Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
2 | | lautco.i |
. . . . 5
⊢ 𝐼 = (LAut‘𝐾) |
3 | 1, 2 | laut1o 38099 |
. . . 4
⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
4 | 3 | 3adant3 1131 |
. . 3
⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
5 | 1, 2 | laut1o 38099 |
. . . 4
⊢ ((𝐾 ∈ 𝑉 ∧ 𝐺 ∈ 𝐼) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
6 | 5 | 3adant2 1130 |
. . 3
⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
7 | | f1oco 6739 |
. . 3
⊢ ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) → (𝐹 ∘ 𝐺):(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
8 | 4, 6, 7 | syl2anc 584 |
. 2
⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) → (𝐹 ∘ 𝐺):(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
9 | | simpl1 1190 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐾 ∈ 𝑉) |
10 | | simpl2 1191 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐹 ∈ 𝐼) |
11 | | simpl3 1192 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐺 ∈ 𝐼) |
12 | | simprl 768 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 ∈ (Base‘𝐾)) |
13 | 1, 2 | lautcl 38101 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐺 ∈ 𝐼) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐺‘𝑥) ∈ (Base‘𝐾)) |
14 | 9, 11, 12, 13 | syl21anc 835 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝐺‘𝑥) ∈ (Base‘𝐾)) |
15 | | simprr 770 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑦 ∈ (Base‘𝐾)) |
16 | 1, 2 | lautcl 38101 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐺 ∈ 𝐼) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝐺‘𝑦) ∈ (Base‘𝐾)) |
17 | 9, 11, 15, 16 | syl21anc 835 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝐺‘𝑦) ∈ (Base‘𝐾)) |
18 | | eqid 2738 |
. . . . . 6
⊢
(le‘𝐾) =
(le‘𝐾) |
19 | 1, 18, 2 | lautle 38098 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ ((𝐺‘𝑥) ∈ (Base‘𝐾) ∧ (𝐺‘𝑦) ∈ (Base‘𝐾))) → ((𝐺‘𝑥)(le‘𝐾)(𝐺‘𝑦) ↔ (𝐹‘(𝐺‘𝑥))(le‘𝐾)(𝐹‘(𝐺‘𝑦)))) |
20 | 9, 10, 14, 17, 19 | syl22anc 836 |
. . . 4
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝐺‘𝑥)(le‘𝐾)(𝐺‘𝑦) ↔ (𝐹‘(𝐺‘𝑥))(le‘𝐾)(𝐹‘(𝐺‘𝑦)))) |
21 | 1, 18, 2 | lautle 38098 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐺 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ (𝐺‘𝑥)(le‘𝐾)(𝐺‘𝑦))) |
22 | 21 | 3adantl2 1166 |
. . . 4
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ (𝐺‘𝑥)(le‘𝐾)(𝐺‘𝑦))) |
23 | | f1of 6716 |
. . . . . . 7
⊢ (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾)) |
24 | 6, 23 | syl 17 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾)) |
25 | | simpl 483 |
. . . . . 6
⊢ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾)) |
26 | | fvco3 6867 |
. . . . . 6
⊢ ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐹 ∘ 𝐺)‘𝑥) = (𝐹‘(𝐺‘𝑥))) |
27 | 24, 25, 26 | syl2an 596 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝐹 ∘ 𝐺)‘𝑥) = (𝐹‘(𝐺‘𝑥))) |
28 | | simpr 485 |
. . . . . 6
⊢ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾)) |
29 | | fvco3 6867 |
. . . . . 6
⊢ ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝐹 ∘ 𝐺)‘𝑦) = (𝐹‘(𝐺‘𝑦))) |
30 | 24, 28, 29 | syl2an 596 |
. . . . 5
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝐹 ∘ 𝐺)‘𝑦) = (𝐹‘(𝐺‘𝑦))) |
31 | 27, 30 | breq12d 5087 |
. . . 4
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (((𝐹 ∘ 𝐺)‘𝑥)(le‘𝐾)((𝐹 ∘ 𝐺)‘𝑦) ↔ (𝐹‘(𝐺‘𝑥))(le‘𝐾)(𝐹‘(𝐺‘𝑦)))) |
32 | 20, 22, 31 | 3bitr4d 311 |
. . 3
⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ ((𝐹 ∘ 𝐺)‘𝑥)(le‘𝐾)((𝐹 ∘ 𝐺)‘𝑦))) |
33 | 32 | ralrimivva 3123 |
. 2
⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) → ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ ((𝐹 ∘ 𝐺)‘𝑥)(le‘𝐾)((𝐹 ∘ 𝐺)‘𝑦))) |
34 | 1, 18, 2 | islaut 38097 |
. . 3
⊢ (𝐾 ∈ 𝑉 → ((𝐹 ∘ 𝐺) ∈ 𝐼 ↔ ((𝐹 ∘ 𝐺):(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ ((𝐹 ∘ 𝐺)‘𝑥)(le‘𝐾)((𝐹 ∘ 𝐺)‘𝑦))))) |
35 | 34 | 3ad2ant1 1132 |
. 2
⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) → ((𝐹 ∘ 𝐺) ∈ 𝐼 ↔ ((𝐹 ∘ 𝐺):(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ ((𝐹 ∘ 𝐺)‘𝑥)(le‘𝐾)((𝐹 ∘ 𝐺)‘𝑦))))) |
36 | 8, 33, 35 | mpbir2and 710 |
1
⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) → (𝐹 ∘ 𝐺) ∈ 𝐼) |