Step | Hyp | Ref
| Expression |
1 | | sticksstones12.1 |
. . 3
β’ (π β π β
β0) |
2 | | sticksstones12.2 |
. . . 4
β’ (π β πΎ β β) |
3 | 2 | nnnn0d 12528 |
. . 3
β’ (π β πΎ β
β0) |
4 | | sticksstones12.3 |
. . 3
β’ πΉ = (π β π΄ β¦ (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))) |
5 | | sticksstones12.5 |
. . 3
β’ π΄ = {π β£ (π:(1...(πΎ + 1))βΆβ0 β§
Ξ£π β (1...(πΎ + 1))(πβπ) = π)} |
6 | | sticksstones12.6 |
. . 3
β’ π΅ = {π β£ (π:(1...πΎ)βΆ(1...(π + πΎ)) β§ βπ₯ β (1...πΎ)βπ¦ β (1...πΎ)(π₯ < π¦ β (πβπ₯) < (πβπ¦)))} |
7 | 1, 3, 4, 5, 6 | sticksstones8 40957 |
. 2
β’ (π β πΉ:π΄βΆπ΅) |
8 | | sticksstones12.4 |
. . 3
β’ πΊ = (π β π΅ β¦ if(πΎ = 0, {β¨1, πβ©}, (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β
1)))))) |
9 | 1, 2, 8, 5, 6 | sticksstones10 40959 |
. 2
β’ (π β πΊ:π΅βΆπ΄) |
10 | 8 | a1i 11 |
. . . . . . 7
β’ (π β πΊ = (π β π΅ β¦ if(πΎ = 0, {β¨1, πβ©}, (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β
1))))))) |
11 | | 0red 11213 |
. . . . . . . . . . . . 13
β’ (π β 0 β
β) |
12 | 2 | nngt0d 12257 |
. . . . . . . . . . . . 13
β’ (π β 0 < πΎ) |
13 | 11, 12 | ltned 11346 |
. . . . . . . . . . . 12
β’ (π β 0 β πΎ) |
14 | 13 | necomd 2996 |
. . . . . . . . . . 11
β’ (π β πΎ β 0) |
15 | 14 | neneqd 2945 |
. . . . . . . . . 10
β’ (π β Β¬ πΎ = 0) |
16 | 15 | iffalsed 4538 |
. . . . . . . . 9
β’ (π β if(πΎ = 0, {β¨1, πβ©}, (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β 1))))) = (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β 1))))) |
17 | 16 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β π΅) β if(πΎ = 0, {β¨1, πβ©}, (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β 1))))) = (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β 1))))) |
18 | 17 | mpteq2dva 5247 |
. . . . . . 7
β’ (π β (π β π΅ β¦ if(πΎ = 0, {β¨1, πβ©}, (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β 1)))))) = (π β π΅ β¦ (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β
1)))))) |
19 | 10, 18 | eqtrd 2772 |
. . . . . 6
β’ (π β πΊ = (π β π΅ β¦ (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β
1)))))) |
20 | 19 | adantr 481 |
. . . . 5
β’ ((π β§ π β π΄) β πΊ = (π β π΅ β¦ (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β
1)))))) |
21 | | fveq1 6887 |
. . . . . . . . . 10
β’ (π = (πΉβπ) β (πβπΎ) = ((πΉβπ)βπΎ)) |
22 | 21 | oveq2d 7421 |
. . . . . . . . 9
β’ (π = (πΉβπ) β ((π + πΎ) β (πβπΎ)) = ((π + πΎ) β ((πΉβπ)βπΎ))) |
23 | | fveq1 6887 |
. . . . . . . . . . 11
β’ (π = (πΉβπ) β (πβ1) = ((πΉβπ)β1)) |
24 | 23 | oveq1d 7420 |
. . . . . . . . . 10
β’ (π = (πΉβπ) β ((πβ1) β 1) = (((πΉβπ)β1) β 1)) |
25 | | fveq1 6887 |
. . . . . . . . . . . 12
β’ (π = (πΉβπ) β (πβπ) = ((πΉβπ)βπ)) |
26 | | fveq1 6887 |
. . . . . . . . . . . 12
β’ (π = (πΉβπ) β (πβ(π β 1)) = ((πΉβπ)β(π β 1))) |
27 | 25, 26 | oveq12d 7423 |
. . . . . . . . . . 11
β’ (π = (πΉβπ) β ((πβπ) β (πβ(π β 1))) = (((πΉβπ)βπ) β ((πΉβπ)β(π β 1)))) |
28 | 27 | oveq1d 7420 |
. . . . . . . . . 10
β’ (π = (πΉβπ) β (((πβπ) β (πβ(π β 1))) β 1) = ((((πΉβπ)βπ) β ((πΉβπ)β(π β 1))) β 1)) |
29 | 24, 28 | ifeq12d 4548 |
. . . . . . . . 9
β’ (π = (πΉβπ) β if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β 1)) = if(π = 1, (((πΉβπ)β1) β 1), ((((πΉβπ)βπ) β ((πΉβπ)β(π β 1))) β 1))) |
30 | 22, 29 | ifeq12d 4548 |
. . . . . . . 8
β’ (π = (πΉβπ) β if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β 1))) = if(π = (πΎ + 1), ((π + πΎ) β ((πΉβπ)βπΎ)), if(π = 1, (((πΉβπ)β1) β 1), ((((πΉβπ)βπ) β ((πΉβπ)β(π β 1))) β 1)))) |
31 | 30 | adantr 481 |
. . . . . . 7
β’ ((π = (πΉβπ) β§ π β (1...(πΎ + 1))) β if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β 1))) = if(π = (πΎ + 1), ((π + πΎ) β ((πΉβπ)βπΎ)), if(π = 1, (((πΉβπ)β1) β 1), ((((πΉβπ)βπ) β ((πΉβπ)β(π β 1))) β 1)))) |
32 | 31 | mpteq2dva 5247 |
. . . . . 6
β’ (π = (πΉβπ) β (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β 1)))) = (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β ((πΉβπ)βπΎ)), if(π = 1, (((πΉβπ)β1) β 1), ((((πΉβπ)βπ) β ((πΉβπ)β(π β 1))) β 1))))) |
33 | 32 | adantl 482 |
. . . . 5
β’ (((π β§ π β π΄) β§ π = (πΉβπ)) β (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β (πβπΎ)), if(π = 1, ((πβ1) β 1), (((πβπ) β (πβ(π β 1))) β 1)))) = (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β ((πΉβπ)βπΎ)), if(π = 1, (((πΉβπ)β1) β 1), ((((πΉβπ)βπ) β ((πΉβπ)β(π β 1))) β 1))))) |
34 | 7 | ffvelcdmda 7083 |
. . . . 5
β’ ((π β§ π β π΄) β (πΉβπ) β π΅) |
35 | | fzfid 13934 |
. . . . . 6
β’ ((π β§ π β π΄) β (1...(πΎ + 1)) β Fin) |
36 | 35 | mptexd 7222 |
. . . . 5
β’ ((π β§ π β π΄) β (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β ((πΉβπ)βπΎ)), if(π = 1, (((πΉβπ)β1) β 1), ((((πΉβπ)βπ) β ((πΉβπ)β(π β 1))) β 1)))) β
V) |
37 | 20, 33, 34, 36 | fvmptd 7002 |
. . . 4
β’ ((π β§ π β π΄) β (πΊβ(πΉβπ)) = (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β ((πΉβπ)βπΎ)), if(π = 1, (((πΉβπ)β1) β 1), ((((πΉβπ)βπ) β ((πΉβπ)β(π β 1))) β 1))))) |
38 | 4 | a1i 11 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π΄) β πΉ = (π β π΄ β¦ (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ))))) |
39 | | simpllr 774 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ π β π΄) β§ π = π) β§ π β (1...πΎ)) β§ π β (1...π)) β π = π) |
40 | 39 | fveq1d 6890 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ π β π΄) β§ π = π) β§ π β (1...πΎ)) β§ π β (1...π)) β (πβπ) = (πβπ)) |
41 | 40 | sumeq2dv 15645 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ π β π΄) β§ π = π) β§ π β (1...πΎ)) β Ξ£π β (1...π)(πβπ) = Ξ£π β (1...π)(πβπ)) |
42 | 41 | oveq2d 7421 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β π΄) β§ π = π) β§ π β (1...πΎ)) β (π + Ξ£π β (1...π)(πβπ)) = (π + Ξ£π β (1...π)(πβπ))) |
43 | 42 | mpteq2dva 5247 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β π΄) β§ π = π) β (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ))) = (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))) |
44 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π΄) β π β π΄) |
45 | | fzfid 13934 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π΄) β (1...πΎ) β Fin) |
46 | 45 | mptexd 7222 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π΄) β (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ))) β V) |
47 | 38, 43, 44, 46 | fvmptd 7002 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π΄) β (πΉβπ) = (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))) |
48 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β π΄) β§ π = πΎ) β π = πΎ) |
49 | 48 | oveq2d 7421 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β π΄) β§ π = πΎ) β (1...π) = (1...πΎ)) |
50 | 49 | sumeq1d 15643 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β π΄) β§ π = πΎ) β Ξ£π β (1...π)(πβπ) = Ξ£π β (1...πΎ)(πβπ)) |
51 | 48, 50 | oveq12d 7423 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β π΄) β§ π = πΎ) β (π + Ξ£π β (1...π)(πβπ)) = (πΎ + Ξ£π β (1...πΎ)(πβπ))) |
52 | | 1zzd 12589 |
. . . . . . . . . . . . . . . 16
β’ (π β 1 β
β€) |
53 | 3 | nn0zd 12580 |
. . . . . . . . . . . . . . . 16
β’ (π β πΎ β β€) |
54 | 2 | nnge1d 12256 |
. . . . . . . . . . . . . . . 16
β’ (π β 1 β€ πΎ) |
55 | 2 | nnred 12223 |
. . . . . . . . . . . . . . . . 17
β’ (π β πΎ β β) |
56 | 55 | leidd 11776 |
. . . . . . . . . . . . . . . 16
β’ (π β πΎ β€ πΎ) |
57 | 52, 53, 53, 54, 56 | elfzd 13488 |
. . . . . . . . . . . . . . 15
β’ (π β πΎ β (1...πΎ)) |
58 | 57 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π΄) β πΎ β (1...πΎ)) |
59 | | ovexd 7440 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π΄) β (πΎ + Ξ£π β (1...πΎ)(πβπ)) β V) |
60 | 47, 51, 58, 59 | fvmptd 7002 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π΄) β ((πΉβπ)βπΎ) = (πΎ + Ξ£π β (1...πΎ)(πβπ))) |
61 | 60 | oveq2d 7421 |
. . . . . . . . . . . 12
β’ ((π β§ π β π΄) β ((π + πΎ) β ((πΉβπ)βπΎ)) = ((π + πΎ) β (πΎ + Ξ£π β (1...πΎ)(πβπ)))) |
62 | 1 | nn0cnd 12530 |
. . . . . . . . . . . . . . . 16
β’ (π β π β β) |
63 | 62 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π΄) β π β β) |
64 | 55 | recnd 11238 |
. . . . . . . . . . . . . . . 16
β’ (π β πΎ β β) |
65 | 64 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π΄) β πΎ β β) |
66 | 63, 65 | addcomd 11412 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π΄) β (π + πΎ) = (πΎ + π)) |
67 | 66 | oveq1d 7420 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π΄) β ((π + πΎ) β (πΎ + Ξ£π β (1...πΎ)(πβπ))) = ((πΎ + π) β (πΎ + Ξ£π β (1...πΎ)(πβπ)))) |
68 | | 1zzd 12589 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π΄) β§ π β (1...πΎ)) β 1 β β€) |
69 | 53 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π΄) β§ π β (1...πΎ)) β πΎ β β€) |
70 | 69 | peano2zd 12665 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π΄) β§ π β (1...πΎ)) β (πΎ + 1) β β€) |
71 | | elfzelz 13497 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (1...πΎ) β π β β€) |
72 | 71 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π΄) β§ π β (1...πΎ)) β π β β€) |
73 | | elfzle1 13500 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (1...πΎ) β 1 β€ π) |
74 | 73 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π΄) β§ π β (1...πΎ)) β 1 β€ π) |
75 | 72 | zred 12662 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π΄) β§ π β (1...πΎ)) β π β β) |
76 | 55 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π΄) β§ π β (1...πΎ)) β πΎ β β) |
77 | 70 | zred 12662 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π΄) β§ π β (1...πΎ)) β (πΎ + 1) β β) |
78 | | elfzle2 13501 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β (1...πΎ) β π β€ πΎ) |
79 | 78 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π΄) β§ π β (1...πΎ)) β π β€ πΎ) |
80 | 76 | lep1d 12141 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π΄) β§ π β (1...πΎ)) β πΎ β€ (πΎ + 1)) |
81 | 75, 76, 77, 79, 80 | letrd 11367 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π΄) β§ π β (1...πΎ)) β π β€ (πΎ + 1)) |
82 | 68, 70, 72, 74, 81 | elfzd 13488 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β π΄) β§ π β (1...πΎ)) β π β (1...(πΎ + 1))) |
83 | 5 | eleq2i 2825 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π β π΄ β π β {π β£ (π:(1...(πΎ + 1))βΆβ0 β§
Ξ£π β (1...(πΎ + 1))(πβπ) = π)}) |
84 | 83 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β π΄ β π β {π β£ (π:(1...(πΎ + 1))βΆβ0 β§
Ξ£π β (1...(πΎ + 1))(πβπ) = π)}) |
85 | 84 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β π΄) β π β {π β£ (π:(1...(πΎ + 1))βΆβ0 β§
Ξ£π β (1...(πΎ + 1))(πβπ) = π)}) |
86 | | vex 3478 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ π β V |
87 | | feq1 6695 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π = π β (π:(1...(πΎ + 1))βΆβ0 β
π:(1...(πΎ +
1))βΆβ0)) |
88 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((π = π β§ π β (1...(πΎ + 1))) β π = π) |
89 | 88 | fveq1d 6890 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((π = π β§ π β (1...(πΎ + 1))) β (πβπ) = (πβπ)) |
90 | 89 | sumeq2dv 15645 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’ (π = π β Ξ£π β (1...(πΎ + 1))(πβπ) = Ξ£π β (1...(πΎ + 1))(πβπ)) |
91 | 90 | eqeq1d 2734 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’ (π = π β (Ξ£π β (1...(πΎ + 1))(πβπ) = π β Ξ£π β (1...(πΎ + 1))(πβπ) = π)) |
92 | 87, 91 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ (π = π β ((π:(1...(πΎ + 1))βΆβ0 β§
Ξ£π β (1...(πΎ + 1))(πβπ) = π) β (π:(1...(πΎ + 1))βΆβ0 β§
Ξ£π β (1...(πΎ + 1))(πβπ) = π))) |
93 | 86, 92 | elab 3667 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π β {π β£ (π:(1...(πΎ + 1))βΆβ0 β§
Ξ£π β (1...(πΎ + 1))(πβπ) = π)} β (π:(1...(πΎ + 1))βΆβ0 β§
Ξ£π β (1...(πΎ + 1))(πβπ) = π)) |
94 | 93 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β§ π β π΄) β (π β {π β£ (π:(1...(πΎ + 1))βΆβ0 β§
Ξ£π β (1...(πΎ + 1))(πβπ) = π)} β (π:(1...(πΎ + 1))βΆβ0 β§
Ξ£π β (1...(πΎ + 1))(πβπ) = π))) |
95 | 94 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β π΄) β (π β {π β£ (π:(1...(πΎ + 1))βΆβ0 β§
Ξ£π β (1...(πΎ + 1))(πβπ) = π)} β (π:(1...(πΎ + 1))βΆβ0 β§
Ξ£π β (1...(πΎ + 1))(πβπ) = π))) |
96 | 85, 95 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π΄) β (π:(1...(πΎ + 1))βΆβ0 β§
Ξ£π β (1...(πΎ + 1))(πβπ) = π)) |
97 | 96 | simpld 495 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β π΄) β π:(1...(πΎ +
1))βΆβ0) |
98 | 97 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π΄) β§ π β (1...πΎ)) β π:(1...(πΎ +
1))βΆβ0) |
99 | 98 | ffvelcdmda 7083 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β§ π β π΄) β§ π β (1...πΎ)) β§ π β (1...(πΎ + 1))) β (πβπ) β
β0) |
100 | 82, 99 | mpdan 685 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β π΄) β§ π β (1...πΎ)) β (πβπ) β
β0) |
101 | 45, 100 | fsumnn0cl 15678 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π΄) β Ξ£π β (1...πΎ)(πβπ) β
β0) |
102 | 101 | nn0cnd 12530 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π΄) β Ξ£π β (1...πΎ)(πβπ) β β) |
103 | 65, 63, 102 | pnpcand 11604 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π΄) β ((πΎ + π) β (πΎ + Ξ£π β (1...πΎ)(πβπ))) = (π β Ξ£π β (1...πΎ)(πβπ))) |
104 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ 1 =
1 |
105 | | 1p0e1 12332 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (1 + 0) =
1 |
106 | 104, 105 | eqtr4i 2763 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ 1 = (1 +
0) |
107 | 106 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β 1 = (1 +
0)) |
108 | | 1red 11211 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β 1 β
β) |
109 | | 0le1 11733 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ 0 β€
1 |
110 | 109 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β 0 β€ 1) |
111 | 108, 11, 55, 108, 54, 110 | le2addd 11829 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β (1 + 0) β€ (πΎ + 1)) |
112 | 107, 111 | eqbrtrd 5169 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β 1 β€ (πΎ + 1)) |
113 | 53 | peano2zd 12665 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β (πΎ + 1) β β€) |
114 | | eluz 12832 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((1
β β€ β§ (πΎ +
1) β β€) β ((πΎ + 1) β
(β€β₯β1) β 1 β€ (πΎ + 1))) |
115 | 52, 113, 114 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β ((πΎ + 1) β
(β€β₯β1) β 1 β€ (πΎ + 1))) |
116 | 112, 115 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (πΎ + 1) β
(β€β₯β1)) |
117 | 116 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π΄) β (πΎ + 1) β
(β€β₯β1)) |
118 | 97 | ffvelcdmda 7083 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π΄) β§ π β (1...(πΎ + 1))) β (πβπ) β
β0) |
119 | 118 | nn0cnd 12530 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π΄) β§ π β (1...(πΎ + 1))) β (πβπ) β β) |
120 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = (πΎ + 1) β (πβπ) = (πβ(πΎ + 1))) |
121 | 117, 119,
120 | fsumm1 15693 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π΄) β Ξ£π β (1...(πΎ + 1))(πβπ) = (Ξ£π β (1...((πΎ + 1) β 1))(πβπ) + (πβ(πΎ + 1)))) |
122 | | 1cnd 11205 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β π΄) β 1 β β) |
123 | 65, 122 | pncand 11568 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π΄) β ((πΎ + 1) β 1) = πΎ) |
124 | 123 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β π΄) β (1...((πΎ + 1) β 1)) = (1...πΎ)) |
125 | 124 | sumeq1d 15643 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π΄) β Ξ£π β (1...((πΎ + 1) β 1))(πβπ) = Ξ£π β (1...πΎ)(πβπ)) |
126 | 125 | oveq1d 7420 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π΄) β (Ξ£π β (1...((πΎ + 1) β 1))(πβπ) + (πβ(πΎ + 1))) = (Ξ£π β (1...πΎ)(πβπ) + (πβ(πΎ + 1)))) |
127 | 121, 126 | eqtrd 2772 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π΄) β Ξ£π β (1...(πΎ + 1))(πβπ) = (Ξ£π β (1...πΎ)(πβπ) + (πβ(πΎ + 1)))) |
128 | 127 | eqcomd 2738 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π΄) β (Ξ£π β (1...πΎ)(πβπ) + (πβ(πΎ + 1))) = Ξ£π β (1...(πΎ + 1))(πβπ)) |
129 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = π β (πβπ) = (πβπ)) |
130 | | nfcv 2903 |
. . . . . . . . . . . . . . . . . . 19
β’
β²π(1...(πΎ + 1)) |
131 | | nfcv 2903 |
. . . . . . . . . . . . . . . . . . 19
β’
β²π(1...(πΎ + 1)) |
132 | | nfcv 2903 |
. . . . . . . . . . . . . . . . . . 19
β’
β²π(πβπ) |
133 | | nfcv 2903 |
. . . . . . . . . . . . . . . . . . 19
β’
β²π(πβπ) |
134 | 129, 130,
131, 132, 133 | cbvsum 15637 |
. . . . . . . . . . . . . . . . . 18
β’
Ξ£π β
(1...(πΎ + 1))(πβπ) = Ξ£π β (1...(πΎ + 1))(πβπ) |
135 | 134 | a1i 11 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π΄) β Ξ£π β (1...(πΎ + 1))(πβπ) = Ξ£π β (1...(πΎ + 1))(πβπ)) |
136 | 96 | simprd 496 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π΄) β Ξ£π β (1...(πΎ + 1))(πβπ) = π) |
137 | 135, 136 | eqtrd 2772 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π΄) β Ξ£π β (1...(πΎ + 1))(πβπ) = π) |
138 | 128, 137 | eqtrd 2772 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π΄) β (Ξ£π β (1...πΎ)(πβπ) + (πβ(πΎ + 1))) = π) |
139 | | 1zzd 12589 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π΄) β 1 β β€) |
140 | 53 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β π΄) β πΎ β β€) |
141 | 140 | peano2zd 12665 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π΄) β (πΎ + 1) β β€) |
142 | | 1e0p1 12715 |
. . . . . . . . . . . . . . . . . . . . 21
β’ 1 = (0 +
1) |
143 | 142 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β π΄) β 1 = (0 + 1)) |
144 | | 0red 11213 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π΄) β 0 β β) |
145 | 55 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π΄) β πΎ β β) |
146 | | 1red 11211 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π΄) β 1 β β) |
147 | 11, 55, 12 | ltled 11358 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β 0 β€ πΎ) |
148 | 147 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π΄) β 0 β€ πΎ) |
149 | 144, 145,
146, 148 | leadd1dd 11824 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β π΄) β (0 + 1) β€ (πΎ + 1)) |
150 | 143, 149 | eqbrtrd 5169 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π΄) β 1 β€ (πΎ + 1)) |
151 | 55, 55, 108, 56 | leadd1dd 11824 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (πΎ + 1) β€ (πΎ + 1)) |
152 | 151 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π΄) β (πΎ + 1) β€ (πΎ + 1)) |
153 | 139, 141,
141, 150, 152 | elfzd 13488 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π΄) β (πΎ + 1) β (1...(πΎ + 1))) |
154 | 97, 153 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π΄) β (πβ(πΎ + 1)) β
β0) |
155 | 154 | nn0cnd 12530 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π΄) β (πβ(πΎ + 1)) β β) |
156 | 63, 102, 155 | subaddd 11585 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π΄) β ((π β Ξ£π β (1...πΎ)(πβπ)) = (πβ(πΎ + 1)) β (Ξ£π β (1...πΎ)(πβπ) + (πβ(πΎ + 1))) = π)) |
157 | 138, 156 | mpbird 256 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π΄) β (π β Ξ£π β (1...πΎ)(πβπ)) = (πβ(πΎ + 1))) |
158 | 103, 157 | eqtrd 2772 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π΄) β ((πΎ + π) β (πΎ + Ξ£π β (1...πΎ)(πβπ))) = (πβ(πΎ + 1))) |
159 | 67, 158 | eqtrd 2772 |
. . . . . . . . . . . 12
β’ ((π β§ π β π΄) β ((π + πΎ) β (πΎ + Ξ£π β (1...πΎ)(πβπ))) = (πβ(πΎ + 1))) |
160 | 61, 159 | eqtrd 2772 |
. . . . . . . . . . 11
β’ ((π β§ π β π΄) β ((π + πΎ) β ((πΉβπ)βπΎ)) = (πβ(πΎ + 1))) |
161 | 160 | 3adant3 1132 |
. . . . . . . . . 10
β’ ((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β ((π + πΎ) β ((πΉβπ)βπΎ)) = (πβ(πΎ + 1))) |
162 | 161 | adantr 481 |
. . . . . . . . 9
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ π = (πΎ + 1)) β ((π + πΎ) β ((πΉβπ)βπΎ)) = (πβ(πΎ + 1))) |
163 | | simpr 485 |
. . . . . . . . . . 11
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ π = (πΎ + 1)) β π = (πΎ + 1)) |
164 | 163 | fveq2d 6892 |
. . . . . . . . . 10
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ π = (πΎ + 1)) β (πβπ) = (πβ(πΎ + 1))) |
165 | 164 | eqcomd 2738 |
. . . . . . . . 9
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ π = (πΎ + 1)) β (πβ(πΎ + 1)) = (πβπ)) |
166 | 162, 165 | eqtrd 2772 |
. . . . . . . 8
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ π = (πΎ + 1)) β ((π + πΎ) β ((πΉβπ)βπΎ)) = (πβπ)) |
167 | 47 | fveq1d 6890 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π΄) β ((πΉβπ)β1) = ((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))β1)) |
168 | 167 | oveq1d 7420 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π΄) β (((πΉβπ)β1) β 1) = (((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))β1) β 1)) |
169 | | eqidd 2733 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π΄) β (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ))) = (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))) |
170 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β π΄) β§ π = 1) β π = 1) |
171 | 170 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π΄) β§ π = 1) β (1...π) = (1...1)) |
172 | 171 | sumeq1d 15643 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β π΄) β§ π = 1) β Ξ£π β (1...π)(πβπ) = Ξ£π β (1...1)(πβπ)) |
173 | 170, 172 | oveq12d 7423 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β π΄) β§ π = 1) β (π + Ξ£π β (1...π)(πβπ)) = (1 + Ξ£π β (1...1)(πβπ))) |
174 | 146 | leidd 11776 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π΄) β 1 β€ 1) |
175 | 54 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π΄) β 1 β€ πΎ) |
176 | 139, 140,
139, 174, 175 | elfzd 13488 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π΄) β 1 β (1...πΎ)) |
177 | | ovexd 7440 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π΄) β (1 + Ξ£π β (1...1)(πβπ)) β V) |
178 | 169, 173,
176, 177 | fvmptd 7002 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π΄) β ((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))β1) = (1 + Ξ£π β (1...1)(πβπ))) |
179 | 178 | oveq1d 7420 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π΄) β (((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))β1) β 1) = ((1 + Ξ£π β (1...1)(πβπ)) β 1)) |
180 | | fzfid 13934 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π΄) β (1...1) β
Fin) |
181 | | 1zzd 12589 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ π β π΄) β§ π β (1...1)) β 1 β
β€) |
182 | 140 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ π β π΄) β§ π β (1...1)) β πΎ β β€) |
183 | 182 | peano2zd 12665 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ π β π΄) β§ π β (1...1)) β (πΎ + 1) β β€) |
184 | | elfzelz 13497 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β (1...1) β π β
β€) |
185 | 184 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ π β π΄) β§ π β (1...1)) β π β β€) |
186 | | elfzle1 13500 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β (1...1) β 1 β€
π) |
187 | 186 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ π β π΄) β§ π β (1...1)) β 1 β€ π) |
188 | 185 | zred 12662 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ π β π΄) β§ π β (1...1)) β π β β) |
189 | | 0red 11213 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β§ π β π΄) β§ π β (1...1)) β 0 β
β) |
190 | | 1red 11211 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β§ π β π΄) β§ π β (1...1)) β 1 β
β) |
191 | 189, 190 | readdcld 11239 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ π β π΄) β§ π β (1...1)) β (0 + 1) β
β) |
192 | 183 | zred 12662 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ π β π΄) β§ π β (1...1)) β (πΎ + 1) β β) |
193 | | elfzle2 13501 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ (π β (1...1) β π β€ 1) |
194 | 193 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β§ π β π΄) β§ π β (1...1)) β π β€ 1) |
195 | 142 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β§ π β π΄) β§ π β (1...1)) β 1 = (0 +
1)) |
196 | 194, 195 | breqtrd 5173 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ π β π΄) β§ π β (1...1)) β π β€ (0 + 1)) |
197 | 149 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ π β π΄) β§ π β (1...1)) β (0 + 1) β€ (πΎ + 1)) |
198 | 188, 191,
192, 196, 197 | letrd 11367 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ π β π΄) β§ π β (1...1)) β π β€ (πΎ + 1)) |
199 | 181, 183,
185, 187, 198 | elfzd 13488 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π΄) β§ π β (1...1)) β π β (1...(πΎ + 1))) |
200 | 118 | adantlr 713 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((π β§ π β π΄) β§ π β (1...1)) β§ π β (1...(πΎ + 1))) β (πβπ) β
β0) |
201 | 199, 200 | mpdan 685 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π΄) β§ π β (1...1)) β (πβπ) β
β0) |
202 | 180, 201 | fsumnn0cl 15678 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π΄) β Ξ£π β (1...1)(πβπ) β
β0) |
203 | 202 | nn0cnd 12530 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π΄) β Ξ£π β (1...1)(πβπ) β β) |
204 | 122, 203 | pncan2d 11569 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π΄) β ((1 + Ξ£π β (1...1)(πβπ)) β 1) = Ξ£π β (1...1)(πβπ)) |
205 | 139, 141,
139, 174, 150 | elfzd 13488 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π΄) β 1 β (1...(πΎ + 1))) |
206 | 97, 205 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π΄) β (πβ1) β
β0) |
207 | 206 | nn0cnd 12530 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π΄) β (πβ1) β β) |
208 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . 18
β’ (π = 1 β (πβπ) = (πβ1)) |
209 | 208 | fsum1 15689 |
. . . . . . . . . . . . . . . . 17
β’ ((1
β β€ β§ (πβ1) β β) β Ξ£π β (1...1)(πβπ) = (πβ1)) |
210 | 139, 207,
209 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β π΄) β Ξ£π β (1...1)(πβπ) = (πβ1)) |
211 | 204, 210 | eqtrd 2772 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π΄) β ((1 + Ξ£π β (1...1)(πβπ)) β 1) = (πβ1)) |
212 | 179, 211 | eqtrd 2772 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π΄) β (((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))β1) β 1) = (πβ1)) |
213 | 168, 212 | eqtrd 2772 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π΄) β (((πΉβπ)β1) β 1) = (πβ1)) |
214 | 213 | 3adant3 1132 |
. . . . . . . . . . . 12
β’ ((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β (((πΉβπ)β1) β 1) = (πβ1)) |
215 | 214 | adantr 481 |
. . . . . . . . . . 11
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β (((πΉβπ)β1) β 1) = (πβ1)) |
216 | 215 | adantr 481 |
. . . . . . . . . 10
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ π = 1) β (((πΉβπ)β1) β 1) = (πβ1)) |
217 | | simpr 485 |
. . . . . . . . . . . 12
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ π = 1) β π = 1) |
218 | 217 | fveq2d 6892 |
. . . . . . . . . . 11
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ π = 1) β (πβπ) = (πβ1)) |
219 | 218 | eqcomd 2738 |
. . . . . . . . . 10
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ π = 1) β (πβ1) = (πβπ)) |
220 | 216, 219 | eqtrd 2772 |
. . . . . . . . 9
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ π = 1) β (((πΉβπ)β1) β 1) = (πβπ)) |
221 | 4 | a1i 11 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β πΉ = (π β π΄ β¦ (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ))))) |
222 | | simpllr 774 |
. . . . . . . . . . . . . . . . . 18
β’
(((((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π = π) β§ π β (1...πΎ)) β§ π β (1...π)) β π = π) |
223 | 222 | fveq1d 6890 |
. . . . . . . . . . . . . . . . 17
β’
(((((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π = π) β§ π β (1...πΎ)) β§ π β (1...π)) β (πβπ) = (πβπ)) |
224 | 223 | sumeq2dv 15645 |
. . . . . . . . . . . . . . . 16
β’
((((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π = π) β§ π β (1...πΎ)) β Ξ£π β (1...π)(πβπ) = Ξ£π β (1...π)(πβπ)) |
225 | 224 | oveq2d 7421 |
. . . . . . . . . . . . . . 15
β’
((((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π = π) β§ π β (1...πΎ)) β (π + Ξ£π β (1...π)(πβπ)) = (π + Ξ£π β (1...π)(πβπ))) |
226 | 225 | mpteq2dva 5247 |
. . . . . . . . . . . . . 14
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π = π) β (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ))) = (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))) |
227 | | simpll2 1213 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β π β π΄) |
228 | | fzfid 13934 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (1...πΎ) β Fin) |
229 | 228 | mptexd 7222 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ))) β V) |
230 | 221, 226,
227, 229 | fvmptd 7002 |
. . . . . . . . . . . . 13
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (πΉβπ) = (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))) |
231 | 230 | fveq1d 6890 |
. . . . . . . . . . . 12
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β ((πΉβπ)βπ) = ((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))βπ)) |
232 | 230 | fveq1d 6890 |
. . . . . . . . . . . 12
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β ((πΉβπ)β(π β 1)) = ((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))β(π β 1))) |
233 | 231, 232 | oveq12d 7423 |
. . . . . . . . . . 11
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (((πΉβπ)βπ) β ((πΉβπ)β(π β 1))) = (((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))βπ) β ((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))β(π β 1)))) |
234 | 233 | oveq1d 7420 |
. . . . . . . . . 10
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β ((((πΉβπ)βπ) β ((πΉβπ)β(π β 1))) β 1) = ((((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))βπ) β ((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))β(π β 1))) β 1)) |
235 | | eqidd 2733 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ))) = (π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))) |
236 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π = π) β π = π) |
237 | 236 | oveq2d 7421 |
. . . . . . . . . . . . . . . 16
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π = π) β (1...π) = (1...π)) |
238 | 237 | sumeq1d 15643 |
. . . . . . . . . . . . . . 15
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π = π) β Ξ£π β (1...π)(πβπ) = Ξ£π β (1...π)(πβπ)) |
239 | 236, 238 | oveq12d 7423 |
. . . . . . . . . . . . . 14
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π = π) β (π + Ξ£π β (1...π)(πβπ)) = (π + Ξ£π β (1...π)(πβπ))) |
240 | | 1zzd 12589 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β 1 β
β€) |
241 | 140 | 3adant3 1132 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β πΎ β β€) |
242 | 241 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β πΎ β β€) |
243 | 242 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β πΎ β β€) |
244 | | elfznn 13526 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β (1...(πΎ + 1)) β π β β) |
245 | 244 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β π β β) |
246 | 245 | nnzd 12581 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β π β β€) |
247 | 246 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β π β β€) |
248 | 247 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β π β β€) |
249 | 245 | nnge1d 12256 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β 1 β€ π) |
250 | 249 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β 1 β€ π) |
251 | 250 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β 1 β€ π) |
252 | | simpl3 1193 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β π β (1...(πΎ + 1))) |
253 | | 1zzd 12589 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β 1 β
β€) |
254 | 242 | peano2zd 12665 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β (πΎ + 1) β β€) |
255 | | elfz 13486 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β β€ β§ 1 β
β€ β§ (πΎ + 1)
β β€) β (π
β (1...(πΎ + 1)) β
(1 β€ π β§ π β€ (πΎ + 1)))) |
256 | 247, 253,
254, 255 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β (π β (1...(πΎ + 1)) β (1 β€ π β§ π β€ (πΎ + 1)))) |
257 | 256 | biimpd 228 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β (π β (1...(πΎ + 1)) β (1 β€ π β§ π β€ (πΎ + 1)))) |
258 | 252, 257 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β (1 β€ π β§ π β€ (πΎ + 1))) |
259 | 258 | simprd 496 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β π β€ (πΎ + 1)) |
260 | | neqne 2948 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (Β¬
π = (πΎ + 1) β π β (πΎ + 1)) |
261 | 260 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β π β (πΎ + 1)) |
262 | 261 | necomd 2996 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β (πΎ + 1) β π) |
263 | 259, 262 | jca 512 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β (π β€ (πΎ + 1) β§ (πΎ + 1) β π)) |
264 | 247 | zred 12662 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β π β β) |
265 | 254 | zred 12662 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β (πΎ + 1) β β) |
266 | 264, 265 | ltlend 11355 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β (π < (πΎ + 1) β (π β€ (πΎ + 1) β§ (πΎ + 1) β π))) |
267 | 263, 266 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β π < (πΎ + 1)) |
268 | | zleltp1 12609 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β β€ β§ πΎ β β€) β (π β€ πΎ β π < (πΎ + 1))) |
269 | 247, 242,
268 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β (π β€ πΎ β π < (πΎ + 1))) |
270 | 267, 269 | mpbird 256 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β π β€ πΎ) |
271 | 270 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β π β€ πΎ) |
272 | 240, 243,
248, 251, 271 | elfzd 13488 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β π β (1...πΎ)) |
273 | | ovexd 7440 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (π + Ξ£π β (1...π)(πβπ)) β V) |
274 | 235, 239,
272, 273 | fvmptd 7002 |
. . . . . . . . . . . . 13
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β ((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))βπ) = (π + Ξ£π β (1...π)(πβπ))) |
275 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π = (π β 1)) β π = (π β 1)) |
276 | 275 | oveq2d 7421 |
. . . . . . . . . . . . . . . 16
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π = (π β 1)) β (1...π) = (1...(π β 1))) |
277 | 276 | sumeq1d 15643 |
. . . . . . . . . . . . . . 15
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π = (π β 1)) β Ξ£π β (1...π)(πβπ) = Ξ£π β (1...(π β 1))(πβπ)) |
278 | 275, 277 | oveq12d 7423 |
. . . . . . . . . . . . . 14
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π = (π β 1)) β (π + Ξ£π β (1...π)(πβπ)) = ((π β 1) + Ξ£π β (1...(π β 1))(πβπ))) |
279 | | 1zzd 12589 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β 1 β
β€) |
280 | 53 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ π β (1...(πΎ + 1))) β§ Β¬ π = 1) β πΎ β β€) |
281 | 280 | 3impa 1110 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β πΎ β β€) |
282 | 244 | nnzd 12581 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β (1...(πΎ + 1)) β π β β€) |
283 | 282 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β (1...(πΎ + 1))) β π β β€) |
284 | 283 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β (1...(πΎ + 1))) β§ Β¬ π = 1) β π β β€) |
285 | 284 | 3impa 1110 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β π β β€) |
286 | 285, 279 | zsubcld 12667 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β (π β 1) β β€) |
287 | | neqne 2948 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (Β¬
π = 1 β π β 1) |
288 | 287 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β π β 1) |
289 | 108 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β 1 β
β) |
290 | 285 | zred 12662 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β π β β) |
291 | | simp2 1137 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β π β (1...(πΎ + 1))) |
292 | | elfzle1 13500 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (π β (1...(πΎ + 1)) β 1 β€ π) |
293 | 291, 292 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β 1 β€ π) |
294 | 289, 290,
293 | leltned 11363 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β (1 < π β π β 1)) |
295 | 288, 294 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β 1 < π) |
296 | 279, 285 | zltp1led 40833 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β (1 < π β (1 + 1) β€ π)) |
297 | 295, 296 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β (1 + 1) β€ π) |
298 | | leaddsub 11686 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((1
β β β§ 1 β β β§ π β β) β ((1 + 1) β€ π β 1 β€ (π β 1))) |
299 | 289, 289,
290, 298 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β ((1 + 1) β€ π β 1 β€ (π β 1))) |
300 | 297, 299 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β 1 β€ (π β 1)) |
301 | 286 | zred 12662 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β (π β 1) β β) |
302 | 55 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β πΎ β β) |
303 | | 1red 11211 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β 1 β
β) |
304 | 302, 303 | readdcld 11239 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β (πΎ + 1) β β) |
305 | 304, 303 | resubcld 11638 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β ((πΎ + 1) β 1) β
β) |
306 | | elfzle2 13501 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π β (1...(πΎ + 1)) β π β€ (πΎ + 1)) |
307 | 306 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β π β€ (πΎ + 1)) |
308 | 290, 304,
303, 307 | lesub1dd 11826 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β (π β 1) β€ ((πΎ + 1) β 1)) |
309 | 64 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β πΎ β β) |
310 | | 1cnd 11205 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β 1 β
β) |
311 | 309, 310 | pncand 11568 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β ((πΎ + 1) β 1) = πΎ) |
312 | 56 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β πΎ β€ πΎ) |
313 | 311, 312 | eqbrtrd 5169 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β ((πΎ + 1) β 1) β€ πΎ) |
314 | 301, 305,
302, 308, 313 | letrd 11367 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β (π β 1) β€ πΎ) |
315 | 279, 281,
286, 300, 314 | elfzd 13488 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β (1...(πΎ + 1)) β§ Β¬ π = 1) β (π β 1) β (1...πΎ)) |
316 | 315 | 3expa 1118 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β (1...(πΎ + 1))) β§ Β¬ π = 1) β (π β 1) β (1...πΎ)) |
317 | 316 | 3adantl2 1167 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = 1) β (π β 1) β (1...πΎ)) |
318 | 317 | adantlr 713 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (π β 1) β (1...πΎ)) |
319 | | ovexd 7440 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β ((π β 1) + Ξ£π β (1...(π β 1))(πβπ)) β V) |
320 | 235, 278,
318, 319 | fvmptd 7002 |
. . . . . . . . . . . . 13
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β ((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))β(π β 1)) = ((π β 1) + Ξ£π β (1...(π β 1))(πβπ))) |
321 | 274, 320 | oveq12d 7423 |
. . . . . . . . . . . 12
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))βπ) β ((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))β(π β 1))) = ((π + Ξ£π β (1...π)(πβπ)) β ((π β 1) + Ξ£π β (1...(π β 1))(πβπ)))) |
322 | 321 | oveq1d 7420 |
. . . . . . . . . . 11
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β ((((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))βπ) β ((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))β(π β 1))) β 1) = (((π + Ξ£π β (1...π)(πβπ)) β ((π β 1) + Ξ£π β (1...(π β 1))(πβπ))) β 1)) |
323 | 248 | zcnd 12663 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β π β β) |
324 | | fzfid 13934 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (1...π) β Fin) |
325 | | 1zzd 12589 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β 1 β β€) |
326 | 243 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β πΎ β β€) |
327 | 326 | peano2zd 12665 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β (πΎ + 1) β β€) |
328 | | elfznn 13526 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (1...π) β π β β) |
329 | 328 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β π β β) |
330 | 329 | nnzd 12581 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β π β β€) |
331 | 329 | nnge1d 12256 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β 1 β€ π) |
332 | 329 | nnred 12223 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β π β β) |
333 | 264 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β π β β) |
334 | 265 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β (πΎ + 1) β β) |
335 | | elfzle2 13501 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (1...π) β π β€ π) |
336 | 335 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β π β€ π) |
337 | 259 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β π β€ (πΎ + 1)) |
338 | 332, 333,
334, 336, 337 | letrd 11367 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β π β€ (πΎ + 1)) |
339 | 325, 327,
330, 331, 338 | elfzd 13488 |
. . . . . . . . . . . . . . . . 17
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β π β (1...(πΎ + 1))) |
340 | 97 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β π:(1...(πΎ +
1))βΆβ0) |
341 | 340 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β π:(1...(πΎ +
1))βΆβ0) |
342 | 341 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β π:(1...(πΎ +
1))βΆβ0) |
343 | 342 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β π:(1...(πΎ +
1))βΆβ0) |
344 | 343 | ffvelcdmda 7083 |
. . . . . . . . . . . . . . . . 17
β’
((((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β§ π β (1...(πΎ + 1))) β (πβπ) β
β0) |
345 | 339, 344 | mpdan 685 |
. . . . . . . . . . . . . . . 16
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β (πβπ) β
β0) |
346 | 324, 345 | fsumnn0cl 15678 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β Ξ£π β (1...π)(πβπ) β
β0) |
347 | 346 | nn0cnd 12530 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β Ξ£π β (1...π)(πβπ) β β) |
348 | | 1cnd 11205 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β 1 β
β) |
349 | 323, 348 | subcld 11567 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (π β 1) β β) |
350 | | fzfid 13934 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (1...(π β 1)) β Fin) |
351 | | 1zzd 12589 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β 1 β
β€) |
352 | 243 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β πΎ β β€) |
353 | 352 | peano2zd 12665 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β (πΎ + 1) β β€) |
354 | | elfznn 13526 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (1...(π β 1)) β π β β) |
355 | 354 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β π β β) |
356 | 355 | nnzd 12581 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β π β β€) |
357 | 355 | nnge1d 12256 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β 1 β€ π) |
358 | 355 | nnred 12223 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β π β β) |
359 | 264 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β π β β) |
360 | | 1red 11211 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β 1 β
β) |
361 | 359, 360 | resubcld 11638 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β (π β 1) β β) |
362 | 265 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β (πΎ + 1) β β) |
363 | | elfzle2 13501 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (1...(π β 1)) β π β€ (π β 1)) |
364 | 363 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β π β€ (π β 1)) |
365 | 359 | lem1d 12143 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β (π β 1) β€ π) |
366 | 259 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . . . 20
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β π β€ (πΎ + 1)) |
367 | 361, 359,
362, 365, 366 | letrd 11367 |
. . . . . . . . . . . . . . . . . . 19
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β (π β 1) β€ (πΎ + 1)) |
368 | 358, 361,
362, 364, 367 | letrd 11367 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β π β€ (πΎ + 1)) |
369 | 351, 353,
356, 357, 368 | elfzd 13488 |
. . . . . . . . . . . . . . . . 17
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β π β (1...(πΎ + 1))) |
370 | 342 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β π:(1...(πΎ +
1))βΆβ0) |
371 | 370 | ffvelcdmda 7083 |
. . . . . . . . . . . . . . . . 17
β’
((((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β§ π β (1...(πΎ + 1))) β (πβπ) β
β0) |
372 | 369, 371 | mpdan 685 |
. . . . . . . . . . . . . . . 16
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...(π β 1))) β (πβπ) β
β0) |
373 | 350, 372 | fsumnn0cl 15678 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β Ξ£π β (1...(π β 1))(πβπ) β
β0) |
374 | 373 | nn0cnd 12530 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β Ξ£π β (1...(π β 1))(πβπ) β β) |
375 | 323, 347,
349, 374 | addsub4d 11614 |
. . . . . . . . . . . . 13
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β ((π + Ξ£π β (1...π)(πβπ)) β ((π β 1) + Ξ£π β (1...(π β 1))(πβπ))) = ((π β (π β 1)) + (Ξ£π β (1...π)(πβπ) β Ξ£π β (1...(π β 1))(πβπ)))) |
376 | 375 | oveq1d 7420 |
. . . . . . . . . . . 12
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (((π + Ξ£π β (1...π)(πβπ)) β ((π β 1) + Ξ£π β (1...(π β 1))(πβπ))) β 1) = (((π β (π β 1)) + (Ξ£π β (1...π)(πβπ) β Ξ£π β (1...(π β 1))(πβπ))) β 1)) |
377 | 323, 348 | nncand 11572 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (π β (π β 1)) = 1) |
378 | 377 | oveq1d 7420 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β ((π β (π β 1)) + (Ξ£π β (1...π)(πβπ) β Ξ£π β (1...(π β 1))(πβπ))) = (1 + (Ξ£π β (1...π)(πβπ) β Ξ£π β (1...(π β 1))(πβπ)))) |
379 | 378 | oveq1d 7420 |
. . . . . . . . . . . . 13
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (((π β (π β 1)) + (Ξ£π β (1...π)(πβπ) β Ξ£π β (1...(π β 1))(πβπ))) β 1) = ((1 + (Ξ£π β (1...π)(πβπ) β Ξ£π β (1...(π β 1))(πβπ))) β 1)) |
380 | 347, 374 | subcld 11567 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (Ξ£π β (1...π)(πβπ) β Ξ£π β (1...(π β 1))(πβπ)) β β) |
381 | 348, 380 | pncan2d 11569 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β ((1 + (Ξ£π β (1...π)(πβπ) β Ξ£π β (1...(π β 1))(πβπ))) β 1) = (Ξ£π β (1...π)(πβπ) β Ξ£π β (1...(π β 1))(πβπ))) |
382 | 139 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β 1 β
β€) |
383 | 382, 246,
249 | 3jca 1128 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β (1 β β€ β§ π β β€ β§ 1 β€
π)) |
384 | | eluz2 12824 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β
(β€β₯β1) β (1 β β€ β§ π β β€ β§ 1 β€
π)) |
385 | 383, 384 | sylibr 233 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β π β
(β€β₯β1)) |
386 | 385 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β π β
(β€β₯β1)) |
387 | 386 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β π β
(β€β₯β1)) |
388 | 345 | nn0cnd 12530 |
. . . . . . . . . . . . . . . . 17
β’
(((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β§ π β (1...π)) β (πβπ) β β) |
389 | | fveq2 6888 |
. . . . . . . . . . . . . . . . 17
β’ (π = π β (πβπ) = (πβπ)) |
390 | 387, 388,
389 | fsumm1 15693 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β Ξ£π β (1...π)(πβπ) = (Ξ£π β (1...(π β 1))(πβπ) + (πβπ))) |
391 | 390 | eqcomd 2738 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (Ξ£π β (1...(π β 1))(πβπ) + (πβπ)) = Ξ£π β (1...π)(πβπ)) |
392 | | simp3 1138 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β π β (1...(πΎ + 1))) |
393 | 340, 392 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β (πβπ) β
β0) |
394 | 393 | nn0cnd 12530 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β (πβπ) β β) |
395 | 394 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β (πβπ) β β) |
396 | 395 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (πβπ) β β) |
397 | 347, 374,
396 | subaddd 11585 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β ((Ξ£π β (1...π)(πβπ) β Ξ£π β (1...(π β 1))(πβπ)) = (πβπ) β (Ξ£π β (1...(π β 1))(πβπ) + (πβπ)) = Ξ£π β (1...π)(πβπ))) |
398 | 391, 397 | mpbird 256 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (Ξ£π β (1...π)(πβπ) β Ξ£π β (1...(π β 1))(πβπ)) = (πβπ)) |
399 | 381, 398 | eqtrd 2772 |
. . . . . . . . . . . . 13
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β ((1 + (Ξ£π β (1...π)(πβπ) β Ξ£π β (1...(π β 1))(πβπ))) β 1) = (πβπ)) |
400 | 379, 399 | eqtrd 2772 |
. . . . . . . . . . . 12
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (((π β (π β 1)) + (Ξ£π β (1...π)(πβπ) β Ξ£π β (1...(π β 1))(πβπ))) β 1) = (πβπ)) |
401 | 376, 400 | eqtrd 2772 |
. . . . . . . . . . 11
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β (((π + Ξ£π β (1...π)(πβπ)) β ((π β 1) + Ξ£π β (1...(π β 1))(πβπ))) β 1) = (πβπ)) |
402 | 322, 401 | eqtrd 2772 |
. . . . . . . . . 10
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β ((((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))βπ) β ((π β (1...πΎ) β¦ (π + Ξ£π β (1...π)(πβπ)))β(π β 1))) β 1) = (πβπ)) |
403 | 234, 402 | eqtrd 2772 |
. . . . . . . . 9
β’ ((((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β§ Β¬ π = 1) β ((((πΉβπ)βπ) β ((πΉβπ)β(π β 1))) β 1) = (πβπ)) |
404 | 220, 403 | ifeqda 4563 |
. . . . . . . 8
β’ (((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β§ Β¬ π = (πΎ + 1)) β if(π = 1, (((πΉβπ)β1) β 1), ((((πΉβπ)βπ) β ((πΉβπ)β(π β 1))) β 1)) = (πβπ)) |
405 | 166, 404 | ifeqda 4563 |
. . . . . . 7
β’ ((π β§ π β π΄ β§ π β (1...(πΎ + 1))) β if(π = (πΎ + 1), ((π + πΎ) β ((πΉβπ)βπΎ)), if(π = 1, (((πΉβπ)β1) β 1), ((((πΉβπ)βπ) β ((πΉβπ)β(π β 1))) β 1))) = (πβπ)) |
406 | 405 | 3expa 1118 |
. . . . . 6
β’ (((π β§ π β π΄) β§ π β (1...(πΎ + 1))) β if(π = (πΎ + 1), ((π + πΎ) β ((πΉβπ)βπΎ)), if(π = 1, (((πΉβπ)β1) β 1), ((((πΉβπ)βπ) β ((πΉβπ)β(π β 1))) β 1))) = (πβπ)) |
407 | 406 | mpteq2dva 5247 |
. . . . 5
β’ ((π β§ π β π΄) β (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β ((πΉβπ)βπΎ)), if(π = 1, (((πΉβπ)β1) β 1), ((((πΉβπ)βπ) β ((πΉβπ)β(π β 1))) β 1)))) = (π β (1...(πΎ + 1)) β¦ (πβπ))) |
408 | 97 | ffnd 6715 |
. . . . . . 7
β’ ((π β§ π β π΄) β π Fn (1...(πΎ + 1))) |
409 | | dffn5 6947 |
. . . . . . . 8
β’ (π Fn (1...(πΎ + 1)) β π = (π β (1...(πΎ + 1)) β¦ (πβπ))) |
410 | 409 | biimpi 215 |
. . . . . . 7
β’ (π Fn (1...(πΎ + 1)) β π = (π β (1...(πΎ + 1)) β¦ (πβπ))) |
411 | 408, 410 | syl 17 |
. . . . . 6
β’ ((π β§ π β π΄) β π = (π β (1...(πΎ + 1)) β¦ (πβπ))) |
412 | 411 | eqcomd 2738 |
. . . . 5
β’ ((π β§ π β π΄) β (π β (1...(πΎ + 1)) β¦ (πβπ)) = π) |
413 | 407, 412 | eqtrd 2772 |
. . . 4
β’ ((π β§ π β π΄) β (π β (1...(πΎ + 1)) β¦ if(π = (πΎ + 1), ((π + πΎ) β ((πΉβπ)βπΎ)), if(π = 1, (((πΉβπ)β1) β 1), ((((πΉβπ)βπ) β ((πΉβπ)β(π β 1))) β 1)))) = π) |
414 | 37, 413 | eqtrd 2772 |
. . 3
β’ ((π β§ π β π΄) β (πΊβ(πΉβπ)) = π) |
415 | 414 | ralrimiva 3146 |
. 2
β’ (π β βπ β π΄ (πΊβ(πΉβπ)) = π) |
416 | 1, 2, 4, 8, 5, 6 | sticksstones12a 40961 |
. 2
β’ (π β βπ β π΅ (πΉβ(πΊβπ)) = π) |
417 | 7, 9, 415, 416 | 2fvidf1od 7292 |
1
β’ (π β πΉ:π΄β1-1-ontoβπ΅) |