Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautco Structured version   Visualization version   GIF version

Theorem lautco 40054
Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.)
Hypothesis
Ref Expression
lautco.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautco ((𝐾𝑉𝐹𝐼𝐺𝐼) → (𝐹𝐺) ∈ 𝐼)

Proof of Theorem lautco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2 lautco.i . . . . 5 𝐼 = (LAut‘𝐾)
31, 2laut1o 40042 . . . 4 ((𝐾𝑉𝐹𝐼) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
433adant3 1132 . . 3 ((𝐾𝑉𝐹𝐼𝐺𝐼) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
51, 2laut1o 40042 . . . 4 ((𝐾𝑉𝐺𝐼) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
653adant2 1131 . . 3 ((𝐾𝑉𝐹𝐼𝐺𝐼) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
7 f1oco 6885 . . 3 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) → (𝐹𝐺):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
84, 6, 7syl2anc 583 . 2 ((𝐾𝑉𝐹𝐼𝐺𝐼) → (𝐹𝐺):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
9 simpl1 1191 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐾𝑉)
10 simpl2 1192 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐹𝐼)
11 simpl3 1193 . . . . . 6 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐺𝐼)
12 simprl 770 . . . . . 6 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 ∈ (Base‘𝐾))
131, 2lautcl 40044 . . . . . 6 (((𝐾𝑉𝐺𝐼) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐺𝑥) ∈ (Base‘𝐾))
149, 11, 12, 13syl21anc 837 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝐺𝑥) ∈ (Base‘𝐾))
15 simprr 772 . . . . . 6 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑦 ∈ (Base‘𝐾))
161, 2lautcl 40044 . . . . . 6 (((𝐾𝑉𝐺𝐼) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝐺𝑦) ∈ (Base‘𝐾))
179, 11, 15, 16syl21anc 837 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝐺𝑦) ∈ (Base‘𝐾))
18 eqid 2740 . . . . . 6 (le‘𝐾) = (le‘𝐾)
191, 18, 2lautle 40041 . . . . 5 (((𝐾𝑉𝐹𝐼) ∧ ((𝐺𝑥) ∈ (Base‘𝐾) ∧ (𝐺𝑦) ∈ (Base‘𝐾))) → ((𝐺𝑥)(le‘𝐾)(𝐺𝑦) ↔ (𝐹‘(𝐺𝑥))(le‘𝐾)(𝐹‘(𝐺𝑦))))
209, 10, 14, 17, 19syl22anc 838 . . . 4 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝐺𝑥)(le‘𝐾)(𝐺𝑦) ↔ (𝐹‘(𝐺𝑥))(le‘𝐾)(𝐹‘(𝐺𝑦))))
211, 18, 2lautle 40041 . . . . 5 (((𝐾𝑉𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ (𝐺𝑥)(le‘𝐾)(𝐺𝑦)))
22213adantl2 1167 . . . 4 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ (𝐺𝑥)(le‘𝐾)(𝐺𝑦)))
23 f1of 6862 . . . . . . 7 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
246, 23syl 17 . . . . . 6 ((𝐾𝑉𝐹𝐼𝐺𝐼) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
25 simpl 482 . . . . . 6 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾))
26 fvco3 7021 . . . . . 6 ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
2724, 25, 26syl2an 595 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
28 simpr 484 . . . . . 6 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾))
29 fvco3 7021 . . . . . 6 ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
3024, 28, 29syl2an 595 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
3127, 30breq12d 5179 . . . 4 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (((𝐹𝐺)‘𝑥)(le‘𝐾)((𝐹𝐺)‘𝑦) ↔ (𝐹‘(𝐺𝑥))(le‘𝐾)(𝐹‘(𝐺𝑦))))
3220, 22, 313bitr4d 311 . . 3 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ ((𝐹𝐺)‘𝑥)(le‘𝐾)((𝐹𝐺)‘𝑦)))
3332ralrimivva 3208 . 2 ((𝐾𝑉𝐹𝐼𝐺𝐼) → ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ ((𝐹𝐺)‘𝑥)(le‘𝐾)((𝐹𝐺)‘𝑦)))
341, 18, 2islaut 40040 . . 3 (𝐾𝑉 → ((𝐹𝐺) ∈ 𝐼 ↔ ((𝐹𝐺):(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ ((𝐹𝐺)‘𝑥)(le‘𝐾)((𝐹𝐺)‘𝑦)))))
35343ad2ant1 1133 . 2 ((𝐾𝑉𝐹𝐼𝐺𝐼) → ((𝐹𝐺) ∈ 𝐼 ↔ ((𝐹𝐺):(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ ((𝐹𝐺)‘𝑥)(le‘𝐾)((𝐹𝐺)‘𝑦)))))
368, 33, 35mpbir2and 712 1 ((𝐾𝑉𝐹𝐼𝐺𝐼) → (𝐹𝐺) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  ccom 5704  wf 6569  1-1-ontowf1o 6572  cfv 6573  Basecbs 17258  lecple 17318  LAutclaut 39942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-laut 39946
This theorem is referenced by:  ldilco  40073
  Copyright terms: Public domain W3C validator