MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmmulg Structured version   Visualization version   GIF version

Theorem ghmmulg 19144
Description: A group homomorphism preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
ghmmulg.b 𝐵 = (Base‘𝐺)
ghmmulg.s · = (.g𝐺)
ghmmulg.t × = (.g𝐻)
Assertion
Ref Expression
ghmmulg ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))

Proof of Theorem ghmmulg
StepHypRef Expression
1 ghmmhm 19142 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹 ∈ (𝐺 MndHom 𝐻))
2 ghmmulg.b . . . . . . 7 𝐵 = (Base‘𝐺)
3 ghmmulg.s . . . . . . 7 · = (.g𝐺)
4 ghmmulg.t . . . . . . 7 × = (.g𝐻)
52, 3, 4mhmmulg 19031 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
61, 5syl3an1 1163 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
763expa 1118 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℕ0) ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
87an32s 652 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
983adantl2 1168 . 2 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
10 simpl1 1192 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
1110, 1syl 17 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐹 ∈ (𝐺 MndHom 𝐻))
12 nnnn0 12428 . . . . . . . 8 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
1312ad2antll 729 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ0)
14 simpl3 1194 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑋𝐵)
152, 3, 4mhmmulg 19031 . . . . . . 7 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ -𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(-𝑁 · 𝑋)) = (-𝑁 × (𝐹𝑋)))
1611, 13, 14, 15syl3anc 1373 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘(-𝑁 · 𝑋)) = (-𝑁 × (𝐹𝑋)))
1716fveq2d 6845 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((invg𝐻)‘(𝐹‘(-𝑁 · 𝑋))) = ((invg𝐻)‘(-𝑁 × (𝐹𝑋))))
18 ghmgrp1 19134 . . . . . . . 8 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
1910, 18syl 17 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐺 ∈ Grp)
20 nnz 12529 . . . . . . . 8 (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
2120ad2antll 729 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
222, 3mulgcl 19007 . . . . . . 7 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
2319, 21, 14, 22syl3anc 1373 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑁 · 𝑋) ∈ 𝐵)
24 eqid 2729 . . . . . . 7 (invg𝐺) = (invg𝐺)
25 eqid 2729 . . . . . . 7 (invg𝐻) = (invg𝐻)
262, 24, 25ghminv 19139 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ (-𝑁 · 𝑋) ∈ 𝐵) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = ((invg𝐻)‘(𝐹‘(-𝑁 · 𝑋))))
2710, 23, 26syl2anc 584 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = ((invg𝐻)‘(𝐹‘(-𝑁 · 𝑋))))
28 ghmgrp2 19135 . . . . . . 7 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
2910, 28syl 17 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐻 ∈ Grp)
30 eqid 2729 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
312, 30ghmf 19136 . . . . . . . 8 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻))
3210, 31syl 17 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐹:𝐵⟶(Base‘𝐻))
3332, 14ffvelcdmd 7040 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹𝑋) ∈ (Base‘𝐻))
3430, 4, 25mulgneg 19008 . . . . . 6 ((𝐻 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ (𝐹𝑋) ∈ (Base‘𝐻)) → (--𝑁 × (𝐹𝑋)) = ((invg𝐻)‘(-𝑁 × (𝐹𝑋))))
3529, 21, 33, 34syl3anc 1373 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 × (𝐹𝑋)) = ((invg𝐻)‘(-𝑁 × (𝐹𝑋))))
3617, 27, 353eqtr4d 2774 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = (--𝑁 × (𝐹𝑋)))
372, 3, 24mulgneg 19008 . . . . . . 7 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
3819, 21, 14, 37syl3anc 1373 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
39 simprl 770 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
4039recnd 11181 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
4140negnegd 11503 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → --𝑁 = 𝑁)
4241oveq1d 7385 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
4338, 42eqtr3d 2766 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((invg𝐺)‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
4443fveq2d 6845 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = (𝐹‘(𝑁 · 𝑋)))
4536, 44eqtr3d 2766 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 × (𝐹𝑋)) = (𝐹‘(𝑁 · 𝑋)))
4641oveq1d 7385 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 × (𝐹𝑋)) = (𝑁 × (𝐹𝑋)))
4745, 46eqtr3d 2766 . 2 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
48 simp2 1137 . . 3 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → 𝑁 ∈ ℤ)
49 elznn0nn 12522 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
5048, 49sylib 218 . 2 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
519, 47, 50mpjaodan 960 1 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wf 6496  cfv 6500  (class class class)co 7370  cr 11046  -cneg 11385  cn 12165  0cn0 12421  cz 12508  Basecbs 17157   MndHom cmhm 18692  Grpcgrp 18849  invgcminusg 18850  .gcmg 18983   GrpHom cghm 19128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-om 7824  df-1st 7948  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-er 8649  df-map 8779  df-en 8897  df-dom 8898  df-sdom 8899  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-nn 12166  df-n0 12422  df-z 12509  df-uz 12773  df-fz 13448  df-seq 13946  df-0g 17382  df-mgm 18551  df-sgrp 18630  df-mnd 18646  df-mhm 18694  df-grp 18852  df-minusg 18853  df-mulg 18984  df-ghm 19129
This theorem is referenced by:  ghmcyg  19812  mulgrhm2  21422  dchrabs  27206  rhmzrhval  41954
  Copyright terms: Public domain W3C validator