Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautco Structured version   Visualization version   GIF version

Theorem lautco 39016
Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.)
Hypothesis
Ref Expression
lautco.i 𝐼 = (LAutβ€˜πΎ)
Assertion
Ref Expression
lautco ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) β†’ (𝐹 ∘ 𝐺) ∈ 𝐼)

Proof of Theorem lautco
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 lautco.i . . . . 5 𝐼 = (LAutβ€˜πΎ)
31, 2laut1o 39004 . . . 4 ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
433adant3 1133 . . 3 ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
51, 2laut1o 39004 . . . 4 ((𝐾 ∈ 𝑉 ∧ 𝐺 ∈ 𝐼) β†’ 𝐺:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
653adant2 1132 . . 3 ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) β†’ 𝐺:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
7 f1oco 6857 . . 3 ((𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ 𝐺:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ)) β†’ (𝐹 ∘ 𝐺):(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
84, 6, 7syl2anc 585 . 2 ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) β†’ (𝐹 ∘ 𝐺):(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
9 simpl1 1192 . . . . 5 (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ 𝐾 ∈ 𝑉)
10 simpl2 1193 . . . . 5 (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ 𝐹 ∈ 𝐼)
11 simpl3 1194 . . . . . 6 (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ 𝐺 ∈ 𝐼)
12 simprl 770 . . . . . 6 (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ π‘₯ ∈ (Baseβ€˜πΎ))
131, 2lautcl 39006 . . . . . 6 (((𝐾 ∈ 𝑉 ∧ 𝐺 ∈ 𝐼) ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (πΊβ€˜π‘₯) ∈ (Baseβ€˜πΎ))
149, 11, 12, 13syl21anc 837 . . . . 5 (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ (πΊβ€˜π‘₯) ∈ (Baseβ€˜πΎ))
15 simprr 772 . . . . . 6 (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ 𝑦 ∈ (Baseβ€˜πΎ))
161, 2lautcl 39006 . . . . . 6 (((𝐾 ∈ 𝑉 ∧ 𝐺 ∈ 𝐼) ∧ 𝑦 ∈ (Baseβ€˜πΎ)) β†’ (πΊβ€˜π‘¦) ∈ (Baseβ€˜πΎ))
179, 11, 15, 16syl21anc 837 . . . . 5 (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ (πΊβ€˜π‘¦) ∈ (Baseβ€˜πΎ))
18 eqid 2733 . . . . . 6 (leβ€˜πΎ) = (leβ€˜πΎ)
191, 18, 2lautle 39003 . . . . 5 (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ ((πΊβ€˜π‘₯) ∈ (Baseβ€˜πΎ) ∧ (πΊβ€˜π‘¦) ∈ (Baseβ€˜πΎ))) β†’ ((πΊβ€˜π‘₯)(leβ€˜πΎ)(πΊβ€˜π‘¦) ↔ (πΉβ€˜(πΊβ€˜π‘₯))(leβ€˜πΎ)(πΉβ€˜(πΊβ€˜π‘¦))))
209, 10, 14, 17, 19syl22anc 838 . . . 4 (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ ((πΊβ€˜π‘₯)(leβ€˜πΎ)(πΊβ€˜π‘¦) ↔ (πΉβ€˜(πΊβ€˜π‘₯))(leβ€˜πΎ)(πΉβ€˜(πΊβ€˜π‘¦))))
211, 18, 2lautle 39003 . . . . 5 (((𝐾 ∈ 𝑉 ∧ 𝐺 ∈ 𝐼) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ (π‘₯(leβ€˜πΎ)𝑦 ↔ (πΊβ€˜π‘₯)(leβ€˜πΎ)(πΊβ€˜π‘¦)))
22213adantl2 1168 . . . 4 (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ (π‘₯(leβ€˜πΎ)𝑦 ↔ (πΊβ€˜π‘₯)(leβ€˜πΎ)(πΊβ€˜π‘¦)))
23 f1of 6834 . . . . . . 7 (𝐺:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) β†’ 𝐺:(Baseβ€˜πΎ)⟢(Baseβ€˜πΎ))
246, 23syl 17 . . . . . 6 ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) β†’ 𝐺:(Baseβ€˜πΎ)⟢(Baseβ€˜πΎ))
25 simpl 484 . . . . . 6 ((π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ)) β†’ π‘₯ ∈ (Baseβ€˜πΎ))
26 fvco3 6991 . . . . . 6 ((𝐺:(Baseβ€˜πΎ)⟢(Baseβ€˜πΎ) ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ ((𝐹 ∘ 𝐺)β€˜π‘₯) = (πΉβ€˜(πΊβ€˜π‘₯)))
2724, 25, 26syl2an 597 . . . . 5 (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ ((𝐹 ∘ 𝐺)β€˜π‘₯) = (πΉβ€˜(πΊβ€˜π‘₯)))
28 simpr 486 . . . . . 6 ((π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ)) β†’ 𝑦 ∈ (Baseβ€˜πΎ))
29 fvco3 6991 . . . . . 6 ((𝐺:(Baseβ€˜πΎ)⟢(Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ)) β†’ ((𝐹 ∘ 𝐺)β€˜π‘¦) = (πΉβ€˜(πΊβ€˜π‘¦)))
3024, 28, 29syl2an 597 . . . . 5 (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ ((𝐹 ∘ 𝐺)β€˜π‘¦) = (πΉβ€˜(πΊβ€˜π‘¦)))
3127, 30breq12d 5162 . . . 4 (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ (((𝐹 ∘ 𝐺)β€˜π‘₯)(leβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘¦) ↔ (πΉβ€˜(πΊβ€˜π‘₯))(leβ€˜πΎ)(πΉβ€˜(πΊβ€˜π‘¦))))
3220, 22, 313bitr4d 311 . . 3 (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ (π‘₯(leβ€˜πΎ)𝑦 ↔ ((𝐹 ∘ 𝐺)β€˜π‘₯)(leβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘¦)))
3332ralrimivva 3201 . 2 ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) β†’ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)βˆ€π‘¦ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)𝑦 ↔ ((𝐹 ∘ 𝐺)β€˜π‘₯)(leβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘¦)))
341, 18, 2islaut 39002 . . 3 (𝐾 ∈ 𝑉 β†’ ((𝐹 ∘ 𝐺) ∈ 𝐼 ↔ ((𝐹 ∘ 𝐺):(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)βˆ€π‘¦ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)𝑦 ↔ ((𝐹 ∘ 𝐺)β€˜π‘₯)(leβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘¦)))))
35343ad2ant1 1134 . 2 ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) β†’ ((𝐹 ∘ 𝐺) ∈ 𝐼 ↔ ((𝐹 ∘ 𝐺):(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)βˆ€π‘¦ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)𝑦 ↔ ((𝐹 ∘ 𝐺)β€˜π‘₯)(leβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘¦)))))
368, 33, 35mpbir2and 712 1 ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼 ∧ 𝐺 ∈ 𝐼) β†’ (𝐹 ∘ 𝐺) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062   class class class wbr 5149   ∘ ccom 5681  βŸΆwf 6540  β€“1-1-ontoβ†’wf1o 6543  β€˜cfv 6544  Basecbs 17144  lecple 17204  LAutclaut 38904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822  df-laut 38908
This theorem is referenced by:  ldilco  39035
  Copyright terms: Public domain W3C validator