Step | Hyp | Ref
| Expression |
1 | | sticksstones12.1 |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
2 | | sticksstones12.2 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ ℕ) |
3 | 2 | nnnn0d 12613 |
. . 3
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
4 | | sticksstones12.3 |
. . 3
⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) |
5 | | sticksstones12.5 |
. . 3
⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} |
6 | | sticksstones12.6 |
. . 3
⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
7 | 1, 3, 4, 5, 6 | sticksstones8 42110 |
. 2
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
8 | | sticksstones12.4 |
. . 3
⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) −
1)))))) |
9 | 1, 2, 8, 5, 6 | sticksstones10 42112 |
. 2
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
10 | 8 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) −
1))))))) |
11 | | 0red 11293 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈
ℝ) |
12 | 2 | nngt0d 12342 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < 𝐾) |
13 | 11, 12 | ltned 11426 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≠ 𝐾) |
14 | 13 | necomd 3002 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ≠ 0) |
15 | 14 | neneqd 2951 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝐾 = 0) |
16 | 15 | iffalsed 4559 |
. . . . . . . . 9
⊢ (𝜑 → if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) |
17 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) |
18 | 17 | mpteq2dva 5266 |
. . . . . . 7
⊢ (𝜑 → (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) = (𝑏 ∈ 𝐵 ↦ (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) −
1)))))) |
19 | 10, 18 | eqtrd 2780 |
. . . . . 6
⊢ (𝜑 → 𝐺 = (𝑏 ∈ 𝐵 ↦ (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) −
1)))))) |
20 | 19 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝐺 = (𝑏 ∈ 𝐵 ↦ (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) −
1)))))) |
21 | | fveq1 6919 |
. . . . . . . . . 10
⊢ (𝑏 = (𝐹‘𝑐) → (𝑏‘𝐾) = ((𝐹‘𝑐)‘𝐾)) |
22 | 21 | oveq2d 7464 |
. . . . . . . . 9
⊢ (𝑏 = (𝐹‘𝑐) → ((𝑁 + 𝐾) − (𝑏‘𝐾)) = ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾))) |
23 | | fveq1 6919 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝐹‘𝑐) → (𝑏‘1) = ((𝐹‘𝑐)‘1)) |
24 | 23 | oveq1d 7463 |
. . . . . . . . . 10
⊢ (𝑏 = (𝐹‘𝑐) → ((𝑏‘1) − 1) = (((𝐹‘𝑐)‘1) − 1)) |
25 | | fveq1 6919 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝐹‘𝑐) → (𝑏‘𝑘) = ((𝐹‘𝑐)‘𝑘)) |
26 | | fveq1 6919 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝐹‘𝑐) → (𝑏‘(𝑘 − 1)) = ((𝐹‘𝑐)‘(𝑘 − 1))) |
27 | 25, 26 | oveq12d 7466 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝐹‘𝑐) → ((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) = (((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1)))) |
28 | 27 | oveq1d 7463 |
. . . . . . . . . 10
⊢ (𝑏 = (𝐹‘𝑐) → (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1) = ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1)) |
29 | 24, 28 | ifeq12d 4569 |
. . . . . . . . 9
⊢ (𝑏 = (𝐹‘𝑐) → if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)) = if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1))) |
30 | 22, 29 | ifeq12d 4569 |
. . . . . . . 8
⊢ (𝑏 = (𝐹‘𝑐) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1))) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1)))) |
31 | 30 | adantr 480 |
. . . . . . 7
⊢ ((𝑏 = (𝐹‘𝑐) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1))) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1)))) |
32 | 31 | mpteq2dva 5266 |
. . . . . 6
⊢ (𝑏 = (𝐹‘𝑐) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1))))) |
33 | 32 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑏 = (𝐹‘𝑐)) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1))))) |
34 | 7 | ffvelcdmda 7118 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐹‘𝑐) ∈ 𝐵) |
35 | | fzfid 14024 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (1...(𝐾 + 1)) ∈ Fin) |
36 | 35 | mptexd 7261 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1)))) ∈
V) |
37 | 20, 33, 34, 36 | fvmptd 7036 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐺‘(𝐹‘𝑐)) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1))))) |
38 | 4 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))))) |
39 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑎 = 𝑐) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑎 = 𝑐) |
40 | 39 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑎 = 𝑐) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑎‘𝑙) = (𝑐‘𝑙)) |
41 | 40 | sumeq2dv 15750 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑎 = 𝑐) ∧ 𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙) = Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)) |
42 | 41 | oveq2d 7464 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑎 = 𝑐) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)) = (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙))) |
43 | 42 | mpteq2dva 5266 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑎 = 𝑐) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))) |
44 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐 ∈ 𝐴) |
45 | | fzfid 14024 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (1...𝐾) ∈ Fin) |
46 | 45 | mptexd 7261 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙))) ∈ V) |
47 | 38, 43, 44, 46 | fvmptd 7036 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐹‘𝑐) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))) |
48 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑗 = 𝐾) → 𝑗 = 𝐾) |
49 | 48 | oveq2d 7464 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑗 = 𝐾) → (1...𝑗) = (1...𝐾)) |
50 | 49 | sumeq1d 15748 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑗 = 𝐾) → Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙) = Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙)) |
51 | 48, 50 | oveq12d 7466 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑗 = 𝐾) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)) = (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙))) |
52 | | 1zzd 12674 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ∈
ℤ) |
53 | 3 | nn0zd 12665 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈ ℤ) |
54 | 2 | nnge1d 12341 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ≤ 𝐾) |
55 | 2 | nnred 12308 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐾 ∈ ℝ) |
56 | 55 | leidd 11856 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ≤ 𝐾) |
57 | 52, 53, 53, 54, 56 | elfzd 13575 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ (1...𝐾)) |
58 | 57 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝐾 ∈ (1...𝐾)) |
59 | | ovexd 7483 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙)) ∈ V) |
60 | 47, 51, 58, 59 | fvmptd 7036 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝐹‘𝑐)‘𝐾) = (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙))) |
61 | 60 | oveq2d 7464 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)) = ((𝑁 + 𝐾) − (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙)))) |
62 | 1 | nn0cnd 12615 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℂ) |
63 | 62 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑁 ∈ ℂ) |
64 | 55 | recnd 11318 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈ ℂ) |
65 | 64 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝐾 ∈ ℂ) |
66 | 63, 65 | addcomd 11492 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑁 + 𝐾) = (𝐾 + 𝑁)) |
67 | 66 | oveq1d 7463 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑁 + 𝐾) − (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙))) = ((𝐾 + 𝑁) − (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙)))) |
68 | | 1zzd 12674 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 1 ∈ ℤ) |
69 | 53 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝐾 ∈ ℤ) |
70 | 69 | peano2zd 12750 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → (𝐾 + 1) ∈ ℤ) |
71 | | elfzelz 13584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 ∈ (1...𝐾) → 𝑙 ∈ ℤ) |
72 | 71 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝑙 ∈ ℤ) |
73 | | elfzle1 13587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 ∈ (1...𝐾) → 1 ≤ 𝑙) |
74 | 73 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 1 ≤ 𝑙) |
75 | 72 | zred 12747 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝑙 ∈ ℝ) |
76 | 55 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝐾 ∈ ℝ) |
77 | 70 | zred 12747 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → (𝐾 + 1) ∈ ℝ) |
78 | | elfzle2 13588 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑙 ∈ (1...𝐾) → 𝑙 ≤ 𝐾) |
79 | 78 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝑙 ≤ 𝐾) |
80 | 76 | lep1d 12226 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝐾 ≤ (𝐾 + 1)) |
81 | 75, 76, 77, 79, 80 | letrd 11447 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝑙 ≤ (𝐾 + 1)) |
82 | 68, 70, 72, 74, 81 | elfzd 13575 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝑙 ∈ (1...(𝐾 + 1))) |
83 | 5 | eleq2i 2836 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 ∈ 𝐴 ↔ 𝑐 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) |
84 | 83 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 ∈ 𝐴 → 𝑐 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) |
85 | 84 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) |
86 | | vex 3492 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑐 ∈ V |
87 | | feq1 6728 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑔 = 𝑐 → (𝑔:(1...(𝐾 + 1))⟶ℕ0 ↔
𝑐:(1...(𝐾 +
1))⟶ℕ0)) |
88 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑔 = 𝑐 ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝑔 = 𝑐) |
89 | 88 | fveq1d 6922 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑔 = 𝑐 ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝑔‘𝑖) = (𝑐‘𝑖)) |
90 | 89 | sumeq2dv 15750 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑔 = 𝑐 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖)) |
91 | 90 | eqeq1d 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑔 = 𝑐 → (Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖) = 𝑁)) |
92 | 87, 91 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑔 = 𝑐 → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁) ↔ (𝑐:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖) = 𝑁))) |
93 | 86, 92 | elab 3694 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ↔ (𝑐:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖) = 𝑁)) |
94 | 93 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ↔ (𝑐:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖) = 𝑁))) |
95 | 94 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} → (𝑐:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖) = 𝑁))) |
96 | 85, 95 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖) = 𝑁)) |
97 | 96 | simpld 494 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐:(1...(𝐾 +
1))⟶ℕ0) |
98 | 97 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝑐:(1...(𝐾 +
1))⟶ℕ0) |
99 | 98 | ffvelcdmda 7118 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝐾 + 1))) → (𝑐‘𝑙) ∈
ℕ0) |
100 | 82, 99 | mpdan 686 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → (𝑐‘𝑙) ∈
ℕ0) |
101 | 45, 100 | fsumnn0cl 15784 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙) ∈
ℕ0) |
102 | 101 | nn0cnd 12615 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙) ∈ ℂ) |
103 | 65, 63, 102 | pnpcand 11684 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝐾 + 𝑁) − (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙))) = (𝑁 − Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙))) |
104 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 =
1 |
105 | | 1p0e1 12417 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (1 + 0) =
1 |
106 | 104, 105 | eqtr4i 2771 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 = (1 +
0) |
107 | 106 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 1 = (1 +
0)) |
108 | | 1red 11291 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 1 ∈
ℝ) |
109 | | 0le1 11813 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 0 ≤
1 |
110 | 109 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 0 ≤ 1) |
111 | 108, 11, 55, 108, 54, 110 | le2addd 11909 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (1 + 0) ≤ (𝐾 + 1)) |
112 | 107, 111 | eqbrtrd 5188 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 1 ≤ (𝐾 + 1)) |
113 | 53 | peano2zd 12750 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐾 + 1) ∈ ℤ) |
114 | | eluz 12917 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((1
∈ ℤ ∧ (𝐾 +
1) ∈ ℤ) → ((𝐾 + 1) ∈
(ℤ≥‘1) ↔ 1 ≤ (𝐾 + 1))) |
115 | 52, 113, 114 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝐾 + 1) ∈
(ℤ≥‘1) ↔ 1 ≤ (𝐾 + 1))) |
116 | 112, 115 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐾 + 1) ∈
(ℤ≥‘1)) |
117 | 116 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐾 + 1) ∈
(ℤ≥‘1)) |
118 | 97 | ffvelcdmda 7118 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...(𝐾 + 1))) → (𝑐‘𝑙) ∈
ℕ0) |
119 | 118 | nn0cnd 12615 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...(𝐾 + 1))) → (𝑐‘𝑙) ∈ ℂ) |
120 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = (𝐾 + 1) → (𝑐‘𝑙) = (𝑐‘(𝐾 + 1))) |
121 | 117, 119,
120 | fsumm1 15799 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...(𝐾 + 1))(𝑐‘𝑙) = (Σ𝑙 ∈ (1...((𝐾 + 1) − 1))(𝑐‘𝑙) + (𝑐‘(𝐾 + 1)))) |
122 | | 1cnd 11285 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ∈ ℂ) |
123 | 65, 122 | pncand 11648 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝐾 + 1) − 1) = 𝐾) |
124 | 123 | oveq2d 7464 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (1...((𝐾 + 1) − 1)) = (1...𝐾)) |
125 | 124 | sumeq1d 15748 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...((𝐾 + 1) − 1))(𝑐‘𝑙) = Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙)) |
126 | 125 | oveq1d 7463 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (Σ𝑙 ∈ (1...((𝐾 + 1) − 1))(𝑐‘𝑙) + (𝑐‘(𝐾 + 1))) = (Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙) + (𝑐‘(𝐾 + 1)))) |
127 | 121, 126 | eqtrd 2780 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...(𝐾 + 1))(𝑐‘𝑙) = (Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙) + (𝑐‘(𝐾 + 1)))) |
128 | 127 | eqcomd 2746 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙) + (𝑐‘(𝐾 + 1))) = Σ𝑙 ∈ (1...(𝐾 + 1))(𝑐‘𝑙)) |
129 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = 𝑖 → (𝑐‘𝑙) = (𝑐‘𝑖)) |
130 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑖(𝑐‘𝑙) |
131 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑙(𝑐‘𝑖) |
132 | 129, 130,
131 | cbvsum 15743 |
. . . . . . . . . . . . . . . . . 18
⊢
Σ𝑙 ∈
(1...(𝐾 + 1))(𝑐‘𝑙) = Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖) |
133 | 132 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...(𝐾 + 1))(𝑐‘𝑙) = Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖)) |
134 | 96 | simprd 495 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖) = 𝑁) |
135 | 133, 134 | eqtrd 2780 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...(𝐾 + 1))(𝑐‘𝑙) = 𝑁) |
136 | 128, 135 | eqtrd 2780 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙) + (𝑐‘(𝐾 + 1))) = 𝑁) |
137 | | 1zzd 12674 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ∈ ℤ) |
138 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝐾 ∈ ℤ) |
139 | 138 | peano2zd 12750 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐾 + 1) ∈ ℤ) |
140 | | 1e0p1 12800 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 = (0 +
1) |
141 | 140 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 = (0 + 1)) |
142 | | 0red 11293 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 0 ∈ ℝ) |
143 | 55 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝐾 ∈ ℝ) |
144 | | 1red 11291 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ∈ ℝ) |
145 | 11, 55, 12 | ltled 11438 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 0 ≤ 𝐾) |
146 | 145 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 0 ≤ 𝐾) |
147 | 142, 143,
144, 146 | leadd1dd 11904 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (0 + 1) ≤ (𝐾 + 1)) |
148 | 141, 147 | eqbrtrd 5188 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ≤ (𝐾 + 1)) |
149 | 55, 55, 108, 56 | leadd1dd 11904 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐾 + 1) ≤ (𝐾 + 1)) |
150 | 149 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐾 + 1) ≤ (𝐾 + 1)) |
151 | 137, 139,
139, 148, 150 | elfzd 13575 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐾 + 1) ∈ (1...(𝐾 + 1))) |
152 | 97, 151 | ffvelcdmd 7119 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘(𝐾 + 1)) ∈
ℕ0) |
153 | 152 | nn0cnd 12615 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘(𝐾 + 1)) ∈ ℂ) |
154 | 63, 102, 153 | subaddd 11665 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑁 − Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙)) = (𝑐‘(𝐾 + 1)) ↔ (Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙) + (𝑐‘(𝐾 + 1))) = 𝑁)) |
155 | 136, 154 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑁 − Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙)) = (𝑐‘(𝐾 + 1))) |
156 | 103, 155 | eqtrd 2780 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝐾 + 𝑁) − (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙))) = (𝑐‘(𝐾 + 1))) |
157 | 67, 156 | eqtrd 2780 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑁 + 𝐾) − (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙))) = (𝑐‘(𝐾 + 1))) |
158 | 61, 157 | eqtrd 2780 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)) = (𝑐‘(𝐾 + 1))) |
159 | 158 | 3adant3 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)) = (𝑐‘(𝐾 + 1))) |
160 | 159 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)) = (𝑐‘(𝐾 + 1))) |
161 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → 𝑘 = (𝐾 + 1)) |
162 | 161 | fveq2d 6924 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → (𝑐‘𝑘) = (𝑐‘(𝐾 + 1))) |
163 | 162 | eqcomd 2746 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → (𝑐‘(𝐾 + 1)) = (𝑐‘𝑘)) |
164 | 160, 163 | eqtrd 2780 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)) = (𝑐‘𝑘)) |
165 | 47 | fveq1d 6922 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝐹‘𝑐)‘1) = ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘1)) |
166 | 165 | oveq1d 7463 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (((𝐹‘𝑐)‘1) − 1) = (((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘1) − 1)) |
167 | | eqidd 2741 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))) |
168 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑗 = 1) → 𝑗 = 1) |
169 | 168 | oveq2d 7464 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑗 = 1) → (1...𝑗) = (1...1)) |
170 | 169 | sumeq1d 15748 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑗 = 1) → Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙) = Σ𝑙 ∈ (1...1)(𝑐‘𝑙)) |
171 | 168, 170 | oveq12d 7466 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑗 = 1) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)) = (1 + Σ𝑙 ∈ (1...1)(𝑐‘𝑙))) |
172 | 144 | leidd 11856 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ≤ 1) |
173 | 54 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ≤ 𝐾) |
174 | 137, 138,
137, 172, 173 | elfzd 13575 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ∈ (1...𝐾)) |
175 | | ovexd 7483 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (1 + Σ𝑙 ∈ (1...1)(𝑐‘𝑙)) ∈ V) |
176 | 167, 171,
174, 175 | fvmptd 7036 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘1) = (1 + Σ𝑙 ∈ (1...1)(𝑐‘𝑙))) |
177 | 176 | oveq1d 7463 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘1) − 1) = ((1 + Σ𝑙 ∈ (1...1)(𝑐‘𝑙)) − 1)) |
178 | | fzfid 14024 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (1...1) ∈
Fin) |
179 | | 1zzd 12674 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 1 ∈
ℤ) |
180 | 138 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 𝐾 ∈ ℤ) |
181 | 180 | peano2zd 12750 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → (𝐾 + 1) ∈ ℤ) |
182 | | elfzelz 13584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑙 ∈ (1...1) → 𝑙 ∈
ℤ) |
183 | 182 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 𝑙 ∈ ℤ) |
184 | | elfzle1 13587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑙 ∈ (1...1) → 1 ≤
𝑙) |
185 | 184 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 1 ≤ 𝑙) |
186 | 183 | zred 12747 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 𝑙 ∈ ℝ) |
187 | | 0red 11293 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 0 ∈
ℝ) |
188 | | 1red 11291 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 1 ∈
ℝ) |
189 | 187, 188 | readdcld 11319 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → (0 + 1) ∈
ℝ) |
190 | 181 | zred 12747 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → (𝐾 + 1) ∈ ℝ) |
191 | | elfzle2 13588 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑙 ∈ (1...1) → 𝑙 ≤ 1) |
192 | 191 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 𝑙 ≤ 1) |
193 | 140 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 1 = (0 +
1)) |
194 | 192, 193 | breqtrd 5192 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 𝑙 ≤ (0 + 1)) |
195 | 147 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → (0 + 1) ≤ (𝐾 + 1)) |
196 | 186, 189,
190, 194, 195 | letrd 11447 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 𝑙 ≤ (𝐾 + 1)) |
197 | 179, 181,
183, 185, 196 | elfzd 13575 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 𝑙 ∈ (1...(𝐾 + 1))) |
198 | 118 | adantlr 714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) ∧ 𝑙 ∈ (1...(𝐾 + 1))) → (𝑐‘𝑙) ∈
ℕ0) |
199 | 197, 198 | mpdan 686 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → (𝑐‘𝑙) ∈
ℕ0) |
200 | 178, 199 | fsumnn0cl 15784 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...1)(𝑐‘𝑙) ∈
ℕ0) |
201 | 200 | nn0cnd 12615 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...1)(𝑐‘𝑙) ∈ ℂ) |
202 | 122, 201 | pncan2d 11649 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((1 + Σ𝑙 ∈ (1...1)(𝑐‘𝑙)) − 1) = Σ𝑙 ∈ (1...1)(𝑐‘𝑙)) |
203 | 137, 139,
137, 172, 148 | elfzd 13575 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ∈ (1...(𝐾 + 1))) |
204 | 97, 203 | ffvelcdmd 7119 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘1) ∈
ℕ0) |
205 | 204 | nn0cnd 12615 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘1) ∈ ℂ) |
206 | | fveq2 6920 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = 1 → (𝑐‘𝑙) = (𝑐‘1)) |
207 | 206 | fsum1 15795 |
. . . . . . . . . . . . . . . . 17
⊢ ((1
∈ ℤ ∧ (𝑐‘1) ∈ ℂ) → Σ𝑙 ∈ (1...1)(𝑐‘𝑙) = (𝑐‘1)) |
208 | 137, 205,
207 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...1)(𝑐‘𝑙) = (𝑐‘1)) |
209 | 202, 208 | eqtrd 2780 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((1 + Σ𝑙 ∈ (1...1)(𝑐‘𝑙)) − 1) = (𝑐‘1)) |
210 | 177, 209 | eqtrd 2780 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘1) − 1) = (𝑐‘1)) |
211 | 166, 210 | eqtrd 2780 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (((𝐹‘𝑐)‘1) − 1) = (𝑐‘1)) |
212 | 211 | 3adant3 1132 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → (((𝐹‘𝑐)‘1) − 1) = (𝑐‘1)) |
213 | 212 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (((𝐹‘𝑐)‘1) − 1) = (𝑐‘1)) |
214 | 213 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ 𝑘 = 1) → (((𝐹‘𝑐)‘1) − 1) = (𝑐‘1)) |
215 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ 𝑘 = 1) → 𝑘 = 1) |
216 | 215 | fveq2d 6924 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ 𝑘 = 1) → (𝑐‘𝑘) = (𝑐‘1)) |
217 | 216 | eqcomd 2746 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ 𝑘 = 1) → (𝑐‘1) = (𝑐‘𝑘)) |
218 | 214, 217 | eqtrd 2780 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ 𝑘 = 1) → (((𝐹‘𝑐)‘1) − 1) = (𝑐‘𝑘)) |
219 | 4 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))))) |
220 | | simpllr 775 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑎 = 𝑐) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑎 = 𝑐) |
221 | 220 | fveq1d 6922 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑎 = 𝑐) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑎‘𝑙) = (𝑐‘𝑙)) |
222 | 221 | sumeq2dv 15750 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑎 = 𝑐) ∧ 𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙) = Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)) |
223 | 222 | oveq2d 7464 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑎 = 𝑐) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)) = (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙))) |
224 | 223 | mpteq2dva 5266 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑎 = 𝑐) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))) |
225 | | simpll2 1213 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑐 ∈ 𝐴) |
226 | | fzfid 14024 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1...𝐾) ∈ Fin) |
227 | 226 | mptexd 7261 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙))) ∈ V) |
228 | 219, 224,
225, 227 | fvmptd 7036 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝐹‘𝑐) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))) |
229 | 228 | fveq1d 6922 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐹‘𝑐)‘𝑘) = ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘𝑘)) |
230 | 228 | fveq1d 6922 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐹‘𝑐)‘(𝑘 − 1)) = ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘(𝑘 − 1))) |
231 | 229, 230 | oveq12d 7466 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) = (((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘𝑘) − ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘(𝑘 − 1)))) |
232 | 231 | oveq1d 7463 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1) = ((((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘𝑘) − ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘(𝑘 − 1))) − 1)) |
233 | | eqidd 2741 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))) |
234 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘) |
235 | 234 | oveq2d 7464 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑗 = 𝑘) → (1...𝑗) = (1...𝑘)) |
236 | 235 | sumeq1d 15748 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑗 = 𝑘) → Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙) = Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙)) |
237 | 234, 236 | oveq12d 7466 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑗 = 𝑘) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)) = (𝑘 + Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙))) |
238 | | 1zzd 12674 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈
ℤ) |
239 | 138 | 3adant3 1132 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 𝐾 ∈ ℤ) |
240 | 239 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝐾 ∈ ℤ) |
241 | 240 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ) |
242 | | elfznn 13613 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (1...(𝐾 + 1)) → 𝑘 ∈ ℕ) |
243 | 242 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 𝑘 ∈ ℕ) |
244 | 243 | nnzd 12666 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 𝑘 ∈ ℤ) |
245 | 244 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈ ℤ) |
246 | 245 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ) |
247 | 243 | nnge1d 12341 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 1 ≤ 𝑘) |
248 | 247 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 1 ≤ 𝑘) |
249 | 248 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ≤ 𝑘) |
250 | | simpl3 1193 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈ (1...(𝐾 + 1))) |
251 | | 1zzd 12674 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 1 ∈
ℤ) |
252 | 240 | peano2zd 12750 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝐾 + 1) ∈ ℤ) |
253 | | elfz 13573 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℤ ∧ 1 ∈
ℤ ∧ (𝐾 + 1)
∈ ℤ) → (𝑘
∈ (1...(𝐾 + 1)) ↔
(1 ≤ 𝑘 ∧ 𝑘 ≤ (𝐾 + 1)))) |
254 | 245, 251,
252, 253 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑘 ∈ (1...(𝐾 + 1)) ↔ (1 ≤ 𝑘 ∧ 𝑘 ≤ (𝐾 + 1)))) |
255 | 254 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑘 ∈ (1...(𝐾 + 1)) → (1 ≤ 𝑘 ∧ 𝑘 ≤ (𝐾 + 1)))) |
256 | 250, 255 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (1 ≤ 𝑘 ∧ 𝑘 ≤ (𝐾 + 1))) |
257 | 256 | simprd 495 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ≤ (𝐾 + 1)) |
258 | | neqne 2954 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
𝑘 = (𝐾 + 1) → 𝑘 ≠ (𝐾 + 1)) |
259 | 258 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ≠ (𝐾 + 1)) |
260 | 259 | necomd 3002 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝐾 + 1) ≠ 𝑘) |
261 | 257, 260 | jca 511 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑘 ≤ (𝐾 + 1) ∧ (𝐾 + 1) ≠ 𝑘)) |
262 | 245 | zred 12747 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈ ℝ) |
263 | 252 | zred 12747 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝐾 + 1) ∈ ℝ) |
264 | 262, 263 | ltlend 11435 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑘 < (𝐾 + 1) ↔ (𝑘 ≤ (𝐾 + 1) ∧ (𝐾 + 1) ≠ 𝑘))) |
265 | 261, 264 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 < (𝐾 + 1)) |
266 | | zleltp1 12694 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ≤ 𝐾 ↔ 𝑘 < (𝐾 + 1))) |
267 | 245, 240,
266 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑘 ≤ 𝐾 ↔ 𝑘 < (𝐾 + 1))) |
268 | 265, 267 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ≤ 𝐾) |
269 | 268 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ≤ 𝐾) |
270 | 238, 241,
246, 249, 269 | elfzd 13575 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ (1...𝐾)) |
271 | | ovexd 7483 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 + Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙)) ∈ V) |
272 | 233, 237,
270, 271 | fvmptd 7036 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘𝑘) = (𝑘 + Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙))) |
273 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑗 = (𝑘 − 1)) → 𝑗 = (𝑘 − 1)) |
274 | 273 | oveq2d 7464 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑗 = (𝑘 − 1)) → (1...𝑗) = (1...(𝑘 − 1))) |
275 | 274 | sumeq1d 15748 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑗 = (𝑘 − 1)) → Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙) = Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙)) |
276 | 273, 275 | oveq12d 7466 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑗 = (𝑘 − 1)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)) = ((𝑘 − 1) + Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) |
277 | | 1zzd 12674 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈
ℤ) |
278 | 53 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ) |
279 | 278 | 3impa 1110 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ) |
280 | 242 | nnzd 12666 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (1...(𝐾 + 1)) → 𝑘 ∈ ℤ) |
281 | 280 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 𝑘 ∈ ℤ) |
282 | 281 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ) |
283 | 282 | 3impa 1110 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ) |
284 | 283, 277 | zsubcld 12752 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℤ) |
285 | | neqne 2954 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝑘 = 1 → 𝑘 ≠ 1) |
286 | 285 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ≠ 1) |
287 | 108 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈
ℝ) |
288 | 283 | zred 12747 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℝ) |
289 | | simp2 1137 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ (1...(𝐾 + 1))) |
290 | | elfzle1 13587 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (1...(𝐾 + 1)) → 1 ≤ 𝑘) |
291 | 289, 290 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ≤ 𝑘) |
292 | 287, 288,
291 | leltned 11443 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1 < 𝑘 ↔ 𝑘 ≠ 1)) |
293 | 286, 292 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 < 𝑘) |
294 | 277, 283 | zltp1led 41936 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘)) |
295 | 293, 294 | mpbid 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1 + 1) ≤ 𝑘) |
296 | | leaddsub 11766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((1
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((1 + 1) ≤ 𝑘 ↔ 1 ≤ (𝑘 − 1))) |
297 | 287, 287,
288, 296 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((1 + 1) ≤ 𝑘 ↔ 1 ≤ (𝑘 − 1))) |
298 | 295, 297 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ≤ (𝑘 − 1)) |
299 | 284 | zred 12747 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℝ) |
300 | 55 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℝ) |
301 | | 1red 11291 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈
ℝ) |
302 | 300, 301 | readdcld 11319 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝐾 + 1) ∈ ℝ) |
303 | 302, 301 | resubcld 11718 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐾 + 1) − 1) ∈
ℝ) |
304 | | elfzle2 13588 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (1...(𝐾 + 1)) → 𝑘 ≤ (𝐾 + 1)) |
305 | 304 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ≤ (𝐾 + 1)) |
306 | 288, 302,
301, 305 | lesub1dd 11906 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ ((𝐾 + 1) − 1)) |
307 | 64 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℂ) |
308 | | 1cnd 11285 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈
ℂ) |
309 | 307, 308 | pncand 11648 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐾 + 1) − 1) = 𝐾) |
310 | 56 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ≤ 𝐾) |
311 | 309, 310 | eqbrtrd 5188 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐾 + 1) − 1) ≤ 𝐾) |
312 | 299, 303,
300, 306, 311 | letrd 11447 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ 𝐾) |
313 | 277, 279,
284, 298, 312 | elfzd 13575 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾)) |
314 | 313 | 3expa 1118 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾)) |
315 | 314 | 3adantl2 1167 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾)) |
316 | 315 | adantlr 714 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾)) |
317 | | ovexd 7483 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑘 − 1) + Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙)) ∈ V) |
318 | 233, 276,
316, 317 | fvmptd 7036 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘(𝑘 − 1)) = ((𝑘 − 1) + Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) |
319 | 272, 318 | oveq12d 7466 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘𝑘) − ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘(𝑘 − 1))) = ((𝑘 + Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙)) − ((𝑘 − 1) + Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙)))) |
320 | 319 | oveq1d 7463 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘𝑘) − ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘(𝑘 − 1))) − 1) = (((𝑘 + Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙)) − ((𝑘 − 1) + Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1)) |
321 | 246 | zcnd 12748 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℂ) |
322 | | fzfid 14024 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1...𝑘) ∈ Fin) |
323 | | 1zzd 12674 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 1 ∈ ℤ) |
324 | 241 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝐾 ∈ ℤ) |
325 | 324 | peano2zd 12750 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → (𝐾 + 1) ∈ ℤ) |
326 | | elfznn 13613 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 ∈ (1...𝑘) → 𝑙 ∈ ℕ) |
327 | 326 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑙 ∈ ℕ) |
328 | 327 | nnzd 12666 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑙 ∈ ℤ) |
329 | 327 | nnge1d 12341 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 1 ≤ 𝑙) |
330 | 327 | nnred 12308 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑙 ∈ ℝ) |
331 | 262 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑘 ∈ ℝ) |
332 | 263 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → (𝐾 + 1) ∈ ℝ) |
333 | | elfzle2 13588 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 ∈ (1...𝑘) → 𝑙 ≤ 𝑘) |
334 | 333 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑙 ≤ 𝑘) |
335 | 257 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑘 ≤ (𝐾 + 1)) |
336 | 330, 331,
332, 334, 335 | letrd 11447 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑙 ≤ (𝐾 + 1)) |
337 | 323, 325,
328, 329, 336 | elfzd 13575 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑙 ∈ (1...(𝐾 + 1))) |
338 | 97 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 𝑐:(1...(𝐾 +
1))⟶ℕ0) |
339 | 338 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑐:(1...(𝐾 +
1))⟶ℕ0) |
340 | 339 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑐:(1...(𝐾 +
1))⟶ℕ0) |
341 | 340 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑐:(1...(𝐾 +
1))⟶ℕ0) |
342 | 341 | ffvelcdmda 7118 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) ∧ 𝑙 ∈ (1...(𝐾 + 1))) → (𝑐‘𝑙) ∈
ℕ0) |
343 | 337, 342 | mpdan 686 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → (𝑐‘𝑙) ∈
ℕ0) |
344 | 322, 343 | fsumnn0cl 15784 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) ∈
ℕ0) |
345 | 344 | nn0cnd 12615 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) ∈ ℂ) |
346 | | 1cnd 11285 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈
ℂ) |
347 | 321, 346 | subcld 11647 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℂ) |
348 | | fzfid 14024 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1...(𝑘 − 1)) ∈ Fin) |
349 | | 1zzd 12674 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 1 ∈
ℤ) |
350 | 241 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝐾 ∈ ℤ) |
351 | 350 | peano2zd 12750 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → (𝐾 + 1) ∈ ℤ) |
352 | | elfznn 13613 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 ∈ (1...(𝑘 − 1)) → 𝑙 ∈ ℕ) |
353 | 352 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑙 ∈ ℕ) |
354 | 353 | nnzd 12666 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑙 ∈ ℤ) |
355 | 353 | nnge1d 12341 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 1 ≤ 𝑙) |
356 | 353 | nnred 12308 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑙 ∈ ℝ) |
357 | 262 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑘 ∈ ℝ) |
358 | | 1red 11291 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 1 ∈
ℝ) |
359 | 357, 358 | resubcld 11718 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → (𝑘 − 1) ∈ ℝ) |
360 | 263 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → (𝐾 + 1) ∈ ℝ) |
361 | | elfzle2 13588 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 ∈ (1...(𝑘 − 1)) → 𝑙 ≤ (𝑘 − 1)) |
362 | 361 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑙 ≤ (𝑘 − 1)) |
363 | 357 | lem1d 12228 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → (𝑘 − 1) ≤ 𝑘) |
364 | 257 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑘 ≤ (𝐾 + 1)) |
365 | 359, 357,
360, 363, 364 | letrd 11447 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → (𝑘 − 1) ≤ (𝐾 + 1)) |
366 | 356, 359,
360, 362, 365 | letrd 11447 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑙 ≤ (𝐾 + 1)) |
367 | 349, 351,
354, 355, 366 | elfzd 13575 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑙 ∈ (1...(𝐾 + 1))) |
368 | 340 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑐:(1...(𝐾 +
1))⟶ℕ0) |
369 | 368 | ffvelcdmda 7118 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) ∧ 𝑙 ∈ (1...(𝐾 + 1))) → (𝑐‘𝑙) ∈
ℕ0) |
370 | 367, 369 | mpdan 686 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → (𝑐‘𝑙) ∈
ℕ0) |
371 | 348, 370 | fsumnn0cl 15784 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙) ∈
ℕ0) |
372 | 371 | nn0cnd 12615 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙) ∈ ℂ) |
373 | 321, 345,
347, 372 | addsub4d 11694 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑘 + Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙)) − ((𝑘 − 1) + Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) = ((𝑘 − (𝑘 − 1)) + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙)))) |
374 | 373 | oveq1d 7463 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝑘 + Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙)) − ((𝑘 − 1) + Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1) = (((𝑘 − (𝑘 − 1)) + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1)) |
375 | 321, 346 | nncand 11652 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − (𝑘 − 1)) = 1) |
376 | 375 | oveq1d 7463 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑘 − (𝑘 − 1)) + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) = (1 + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙)))) |
377 | 376 | oveq1d 7463 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝑘 − (𝑘 − 1)) + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1) = ((1 + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1)) |
378 | 345, 372 | subcld 11647 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙)) ∈ ℂ) |
379 | 346, 378 | pncan2d 11649 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((1 + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1) = (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) |
380 | 137 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 1 ∈
ℤ) |
381 | 380, 244,
247 | 3jca 1128 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → (1 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 1 ≤
𝑘)) |
382 | | eluz2 12909 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈
(ℤ≥‘1) ↔ (1 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 1 ≤
𝑘)) |
383 | 381, 382 | sylibr 234 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 𝑘 ∈
(ℤ≥‘1)) |
384 | 383 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈
(ℤ≥‘1)) |
385 | 384 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈
(ℤ≥‘1)) |
386 | 343 | nn0cnd 12615 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → (𝑐‘𝑙) ∈ ℂ) |
387 | | fveq2 6920 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = 𝑘 → (𝑐‘𝑙) = (𝑐‘𝑘)) |
388 | 385, 386,
387 | fsumm1 15799 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) = (Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙) + (𝑐‘𝑘))) |
389 | 388 | eqcomd 2746 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙) + (𝑐‘𝑘)) = Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙)) |
390 | | simp3 1138 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 𝑘 ∈ (1...(𝐾 + 1))) |
391 | 338, 390 | ffvelcdmd 7119 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → (𝑐‘𝑘) ∈
ℕ0) |
392 | 391 | nn0cnd 12615 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → (𝑐‘𝑘) ∈ ℂ) |
393 | 392 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑐‘𝑘) ∈ ℂ) |
394 | 393 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑐‘𝑘) ∈ ℂ) |
395 | 345, 372,
394 | subaddd 11665 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙)) = (𝑐‘𝑘) ↔ (Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙) + (𝑐‘𝑘)) = Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙))) |
396 | 389, 395 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙)) = (𝑐‘𝑘)) |
397 | 379, 396 | eqtrd 2780 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((1 + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1) = (𝑐‘𝑘)) |
398 | 377, 397 | eqtrd 2780 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝑘 − (𝑘 − 1)) + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1) = (𝑐‘𝑘)) |
399 | 374, 398 | eqtrd 2780 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝑘 + Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙)) − ((𝑘 − 1) + Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1) = (𝑐‘𝑘)) |
400 | 320, 399 | eqtrd 2780 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘𝑘) − ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘(𝑘 − 1))) − 1) = (𝑐‘𝑘)) |
401 | 232, 400 | eqtrd 2780 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1) = (𝑐‘𝑘)) |
402 | 218, 401 | ifeqda 4584 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1)) = (𝑐‘𝑘)) |
403 | 164, 402 | ifeqda 4584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1))) = (𝑐‘𝑘)) |
404 | 403 | 3expa 1118 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1))) = (𝑐‘𝑘)) |
405 | 404 | mpteq2dva 5266 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ (𝑐‘𝑘))) |
406 | 97 | ffnd 6748 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐 Fn (1...(𝐾 + 1))) |
407 | | dffn5 6980 |
. . . . . . . 8
⊢ (𝑐 Fn (1...(𝐾 + 1)) ↔ 𝑐 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ (𝑐‘𝑘))) |
408 | 407 | biimpi 216 |
. . . . . . 7
⊢ (𝑐 Fn (1...(𝐾 + 1)) → 𝑐 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ (𝑐‘𝑘))) |
409 | 406, 408 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ (𝑐‘𝑘))) |
410 | 409 | eqcomd 2746 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ (𝑐‘𝑘)) = 𝑐) |
411 | 405, 410 | eqtrd 2780 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1)))) = 𝑐) |
412 | 37, 411 | eqtrd 2780 |
. . 3
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐺‘(𝐹‘𝑐)) = 𝑐) |
413 | 412 | ralrimiva 3152 |
. 2
⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝐺‘(𝐹‘𝑐)) = 𝑐) |
414 | 1, 2, 4, 8, 5, 6 | sticksstones12a 42114 |
. 2
⊢ (𝜑 → ∀𝑑 ∈ 𝐵 (𝐹‘(𝐺‘𝑑)) = 𝑑) |
415 | 7, 9, 413, 414 | 2fvidf1od 7334 |
1
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |