Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautco Structured version   Visualization version   GIF version

Theorem lautco 38038
Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.)
Hypothesis
Ref Expression
lautco.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautco ((𝐾𝑉𝐹𝐼𝐺𝐼) → (𝐹𝐺) ∈ 𝐼)

Proof of Theorem lautco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2 lautco.i . . . . 5 𝐼 = (LAut‘𝐾)
31, 2laut1o 38026 . . . 4 ((𝐾𝑉𝐹𝐼) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
433adant3 1130 . . 3 ((𝐾𝑉𝐹𝐼𝐺𝐼) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
51, 2laut1o 38026 . . . 4 ((𝐾𝑉𝐺𝐼) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
653adant2 1129 . . 3 ((𝐾𝑉𝐹𝐼𝐺𝐼) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
7 f1oco 6722 . . 3 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) → (𝐹𝐺):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
84, 6, 7syl2anc 583 . 2 ((𝐾𝑉𝐹𝐼𝐺𝐼) → (𝐹𝐺):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
9 simpl1 1189 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐾𝑉)
10 simpl2 1190 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐹𝐼)
11 simpl3 1191 . . . . . 6 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐺𝐼)
12 simprl 767 . . . . . 6 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 ∈ (Base‘𝐾))
131, 2lautcl 38028 . . . . . 6 (((𝐾𝑉𝐺𝐼) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐺𝑥) ∈ (Base‘𝐾))
149, 11, 12, 13syl21anc 834 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝐺𝑥) ∈ (Base‘𝐾))
15 simprr 769 . . . . . 6 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑦 ∈ (Base‘𝐾))
161, 2lautcl 38028 . . . . . 6 (((𝐾𝑉𝐺𝐼) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝐺𝑦) ∈ (Base‘𝐾))
179, 11, 15, 16syl21anc 834 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝐺𝑦) ∈ (Base‘𝐾))
18 eqid 2738 . . . . . 6 (le‘𝐾) = (le‘𝐾)
191, 18, 2lautle 38025 . . . . 5 (((𝐾𝑉𝐹𝐼) ∧ ((𝐺𝑥) ∈ (Base‘𝐾) ∧ (𝐺𝑦) ∈ (Base‘𝐾))) → ((𝐺𝑥)(le‘𝐾)(𝐺𝑦) ↔ (𝐹‘(𝐺𝑥))(le‘𝐾)(𝐹‘(𝐺𝑦))))
209, 10, 14, 17, 19syl22anc 835 . . . 4 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝐺𝑥)(le‘𝐾)(𝐺𝑦) ↔ (𝐹‘(𝐺𝑥))(le‘𝐾)(𝐹‘(𝐺𝑦))))
211, 18, 2lautle 38025 . . . . 5 (((𝐾𝑉𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ (𝐺𝑥)(le‘𝐾)(𝐺𝑦)))
22213adantl2 1165 . . . 4 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ (𝐺𝑥)(le‘𝐾)(𝐺𝑦)))
23 f1of 6700 . . . . . . 7 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
246, 23syl 17 . . . . . 6 ((𝐾𝑉𝐹𝐼𝐺𝐼) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
25 simpl 482 . . . . . 6 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾))
26 fvco3 6849 . . . . . 6 ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
2724, 25, 26syl2an 595 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
28 simpr 484 . . . . . 6 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾))
29 fvco3 6849 . . . . . 6 ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
3024, 28, 29syl2an 595 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
3127, 30breq12d 5083 . . . 4 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (((𝐹𝐺)‘𝑥)(le‘𝐾)((𝐹𝐺)‘𝑦) ↔ (𝐹‘(𝐺𝑥))(le‘𝐾)(𝐹‘(𝐺𝑦))))
3220, 22, 313bitr4d 310 . . 3 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ ((𝐹𝐺)‘𝑥)(le‘𝐾)((𝐹𝐺)‘𝑦)))
3332ralrimivva 3114 . 2 ((𝐾𝑉𝐹𝐼𝐺𝐼) → ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ ((𝐹𝐺)‘𝑥)(le‘𝐾)((𝐹𝐺)‘𝑦)))
341, 18, 2islaut 38024 . . 3 (𝐾𝑉 → ((𝐹𝐺) ∈ 𝐼 ↔ ((𝐹𝐺):(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ ((𝐹𝐺)‘𝑥)(le‘𝐾)((𝐹𝐺)‘𝑦)))))
35343ad2ant1 1131 . 2 ((𝐾𝑉𝐹𝐼𝐺𝐼) → ((𝐹𝐺) ∈ 𝐼 ↔ ((𝐹𝐺):(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ ((𝐹𝐺)‘𝑥)(le‘𝐾)((𝐹𝐺)‘𝑦)))))
368, 33, 35mpbir2and 709 1 ((𝐾𝑉𝐹𝐼𝐺𝐼) → (𝐹𝐺) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  ccom 5584  wf 6414  1-1-ontowf1o 6417  cfv 6418  Basecbs 16840  lecple 16895  LAutclaut 37926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-laut 37930
This theorem is referenced by:  ldilco  38057
  Copyright terms: Public domain W3C validator