Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautco Structured version   Visualization version   GIF version

Theorem lautco 37305
Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.)
Hypothesis
Ref Expression
lautco.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautco ((𝐾𝑉𝐹𝐼𝐺𝐼) → (𝐹𝐺) ∈ 𝐼)

Proof of Theorem lautco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
2 lautco.i . . . . 5 𝐼 = (LAut‘𝐾)
31, 2laut1o 37293 . . . 4 ((𝐾𝑉𝐹𝐼) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
433adant3 1129 . . 3 ((𝐾𝑉𝐹𝐼𝐺𝐼) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
51, 2laut1o 37293 . . . 4 ((𝐾𝑉𝐺𝐼) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
653adant2 1128 . . 3 ((𝐾𝑉𝐹𝐼𝐺𝐼) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
7 f1oco 6626 . . 3 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) → (𝐹𝐺):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
84, 6, 7syl2anc 587 . 2 ((𝐾𝑉𝐹𝐼𝐺𝐼) → (𝐹𝐺):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
9 simpl1 1188 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐾𝑉)
10 simpl2 1189 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐹𝐼)
11 simpl3 1190 . . . . . 6 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝐺𝐼)
12 simprl 770 . . . . . 6 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 ∈ (Base‘𝐾))
131, 2lautcl 37295 . . . . . 6 (((𝐾𝑉𝐺𝐼) ∧ 𝑥 ∈ (Base‘𝐾)) → (𝐺𝑥) ∈ (Base‘𝐾))
149, 11, 12, 13syl21anc 836 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝐺𝑥) ∈ (Base‘𝐾))
15 simprr 772 . . . . . 6 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑦 ∈ (Base‘𝐾))
161, 2lautcl 37295 . . . . . 6 (((𝐾𝑉𝐺𝐼) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝐺𝑦) ∈ (Base‘𝐾))
179, 11, 15, 16syl21anc 836 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝐺𝑦) ∈ (Base‘𝐾))
18 eqid 2824 . . . . . 6 (le‘𝐾) = (le‘𝐾)
191, 18, 2lautle 37292 . . . . 5 (((𝐾𝑉𝐹𝐼) ∧ ((𝐺𝑥) ∈ (Base‘𝐾) ∧ (𝐺𝑦) ∈ (Base‘𝐾))) → ((𝐺𝑥)(le‘𝐾)(𝐺𝑦) ↔ (𝐹‘(𝐺𝑥))(le‘𝐾)(𝐹‘(𝐺𝑦))))
209, 10, 14, 17, 19syl22anc 837 . . . 4 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝐺𝑥)(le‘𝐾)(𝐺𝑦) ↔ (𝐹‘(𝐺𝑥))(le‘𝐾)(𝐹‘(𝐺𝑦))))
211, 18, 2lautle 37292 . . . . 5 (((𝐾𝑉𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ (𝐺𝑥)(le‘𝐾)(𝐺𝑦)))
22213adantl2 1164 . . . 4 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ (𝐺𝑥)(le‘𝐾)(𝐺𝑦)))
23 f1of 6604 . . . . . . 7 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
246, 23syl 17 . . . . . 6 ((𝐾𝑉𝐹𝐼𝐺𝐼) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
25 simpl 486 . . . . . 6 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾))
26 fvco3 6749 . . . . . 6 ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
2724, 25, 26syl2an 598 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
28 simpr 488 . . . . . 6 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ (Base‘𝐾))
29 fvco3 6749 . . . . . 6 ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
3024, 28, 29syl2an 598 . . . . 5 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
3127, 30breq12d 5066 . . . 4 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (((𝐹𝐺)‘𝑥)(le‘𝐾)((𝐹𝐺)‘𝑦) ↔ (𝐹‘(𝐺𝑥))(le‘𝐾)(𝐹‘(𝐺𝑦))))
3220, 22, 313bitr4d 314 . . 3 (((𝐾𝑉𝐹𝐼𝐺𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ ((𝐹𝐺)‘𝑥)(le‘𝐾)((𝐹𝐺)‘𝑦)))
3332ralrimivva 3186 . 2 ((𝐾𝑉𝐹𝐼𝐺𝐼) → ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ ((𝐹𝐺)‘𝑥)(le‘𝐾)((𝐹𝐺)‘𝑦)))
341, 18, 2islaut 37291 . . 3 (𝐾𝑉 → ((𝐹𝐺) ∈ 𝐼 ↔ ((𝐹𝐺):(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ ((𝐹𝐺)‘𝑥)(le‘𝐾)((𝐹𝐺)‘𝑦)))))
35343ad2ant1 1130 . 2 ((𝐾𝑉𝐹𝐼𝐺𝐼) → ((𝐹𝐺) ∈ 𝐼 ↔ ((𝐹𝐺):(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ ((𝐹𝐺)‘𝑥)(le‘𝐾)((𝐹𝐺)‘𝑦)))))
368, 33, 35mpbir2and 712 1 ((𝐾𝑉𝐹𝐼𝐺𝐼) → (𝐹𝐺) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wral 3133   class class class wbr 5053  ccom 5547  wf 6340  1-1-ontowf1o 6343  cfv 6344  Basecbs 16481  lecple 16570  LAutclaut 37193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-ov 7149  df-oprab 7150  df-mpo 7151  df-map 8400  df-laut 37197
This theorem is referenced by:  ldilco  37324
  Copyright terms: Public domain W3C validator