 ghmmhm 18844 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹 ∈ (𝐺 MndHom 𝐻))
2 ghmmulg.b . . . . . . 7 𝐵 = (Base‘𝐺)
3 ghmmulg.s . . . . . . 7 · = (.g𝐺)
4 ghmmulg.t . . . . . . 7 × = (.g𝐻)
52, 3, 4mhmmulg 18744 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
61, 5syl3an1 1162 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
763expa 1117 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℕ0) ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
87an32s 649 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
983adantl2 1166 . 2 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
10 simpl1 1190 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
1110, 1syl 17 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐹 ∈ (𝐺 MndHom 𝐻))
12 nnnn0 12240 . . . . . . . 8 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
1312ad2antll 726 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ0)
14 simpl3 1192 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑋𝐵)
152, 3, 4mhmmulg 18744 . . . . . . 7 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ -𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(-𝑁 · 𝑋)) = (-𝑁 × (𝐹𝑋)))
1611, 13, 14, 15syl3anc 1370 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘(-𝑁 · 𝑋)) = (-𝑁 × (𝐹𝑋)))
1716fveq2d 6778 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((invg𝐻)‘(𝐹‘(-𝑁 · 𝑋))) = ((invg𝐻)‘(-𝑁 × (𝐹𝑋))))
18 ghmgrp1 18836 . . . . . . . 8 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
1910, 18syl 17 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐺 ∈ Grp)
20 nnz 12342 . . . . . . . 8 (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
2120ad2antll 726 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
222, 3mulgcl 18721 . . . . . . 7 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
2319, 21, 14, 22syl3anc 1370 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑁 · 𝑋) ∈ 𝐵)
24 eqid 2738 . . . . . . 7 (invg𝐺) = (invg𝐺)
25 eqid 2738 . . . . . . 7 (invg𝐻) = (invg𝐻)
262, 24, 25ghminv 18841 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ (-𝑁 · 𝑋) ∈ 𝐵) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = ((invg𝐻)‘(𝐹‘(-𝑁 · 𝑋))))
2710, 23, 26syl2anc 584 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = ((invg𝐻)‘(𝐹‘(-𝑁 · 𝑋))))
28 ghmgrp2 18837 . . . . . . 7 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
2910, 28syl 17 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐻 ∈ Grp)
30 eqid 2738 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
312, 30ghmf 18838 . . . . . . . 8 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻))
3210, 31syl 17 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐹:𝐵⟶(Base‘𝐻))
3332, 14ffvelrnd 6962 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹𝑋) ∈ (Base‘𝐻))
3430, 4, 25mulgneg 18722 . . . . . 6 ((𝐻 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ (𝐹𝑋) ∈ (Base‘𝐻)) → (--𝑁 × (𝐹𝑋)) = ((invg𝐻)‘(-𝑁 × (𝐹𝑋))))
3529, 21, 33, 34syl3anc 1370 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 × (𝐹𝑋)) = ((invg𝐻)‘(-𝑁 × (𝐹𝑋))))
3617, 27, 353eqtr4d 2788 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = (--𝑁 × (𝐹𝑋)))
372, 3, 24mulgneg 18722 . . . . . . 7 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
3819, 21, 14, 37syl3anc 1370 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
39 simprl 768 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
4039recnd 11003 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
4140negnegd 11323 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → --𝑁 = 𝑁)
4241oveq1d 7290 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
4338, 42eqtr3d 2780 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((invg𝐺)‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
4443fveq2d 6778 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = (𝐹‘(𝑁 · 𝑋)))
4536, 44eqtr3d 2780 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 × (𝐹𝑋)) = (𝐹‘(𝑁 · 𝑋)))
4641oveq1d 7290 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 × (𝐹𝑋)) = (𝑁 × (𝐹𝑋)))
4745, 46eqtr3d 2780 . 2 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
48 simp2 1136 . . 3 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → 𝑁 ∈ ℤ)
49 elznn0nn 12333 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
5048, 49sylib 217 . 2 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
519, 47, 50mpjaodan 956 1 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  -cneg 11206  cn 11973  0cn0 12233  cz 12319  Basecbs 16912   MndHom cmhm 18428  Grpcgrp 18577  invgcminusg 18578  .gcmg 18700   GrpHom cghm 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-mulg 18701  df-ghm 18832
This theorem is referenced by:  ghmcyg  19497  mulgrhm2  20700  dchrabs  26408
  Copyright terms: Public domain W3C validator