| Step | Hyp | Ref
| Expression |
| 1 | | sticksstones12.1 |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 2 | | sticksstones12.2 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ ℕ) |
| 3 | 2 | nnnn0d 12567 |
. . 3
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 4 | | sticksstones12.3 |
. . 3
⊢ 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)))) |
| 5 | | sticksstones12.5 |
. . 3
⊢ 𝐴 = {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} |
| 6 | | sticksstones12.6 |
. . 3
⊢ 𝐵 = {𝑓 ∣ (𝑓:(1...𝐾)⟶(1...(𝑁 + 𝐾)) ∧ ∀𝑥 ∈ (1...𝐾)∀𝑦 ∈ (1...𝐾)(𝑥 < 𝑦 → (𝑓‘𝑥) < (𝑓‘𝑦)))} |
| 7 | 1, 3, 4, 5, 6 | sticksstones8 42171 |
. 2
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 8 | | sticksstones12.4 |
. . 3
⊢ 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) −
1)))))) |
| 9 | 1, 2, 8, 5, 6 | sticksstones10 42173 |
. 2
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
| 10 | 8 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) −
1))))))) |
| 11 | | 0red 11243 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈
ℝ) |
| 12 | 2 | nngt0d 12294 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < 𝐾) |
| 13 | 11, 12 | ltned 11376 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≠ 𝐾) |
| 14 | 13 | necomd 2988 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ≠ 0) |
| 15 | 14 | neneqd 2938 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝐾 = 0) |
| 16 | 15 | iffalsed 4516 |
. . . . . . . . 9
⊢ (𝜑 → if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) |
| 17 | 16 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1))))) |
| 18 | 17 | mpteq2dva 5219 |
. . . . . . 7
⊢ (𝜑 → (𝑏 ∈ 𝐵 ↦ if(𝐾 = 0, {〈1, 𝑁〉}, (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))))) = (𝑏 ∈ 𝐵 ↦ (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) −
1)))))) |
| 19 | 10, 18 | eqtrd 2771 |
. . . . . 6
⊢ (𝜑 → 𝐺 = (𝑏 ∈ 𝐵 ↦ (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) −
1)))))) |
| 20 | 19 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝐺 = (𝑏 ∈ 𝐵 ↦ (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) −
1)))))) |
| 21 | | fveq1 6880 |
. . . . . . . . . 10
⊢ (𝑏 = (𝐹‘𝑐) → (𝑏‘𝐾) = ((𝐹‘𝑐)‘𝐾)) |
| 22 | 21 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝑏 = (𝐹‘𝑐) → ((𝑁 + 𝐾) − (𝑏‘𝐾)) = ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾))) |
| 23 | | fveq1 6880 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝐹‘𝑐) → (𝑏‘1) = ((𝐹‘𝑐)‘1)) |
| 24 | 23 | oveq1d 7425 |
. . . . . . . . . 10
⊢ (𝑏 = (𝐹‘𝑐) → ((𝑏‘1) − 1) = (((𝐹‘𝑐)‘1) − 1)) |
| 25 | | fveq1 6880 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝐹‘𝑐) → (𝑏‘𝑘) = ((𝐹‘𝑐)‘𝑘)) |
| 26 | | fveq1 6880 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝐹‘𝑐) → (𝑏‘(𝑘 − 1)) = ((𝐹‘𝑐)‘(𝑘 − 1))) |
| 27 | 25, 26 | oveq12d 7428 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝐹‘𝑐) → ((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) = (((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1)))) |
| 28 | 27 | oveq1d 7425 |
. . . . . . . . . 10
⊢ (𝑏 = (𝐹‘𝑐) → (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1) = ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1)) |
| 29 | 24, 28 | ifeq12d 4527 |
. . . . . . . . 9
⊢ (𝑏 = (𝐹‘𝑐) → if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)) = if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1))) |
| 30 | 22, 29 | ifeq12d 4527 |
. . . . . . . 8
⊢ (𝑏 = (𝐹‘𝑐) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1))) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1)))) |
| 31 | 30 | adantr 480 |
. . . . . . 7
⊢ ((𝑏 = (𝐹‘𝑐) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1))) = if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1)))) |
| 32 | 31 | mpteq2dva 5219 |
. . . . . 6
⊢ (𝑏 = (𝐹‘𝑐) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1))))) |
| 33 | 32 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑏 = (𝐹‘𝑐)) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − (𝑏‘𝐾)), if(𝑘 = 1, ((𝑏‘1) − 1), (((𝑏‘𝑘) − (𝑏‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1))))) |
| 34 | 7 | ffvelcdmda 7079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐹‘𝑐) ∈ 𝐵) |
| 35 | | fzfid 13996 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (1...(𝐾 + 1)) ∈ Fin) |
| 36 | 35 | mptexd 7221 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1)))) ∈
V) |
| 37 | 20, 33, 34, 36 | fvmptd 6998 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐺‘(𝐹‘𝑐)) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1))))) |
| 38 | 4 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))))) |
| 39 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑎 = 𝑐) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑎 = 𝑐) |
| 40 | 39 | fveq1d 6883 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑎 = 𝑐) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑎‘𝑙) = (𝑐‘𝑙)) |
| 41 | 40 | sumeq2dv 15723 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑎 = 𝑐) ∧ 𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙) = Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)) |
| 42 | 41 | oveq2d 7426 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑎 = 𝑐) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)) = (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙))) |
| 43 | 42 | mpteq2dva 5219 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑎 = 𝑐) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))) |
| 44 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐 ∈ 𝐴) |
| 45 | | fzfid 13996 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (1...𝐾) ∈ Fin) |
| 46 | 45 | mptexd 7221 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙))) ∈ V) |
| 47 | 38, 43, 44, 46 | fvmptd 6998 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐹‘𝑐) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))) |
| 48 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑗 = 𝐾) → 𝑗 = 𝐾) |
| 49 | 48 | oveq2d 7426 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑗 = 𝐾) → (1...𝑗) = (1...𝐾)) |
| 50 | 49 | sumeq1d 15721 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑗 = 𝐾) → Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙) = Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙)) |
| 51 | 48, 50 | oveq12d 7428 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑗 = 𝐾) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)) = (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙))) |
| 52 | | 1zzd 12628 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ∈
ℤ) |
| 53 | 3 | nn0zd 12619 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 54 | 2 | nnge1d 12293 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 1 ≤ 𝐾) |
| 55 | 2 | nnred 12260 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐾 ∈ ℝ) |
| 56 | 55 | leidd 11808 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ≤ 𝐾) |
| 57 | 52, 53, 53, 54, 56 | elfzd 13537 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ (1...𝐾)) |
| 58 | 57 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝐾 ∈ (1...𝐾)) |
| 59 | | ovexd 7445 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙)) ∈ V) |
| 60 | 47, 51, 58, 59 | fvmptd 6998 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝐹‘𝑐)‘𝐾) = (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙))) |
| 61 | 60 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)) = ((𝑁 + 𝐾) − (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙)))) |
| 62 | 1 | nn0cnd 12569 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 63 | 62 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑁 ∈ ℂ) |
| 64 | 55 | recnd 11268 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 65 | 64 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝐾 ∈ ℂ) |
| 66 | 63, 65 | addcomd 11442 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑁 + 𝐾) = (𝐾 + 𝑁)) |
| 67 | 66 | oveq1d 7425 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑁 + 𝐾) − (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙))) = ((𝐾 + 𝑁) − (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙)))) |
| 68 | | 1zzd 12628 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 1 ∈ ℤ) |
| 69 | 53 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝐾 ∈ ℤ) |
| 70 | 69 | peano2zd 12705 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → (𝐾 + 1) ∈ ℤ) |
| 71 | | elfzelz 13546 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 ∈ (1...𝐾) → 𝑙 ∈ ℤ) |
| 72 | 71 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝑙 ∈ ℤ) |
| 73 | | elfzle1 13549 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 ∈ (1...𝐾) → 1 ≤ 𝑙) |
| 74 | 73 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 1 ≤ 𝑙) |
| 75 | 72 | zred 12702 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝑙 ∈ ℝ) |
| 76 | 55 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝐾 ∈ ℝ) |
| 77 | 70 | zred 12702 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → (𝐾 + 1) ∈ ℝ) |
| 78 | | elfzle2 13550 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑙 ∈ (1...𝐾) → 𝑙 ≤ 𝐾) |
| 79 | 78 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝑙 ≤ 𝐾) |
| 80 | 76 | lep1d 12178 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝐾 ≤ (𝐾 + 1)) |
| 81 | 75, 76, 77, 79, 80 | letrd 11397 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝑙 ≤ (𝐾 + 1)) |
| 82 | 68, 70, 72, 74, 81 | elfzd 13537 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝑙 ∈ (1...(𝐾 + 1))) |
| 83 | 5 | eleq2i 2827 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 ∈ 𝐴 ↔ 𝑐 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) |
| 84 | 83 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 ∈ 𝐴 → 𝑐 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) |
| 85 | 84 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)}) |
| 86 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑐 ∈ V |
| 87 | | feq1 6691 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑔 = 𝑐 → (𝑔:(1...(𝐾 + 1))⟶ℕ0 ↔
𝑐:(1...(𝐾 +
1))⟶ℕ0)) |
| 88 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑔 = 𝑐 ∧ 𝑖 ∈ (1...(𝐾 + 1))) → 𝑔 = 𝑐) |
| 89 | 88 | fveq1d 6883 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑔 = 𝑐 ∧ 𝑖 ∈ (1...(𝐾 + 1))) → (𝑔‘𝑖) = (𝑐‘𝑖)) |
| 90 | 89 | sumeq2dv 15723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑔 = 𝑐 → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖)) |
| 91 | 90 | eqeq1d 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑔 = 𝑐 → (Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁 ↔ Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖) = 𝑁)) |
| 92 | 87, 91 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑔 = 𝑐 → ((𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁) ↔ (𝑐:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖) = 𝑁))) |
| 93 | 86, 92 | elab 3663 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ↔ (𝑐:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖) = 𝑁)) |
| 94 | 93 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} ↔ (𝑐:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖) = 𝑁))) |
| 95 | 94 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐 ∈ {𝑔 ∣ (𝑔:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑔‘𝑖) = 𝑁)} → (𝑐:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖) = 𝑁))) |
| 96 | 85, 95 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐:(1...(𝐾 + 1))⟶ℕ0 ∧
Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖) = 𝑁)) |
| 97 | 96 | simpld 494 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐:(1...(𝐾 +
1))⟶ℕ0) |
| 98 | 97 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → 𝑐:(1...(𝐾 +
1))⟶ℕ0) |
| 99 | 98 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...(𝐾 + 1))) → (𝑐‘𝑙) ∈
ℕ0) |
| 100 | 82, 99 | mpdan 687 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...𝐾)) → (𝑐‘𝑙) ∈
ℕ0) |
| 101 | 45, 100 | fsumnn0cl 15757 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙) ∈
ℕ0) |
| 102 | 101 | nn0cnd 12569 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙) ∈ ℂ) |
| 103 | 65, 63, 102 | pnpcand 11636 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝐾 + 𝑁) − (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙))) = (𝑁 − Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙))) |
| 104 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 =
1 |
| 105 | | 1p0e1 12369 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (1 + 0) =
1 |
| 106 | 104, 105 | eqtr4i 2762 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 = (1 +
0) |
| 107 | 106 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 1 = (1 +
0)) |
| 108 | | 1red 11241 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 1 ∈
ℝ) |
| 109 | | 0le1 11765 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 0 ≤
1 |
| 110 | 109 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 0 ≤ 1) |
| 111 | 108, 11, 55, 108, 54, 110 | le2addd 11861 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (1 + 0) ≤ (𝐾 + 1)) |
| 112 | 107, 111 | eqbrtrd 5146 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 1 ≤ (𝐾 + 1)) |
| 113 | 53 | peano2zd 12705 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐾 + 1) ∈ ℤ) |
| 114 | | eluz 12871 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((1
∈ ℤ ∧ (𝐾 +
1) ∈ ℤ) → ((𝐾 + 1) ∈
(ℤ≥‘1) ↔ 1 ≤ (𝐾 + 1))) |
| 115 | 52, 113, 114 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝐾 + 1) ∈
(ℤ≥‘1) ↔ 1 ≤ (𝐾 + 1))) |
| 116 | 112, 115 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐾 + 1) ∈
(ℤ≥‘1)) |
| 117 | 116 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐾 + 1) ∈
(ℤ≥‘1)) |
| 118 | 97 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...(𝐾 + 1))) → (𝑐‘𝑙) ∈
ℕ0) |
| 119 | 118 | nn0cnd 12569 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...(𝐾 + 1))) → (𝑐‘𝑙) ∈ ℂ) |
| 120 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = (𝐾 + 1) → (𝑐‘𝑙) = (𝑐‘(𝐾 + 1))) |
| 121 | 117, 119,
120 | fsumm1 15772 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...(𝐾 + 1))(𝑐‘𝑙) = (Σ𝑙 ∈ (1...((𝐾 + 1) − 1))(𝑐‘𝑙) + (𝑐‘(𝐾 + 1)))) |
| 122 | | 1cnd 11235 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ∈ ℂ) |
| 123 | 65, 122 | pncand 11600 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝐾 + 1) − 1) = 𝐾) |
| 124 | 123 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (1...((𝐾 + 1) − 1)) = (1...𝐾)) |
| 125 | 124 | sumeq1d 15721 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...((𝐾 + 1) − 1))(𝑐‘𝑙) = Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙)) |
| 126 | 125 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (Σ𝑙 ∈ (1...((𝐾 + 1) − 1))(𝑐‘𝑙) + (𝑐‘(𝐾 + 1))) = (Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙) + (𝑐‘(𝐾 + 1)))) |
| 127 | 121, 126 | eqtrd 2771 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...(𝐾 + 1))(𝑐‘𝑙) = (Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙) + (𝑐‘(𝐾 + 1)))) |
| 128 | 127 | eqcomd 2742 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙) + (𝑐‘(𝐾 + 1))) = Σ𝑙 ∈ (1...(𝐾 + 1))(𝑐‘𝑙)) |
| 129 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = 𝑖 → (𝑐‘𝑙) = (𝑐‘𝑖)) |
| 130 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑖(𝑐‘𝑙) |
| 131 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑙(𝑐‘𝑖) |
| 132 | 129, 130,
131 | cbvsum 15716 |
. . . . . . . . . . . . . . . . . 18
⊢
Σ𝑙 ∈
(1...(𝐾 + 1))(𝑐‘𝑙) = Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖) |
| 133 | 132 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...(𝐾 + 1))(𝑐‘𝑙) = Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖)) |
| 134 | 96 | simprd 495 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑖 ∈ (1...(𝐾 + 1))(𝑐‘𝑖) = 𝑁) |
| 135 | 133, 134 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...(𝐾 + 1))(𝑐‘𝑙) = 𝑁) |
| 136 | 128, 135 | eqtrd 2771 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙) + (𝑐‘(𝐾 + 1))) = 𝑁) |
| 137 | | 1zzd 12628 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ∈ ℤ) |
| 138 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝐾 ∈ ℤ) |
| 139 | 138 | peano2zd 12705 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐾 + 1) ∈ ℤ) |
| 140 | | 1e0p1 12755 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 = (0 +
1) |
| 141 | 140 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 = (0 + 1)) |
| 142 | | 0red 11243 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 0 ∈ ℝ) |
| 143 | 55 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝐾 ∈ ℝ) |
| 144 | | 1red 11241 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ∈ ℝ) |
| 145 | 11, 55, 12 | ltled 11388 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 0 ≤ 𝐾) |
| 146 | 145 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 0 ≤ 𝐾) |
| 147 | 142, 143,
144, 146 | leadd1dd 11856 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (0 + 1) ≤ (𝐾 + 1)) |
| 148 | 141, 147 | eqbrtrd 5146 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ≤ (𝐾 + 1)) |
| 149 | 55, 55, 108, 56 | leadd1dd 11856 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐾 + 1) ≤ (𝐾 + 1)) |
| 150 | 149 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐾 + 1) ≤ (𝐾 + 1)) |
| 151 | 137, 139,
139, 148, 150 | elfzd 13537 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐾 + 1) ∈ (1...(𝐾 + 1))) |
| 152 | 97, 151 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘(𝐾 + 1)) ∈
ℕ0) |
| 153 | 152 | nn0cnd 12569 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘(𝐾 + 1)) ∈ ℂ) |
| 154 | 63, 102, 153 | subaddd 11617 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑁 − Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙)) = (𝑐‘(𝐾 + 1)) ↔ (Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙) + (𝑐‘(𝐾 + 1))) = 𝑁)) |
| 155 | 136, 154 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑁 − Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙)) = (𝑐‘(𝐾 + 1))) |
| 156 | 103, 155 | eqtrd 2771 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝐾 + 𝑁) − (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙))) = (𝑐‘(𝐾 + 1))) |
| 157 | 67, 156 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑁 + 𝐾) − (𝐾 + Σ𝑙 ∈ (1...𝐾)(𝑐‘𝑙))) = (𝑐‘(𝐾 + 1))) |
| 158 | 61, 157 | eqtrd 2771 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)) = (𝑐‘(𝐾 + 1))) |
| 159 | 158 | 3adant3 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)) = (𝑐‘(𝐾 + 1))) |
| 160 | 159 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)) = (𝑐‘(𝐾 + 1))) |
| 161 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → 𝑘 = (𝐾 + 1)) |
| 162 | 161 | fveq2d 6885 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → (𝑐‘𝑘) = (𝑐‘(𝐾 + 1))) |
| 163 | 162 | eqcomd 2742 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → (𝑐‘(𝐾 + 1)) = (𝑐‘𝑘)) |
| 164 | 160, 163 | eqtrd 2771 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ 𝑘 = (𝐾 + 1)) → ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)) = (𝑐‘𝑘)) |
| 165 | 47 | fveq1d 6883 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝐹‘𝑐)‘1) = ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘1)) |
| 166 | 165 | oveq1d 7425 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (((𝐹‘𝑐)‘1) − 1) = (((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘1) − 1)) |
| 167 | | eqidd 2737 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))) |
| 168 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑗 = 1) → 𝑗 = 1) |
| 169 | 168 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑗 = 1) → (1...𝑗) = (1...1)) |
| 170 | 169 | sumeq1d 15721 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑗 = 1) → Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙) = Σ𝑙 ∈ (1...1)(𝑐‘𝑙)) |
| 171 | 168, 170 | oveq12d 7428 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑗 = 1) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)) = (1 + Σ𝑙 ∈ (1...1)(𝑐‘𝑙))) |
| 172 | 144 | leidd 11808 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ≤ 1) |
| 173 | 54 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ≤ 𝐾) |
| 174 | 137, 138,
137, 172, 173 | elfzd 13537 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ∈ (1...𝐾)) |
| 175 | | ovexd 7445 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (1 + Σ𝑙 ∈ (1...1)(𝑐‘𝑙)) ∈ V) |
| 176 | 167, 171,
174, 175 | fvmptd 6998 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘1) = (1 + Σ𝑙 ∈ (1...1)(𝑐‘𝑙))) |
| 177 | 176 | oveq1d 7425 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘1) − 1) = ((1 + Σ𝑙 ∈ (1...1)(𝑐‘𝑙)) − 1)) |
| 178 | | fzfid 13996 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (1...1) ∈
Fin) |
| 179 | | 1zzd 12628 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 1 ∈
ℤ) |
| 180 | 138 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 𝐾 ∈ ℤ) |
| 181 | 180 | peano2zd 12705 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → (𝐾 + 1) ∈ ℤ) |
| 182 | | elfzelz 13546 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑙 ∈ (1...1) → 𝑙 ∈
ℤ) |
| 183 | 182 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 𝑙 ∈ ℤ) |
| 184 | | elfzle1 13549 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑙 ∈ (1...1) → 1 ≤
𝑙) |
| 185 | 184 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 1 ≤ 𝑙) |
| 186 | 183 | zred 12702 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 𝑙 ∈ ℝ) |
| 187 | | 0red 11243 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 0 ∈
ℝ) |
| 188 | | 1red 11241 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 1 ∈
ℝ) |
| 189 | 187, 188 | readdcld 11269 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → (0 + 1) ∈
ℝ) |
| 190 | 181 | zred 12702 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → (𝐾 + 1) ∈ ℝ) |
| 191 | | elfzle2 13550 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑙 ∈ (1...1) → 𝑙 ≤ 1) |
| 192 | 191 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 𝑙 ≤ 1) |
| 193 | 140 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 1 = (0 +
1)) |
| 194 | 192, 193 | breqtrd 5150 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 𝑙 ≤ (0 + 1)) |
| 195 | 147 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → (0 + 1) ≤ (𝐾 + 1)) |
| 196 | 186, 189,
190, 194, 195 | letrd 11397 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 𝑙 ≤ (𝐾 + 1)) |
| 197 | 179, 181,
183, 185, 196 | elfzd 13537 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → 𝑙 ∈ (1...(𝐾 + 1))) |
| 198 | 118 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) ∧ 𝑙 ∈ (1...(𝐾 + 1))) → (𝑐‘𝑙) ∈
ℕ0) |
| 199 | 197, 198 | mpdan 687 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑙 ∈ (1...1)) → (𝑐‘𝑙) ∈
ℕ0) |
| 200 | 178, 199 | fsumnn0cl 15757 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...1)(𝑐‘𝑙) ∈
ℕ0) |
| 201 | 200 | nn0cnd 12569 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...1)(𝑐‘𝑙) ∈ ℂ) |
| 202 | 122, 201 | pncan2d 11601 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((1 + Σ𝑙 ∈ (1...1)(𝑐‘𝑙)) − 1) = Σ𝑙 ∈ (1...1)(𝑐‘𝑙)) |
| 203 | 137, 139,
137, 172, 148 | elfzd 13537 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ∈ (1...(𝐾 + 1))) |
| 204 | 97, 203 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘1) ∈
ℕ0) |
| 205 | 204 | nn0cnd 12569 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘1) ∈ ℂ) |
| 206 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = 1 → (𝑐‘𝑙) = (𝑐‘1)) |
| 207 | 206 | fsum1 15768 |
. . . . . . . . . . . . . . . . 17
⊢ ((1
∈ ℤ ∧ (𝑐‘1) ∈ ℂ) → Σ𝑙 ∈ (1...1)(𝑐‘𝑙) = (𝑐‘1)) |
| 208 | 137, 205,
207 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → Σ𝑙 ∈ (1...1)(𝑐‘𝑙) = (𝑐‘1)) |
| 209 | 202, 208 | eqtrd 2771 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((1 + Σ𝑙 ∈ (1...1)(𝑐‘𝑙)) − 1) = (𝑐‘1)) |
| 210 | 177, 209 | eqtrd 2771 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘1) − 1) = (𝑐‘1)) |
| 211 | 166, 210 | eqtrd 2771 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (((𝐹‘𝑐)‘1) − 1) = (𝑐‘1)) |
| 212 | 211 | 3adant3 1132 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → (((𝐹‘𝑐)‘1) − 1) = (𝑐‘1)) |
| 213 | 212 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (((𝐹‘𝑐)‘1) − 1) = (𝑐‘1)) |
| 214 | 213 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ 𝑘 = 1) → (((𝐹‘𝑐)‘1) − 1) = (𝑐‘1)) |
| 215 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ 𝑘 = 1) → 𝑘 = 1) |
| 216 | 215 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ 𝑘 = 1) → (𝑐‘𝑘) = (𝑐‘1)) |
| 217 | 216 | eqcomd 2742 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ 𝑘 = 1) → (𝑐‘1) = (𝑐‘𝑘)) |
| 218 | 214, 217 | eqtrd 2771 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ 𝑘 = 1) → (((𝐹‘𝑐)‘1) − 1) = (𝑐‘𝑘)) |
| 219 | 4 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐹 = (𝑎 ∈ 𝐴 ↦ (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))))) |
| 220 | | simpllr 775 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑎 = 𝑐) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑎 = 𝑐) |
| 221 | 220 | fveq1d 6883 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑎 = 𝑐) ∧ 𝑗 ∈ (1...𝐾)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑎‘𝑙) = (𝑐‘𝑙)) |
| 222 | 221 | sumeq2dv 15723 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑎 = 𝑐) ∧ 𝑗 ∈ (1...𝐾)) → Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙) = Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)) |
| 223 | 222 | oveq2d 7426 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑎 = 𝑐) ∧ 𝑗 ∈ (1...𝐾)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙)) = (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙))) |
| 224 | 223 | mpteq2dva 5219 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑎 = 𝑐) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑎‘𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))) |
| 225 | | simpll2 1214 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑐 ∈ 𝐴) |
| 226 | | fzfid 13996 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1...𝐾) ∈ Fin) |
| 227 | 226 | mptexd 7221 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙))) ∈ V) |
| 228 | 219, 224,
225, 227 | fvmptd 6998 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝐹‘𝑐) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))) |
| 229 | 228 | fveq1d 6883 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐹‘𝑐)‘𝑘) = ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘𝑘)) |
| 230 | 228 | fveq1d 6883 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐹‘𝑐)‘(𝑘 − 1)) = ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘(𝑘 − 1))) |
| 231 | 229, 230 | oveq12d 7428 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) = (((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘𝑘) − ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘(𝑘 − 1)))) |
| 232 | 231 | oveq1d 7425 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1) = ((((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘𝑘) − ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘(𝑘 − 1))) − 1)) |
| 233 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙))) = (𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))) |
| 234 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘) |
| 235 | 234 | oveq2d 7426 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑗 = 𝑘) → (1...𝑗) = (1...𝑘)) |
| 236 | 235 | sumeq1d 15721 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑗 = 𝑘) → Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙) = Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙)) |
| 237 | 234, 236 | oveq12d 7428 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑗 = 𝑘) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)) = (𝑘 + Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙))) |
| 238 | | 1zzd 12628 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈
ℤ) |
| 239 | 138 | 3adant3 1132 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 𝐾 ∈ ℤ) |
| 240 | 239 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝐾 ∈ ℤ) |
| 241 | 240 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ) |
| 242 | | elfznn 13575 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (1...(𝐾 + 1)) → 𝑘 ∈ ℕ) |
| 243 | 242 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 𝑘 ∈ ℕ) |
| 244 | 243 | nnzd 12620 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 𝑘 ∈ ℤ) |
| 245 | 244 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈ ℤ) |
| 246 | 245 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ) |
| 247 | 243 | nnge1d 12293 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 1 ≤ 𝑘) |
| 248 | 247 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 1 ≤ 𝑘) |
| 249 | 248 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ≤ 𝑘) |
| 250 | | simpl3 1194 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈ (1...(𝐾 + 1))) |
| 251 | | 1zzd 12628 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 1 ∈
ℤ) |
| 252 | 240 | peano2zd 12705 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝐾 + 1) ∈ ℤ) |
| 253 | | elfz 13535 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℤ ∧ 1 ∈
ℤ ∧ (𝐾 + 1)
∈ ℤ) → (𝑘
∈ (1...(𝐾 + 1)) ↔
(1 ≤ 𝑘 ∧ 𝑘 ≤ (𝐾 + 1)))) |
| 254 | 245, 251,
252, 253 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑘 ∈ (1...(𝐾 + 1)) ↔ (1 ≤ 𝑘 ∧ 𝑘 ≤ (𝐾 + 1)))) |
| 255 | 254 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑘 ∈ (1...(𝐾 + 1)) → (1 ≤ 𝑘 ∧ 𝑘 ≤ (𝐾 + 1)))) |
| 256 | 250, 255 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (1 ≤ 𝑘 ∧ 𝑘 ≤ (𝐾 + 1))) |
| 257 | 256 | simprd 495 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ≤ (𝐾 + 1)) |
| 258 | | neqne 2941 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
𝑘 = (𝐾 + 1) → 𝑘 ≠ (𝐾 + 1)) |
| 259 | 258 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ≠ (𝐾 + 1)) |
| 260 | 259 | necomd 2988 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝐾 + 1) ≠ 𝑘) |
| 261 | 257, 260 | jca 511 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑘 ≤ (𝐾 + 1) ∧ (𝐾 + 1) ≠ 𝑘)) |
| 262 | 245 | zred 12702 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈ ℝ) |
| 263 | 252 | zred 12702 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝐾 + 1) ∈ ℝ) |
| 264 | 262, 263 | ltlend 11385 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑘 < (𝐾 + 1) ↔ (𝑘 ≤ (𝐾 + 1) ∧ (𝐾 + 1) ≠ 𝑘))) |
| 265 | 261, 264 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 < (𝐾 + 1)) |
| 266 | | zleltp1 12648 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ≤ 𝐾 ↔ 𝑘 < (𝐾 + 1))) |
| 267 | 245, 240,
266 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑘 ≤ 𝐾 ↔ 𝑘 < (𝐾 + 1))) |
| 268 | 265, 267 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ≤ 𝐾) |
| 269 | 268 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ≤ 𝐾) |
| 270 | 238, 241,
246, 249, 269 | elfzd 13537 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ (1...𝐾)) |
| 271 | | ovexd 7445 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 + Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙)) ∈ V) |
| 272 | 233, 237,
270, 271 | fvmptd 6998 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘𝑘) = (𝑘 + Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙))) |
| 273 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑗 = (𝑘 − 1)) → 𝑗 = (𝑘 − 1)) |
| 274 | 273 | oveq2d 7426 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑗 = (𝑘 − 1)) → (1...𝑗) = (1...(𝑘 − 1))) |
| 275 | 274 | sumeq1d 15721 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑗 = (𝑘 − 1)) → Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙) = Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙)) |
| 276 | 273, 275 | oveq12d 7428 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑗 = (𝑘 − 1)) → (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)) = ((𝑘 − 1) + Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) |
| 277 | | 1zzd 12628 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈
ℤ) |
| 278 | 53 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ) |
| 279 | 278 | 3impa 1109 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℤ) |
| 280 | 242 | nnzd 12620 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ (1...(𝐾 + 1)) → 𝑘 ∈ ℤ) |
| 281 | 280 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 𝑘 ∈ ℤ) |
| 282 | 281 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ) |
| 283 | 282 | 3impa 1109 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℤ) |
| 284 | 283, 277 | zsubcld 12707 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℤ) |
| 285 | | neqne 2941 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
𝑘 = 1 → 𝑘 ≠ 1) |
| 286 | 285 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ≠ 1) |
| 287 | 108 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈
ℝ) |
| 288 | 283 | zred 12702 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℝ) |
| 289 | | simp2 1137 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ (1...(𝐾 + 1))) |
| 290 | | elfzle1 13549 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (1...(𝐾 + 1)) → 1 ≤ 𝑘) |
| 291 | 289, 290 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ≤ 𝑘) |
| 292 | 287, 288,
291 | leltned 11393 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1 < 𝑘 ↔ 𝑘 ≠ 1)) |
| 293 | 286, 292 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 < 𝑘) |
| 294 | 277, 283 | zltp1led 41997 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1 < 𝑘 ↔ (1 + 1) ≤ 𝑘)) |
| 295 | 293, 294 | mpbid 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1 + 1) ≤ 𝑘) |
| 296 | | leaddsub 11718 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((1
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((1 + 1) ≤ 𝑘 ↔ 1 ≤ (𝑘 − 1))) |
| 297 | 287, 287,
288, 296 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((1 + 1) ≤ 𝑘 ↔ 1 ≤ (𝑘 − 1))) |
| 298 | 295, 297 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ≤ (𝑘 − 1)) |
| 299 | 284 | zred 12702 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℝ) |
| 300 | 55 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℝ) |
| 301 | | 1red 11241 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈
ℝ) |
| 302 | 300, 301 | readdcld 11269 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝐾 + 1) ∈ ℝ) |
| 303 | 302, 301 | resubcld 11670 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐾 + 1) − 1) ∈
ℝ) |
| 304 | | elfzle2 13550 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ (1...(𝐾 + 1)) → 𝑘 ≤ (𝐾 + 1)) |
| 305 | 304 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ≤ (𝐾 + 1)) |
| 306 | 288, 302,
301, 305 | lesub1dd 11858 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ ((𝐾 + 1) − 1)) |
| 307 | 64 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ∈ ℂ) |
| 308 | | 1cnd 11235 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈
ℂ) |
| 309 | 307, 308 | pncand 11600 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐾 + 1) − 1) = 𝐾) |
| 310 | 56 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝐾 ≤ 𝐾) |
| 311 | 309, 310 | eqbrtrd 5146 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝐾 + 1) − 1) ≤ 𝐾) |
| 312 | 299, 303,
300, 306, 311 | letrd 11397 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ 𝐾) |
| 313 | 277, 279,
284, 298, 312 | elfzd 13537 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾)) |
| 314 | 313 | 3expa 1118 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾)) |
| 315 | 314 | 3adantl2 1168 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾)) |
| 316 | 315 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ (1...𝐾)) |
| 317 | | ovexd 7445 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑘 − 1) + Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙)) ∈ V) |
| 318 | 233, 276,
316, 317 | fvmptd 6998 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘(𝑘 − 1)) = ((𝑘 − 1) + Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) |
| 319 | 272, 318 | oveq12d 7428 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘𝑘) − ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘(𝑘 − 1))) = ((𝑘 + Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙)) − ((𝑘 − 1) + Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙)))) |
| 320 | 319 | oveq1d 7425 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘𝑘) − ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘(𝑘 − 1))) − 1) = (((𝑘 + Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙)) − ((𝑘 − 1) + Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1)) |
| 321 | 246 | zcnd 12703 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℂ) |
| 322 | | fzfid 13996 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1...𝑘) ∈ Fin) |
| 323 | | 1zzd 12628 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 1 ∈ ℤ) |
| 324 | 241 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝐾 ∈ ℤ) |
| 325 | 324 | peano2zd 12705 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → (𝐾 + 1) ∈ ℤ) |
| 326 | | elfznn 13575 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 ∈ (1...𝑘) → 𝑙 ∈ ℕ) |
| 327 | 326 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑙 ∈ ℕ) |
| 328 | 327 | nnzd 12620 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑙 ∈ ℤ) |
| 329 | 327 | nnge1d 12293 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 1 ≤ 𝑙) |
| 330 | 327 | nnred 12260 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑙 ∈ ℝ) |
| 331 | 262 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑘 ∈ ℝ) |
| 332 | 263 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → (𝐾 + 1) ∈ ℝ) |
| 333 | | elfzle2 13550 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 ∈ (1...𝑘) → 𝑙 ≤ 𝑘) |
| 334 | 333 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑙 ≤ 𝑘) |
| 335 | 257 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑘 ≤ (𝐾 + 1)) |
| 336 | 330, 331,
332, 334, 335 | letrd 11397 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑙 ≤ (𝐾 + 1)) |
| 337 | 323, 325,
328, 329, 336 | elfzd 13537 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑙 ∈ (1...(𝐾 + 1))) |
| 338 | 97 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 𝑐:(1...(𝐾 +
1))⟶ℕ0) |
| 339 | 338 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑐:(1...(𝐾 +
1))⟶ℕ0) |
| 340 | 339 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑐:(1...(𝐾 +
1))⟶ℕ0) |
| 341 | 340 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → 𝑐:(1...(𝐾 +
1))⟶ℕ0) |
| 342 | 341 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) ∧ 𝑙 ∈ (1...(𝐾 + 1))) → (𝑐‘𝑙) ∈
ℕ0) |
| 343 | 337, 342 | mpdan 687 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → (𝑐‘𝑙) ∈
ℕ0) |
| 344 | 322, 343 | fsumnn0cl 15757 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) ∈
ℕ0) |
| 345 | 344 | nn0cnd 12569 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) ∈ ℂ) |
| 346 | | 1cnd 11235 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 1 ∈
ℂ) |
| 347 | 321, 346 | subcld 11599 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℂ) |
| 348 | | fzfid 13996 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (1...(𝑘 − 1)) ∈ Fin) |
| 349 | | 1zzd 12628 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 1 ∈
ℤ) |
| 350 | 241 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝐾 ∈ ℤ) |
| 351 | 350 | peano2zd 12705 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → (𝐾 + 1) ∈ ℤ) |
| 352 | | elfznn 13575 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 ∈ (1...(𝑘 − 1)) → 𝑙 ∈ ℕ) |
| 353 | 352 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑙 ∈ ℕ) |
| 354 | 353 | nnzd 12620 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑙 ∈ ℤ) |
| 355 | 353 | nnge1d 12293 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 1 ≤ 𝑙) |
| 356 | 353 | nnred 12260 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑙 ∈ ℝ) |
| 357 | 262 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑘 ∈ ℝ) |
| 358 | | 1red 11241 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 1 ∈
ℝ) |
| 359 | 357, 358 | resubcld 11670 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → (𝑘 − 1) ∈ ℝ) |
| 360 | 263 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → (𝐾 + 1) ∈ ℝ) |
| 361 | | elfzle2 13550 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑙 ∈ (1...(𝑘 − 1)) → 𝑙 ≤ (𝑘 − 1)) |
| 362 | 361 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑙 ≤ (𝑘 − 1)) |
| 363 | 357 | lem1d 12180 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → (𝑘 − 1) ≤ 𝑘) |
| 364 | 257 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑘 ≤ (𝐾 + 1)) |
| 365 | 359, 357,
360, 363, 364 | letrd 11397 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → (𝑘 − 1) ≤ (𝐾 + 1)) |
| 366 | 356, 359,
360, 362, 365 | letrd 11397 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑙 ≤ (𝐾 + 1)) |
| 367 | 349, 351,
354, 355, 366 | elfzd 13537 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑙 ∈ (1...(𝐾 + 1))) |
| 368 | 340 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → 𝑐:(1...(𝐾 +
1))⟶ℕ0) |
| 369 | 368 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) ∧ 𝑙 ∈ (1...(𝐾 + 1))) → (𝑐‘𝑙) ∈
ℕ0) |
| 370 | 367, 369 | mpdan 687 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...(𝑘 − 1))) → (𝑐‘𝑙) ∈
ℕ0) |
| 371 | 348, 370 | fsumnn0cl 15757 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙) ∈
ℕ0) |
| 372 | 371 | nn0cnd 12569 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙) ∈ ℂ) |
| 373 | 321, 345,
347, 372 | addsub4d 11646 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑘 + Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙)) − ((𝑘 − 1) + Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) = ((𝑘 − (𝑘 − 1)) + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙)))) |
| 374 | 373 | oveq1d 7425 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝑘 + Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙)) − ((𝑘 − 1) + Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1) = (((𝑘 − (𝑘 − 1)) + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1)) |
| 375 | 321, 346 | nncand 11604 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑘 − (𝑘 − 1)) = 1) |
| 376 | 375 | oveq1d 7425 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((𝑘 − (𝑘 − 1)) + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) = (1 + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙)))) |
| 377 | 376 | oveq1d 7425 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝑘 − (𝑘 − 1)) + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1) = ((1 + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1)) |
| 378 | 345, 372 | subcld 11599 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙)) ∈ ℂ) |
| 379 | 346, 378 | pncan2d 11601 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((1 + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1) = (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) |
| 380 | 137 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 1 ∈
ℤ) |
| 381 | 380, 244,
247 | 3jca 1128 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → (1 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 1 ≤
𝑘)) |
| 382 | | eluz2 12863 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈
(ℤ≥‘1) ↔ (1 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 1 ≤
𝑘)) |
| 383 | 381, 382 | sylibr 234 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 𝑘 ∈
(ℤ≥‘1)) |
| 384 | 383 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → 𝑘 ∈
(ℤ≥‘1)) |
| 385 | 384 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈
(ℤ≥‘1)) |
| 386 | 343 | nn0cnd 12569 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) ∧ 𝑙 ∈ (1...𝑘)) → (𝑐‘𝑙) ∈ ℂ) |
| 387 | | fveq2 6881 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = 𝑘 → (𝑐‘𝑙) = (𝑐‘𝑘)) |
| 388 | 385, 386,
387 | fsumm1 15772 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) = (Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙) + (𝑐‘𝑘))) |
| 389 | 388 | eqcomd 2742 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙) + (𝑐‘𝑘)) = Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙)) |
| 390 | | simp3 1138 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → 𝑘 ∈ (1...(𝐾 + 1))) |
| 391 | 338, 390 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → (𝑐‘𝑘) ∈
ℕ0) |
| 392 | 391 | nn0cnd 12569 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → (𝑐‘𝑘) ∈ ℂ) |
| 393 | 392 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → (𝑐‘𝑘) ∈ ℂ) |
| 394 | 393 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (𝑐‘𝑘) ∈ ℂ) |
| 395 | 345, 372,
394 | subaddd 11617 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙)) = (𝑐‘𝑘) ↔ (Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙) + (𝑐‘𝑘)) = Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙))) |
| 396 | 389, 395 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙)) = (𝑐‘𝑘)) |
| 397 | 379, 396 | eqtrd 2771 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((1 + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1) = (𝑐‘𝑘)) |
| 398 | 377, 397 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝑘 − (𝑘 − 1)) + (Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙) − Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1) = (𝑐‘𝑘)) |
| 399 | 374, 398 | eqtrd 2771 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → (((𝑘 + Σ𝑙 ∈ (1...𝑘)(𝑐‘𝑙)) − ((𝑘 − 1) + Σ𝑙 ∈ (1...(𝑘 − 1))(𝑐‘𝑙))) − 1) = (𝑐‘𝑘)) |
| 400 | 320, 399 | eqtrd 2771 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘𝑘) − ((𝑗 ∈ (1...𝐾) ↦ (𝑗 + Σ𝑙 ∈ (1...𝑗)(𝑐‘𝑙)))‘(𝑘 − 1))) − 1) = (𝑐‘𝑘)) |
| 401 | 232, 400 | eqtrd 2771 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) ∧ ¬ 𝑘 = 1) → ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1) = (𝑐‘𝑘)) |
| 402 | 218, 401 | ifeqda 4542 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) ∧ ¬ 𝑘 = (𝐾 + 1)) → if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1)) = (𝑐‘𝑘)) |
| 403 | 164, 402 | ifeqda 4542 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴 ∧ 𝑘 ∈ (1...(𝐾 + 1))) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1))) = (𝑐‘𝑘)) |
| 404 | 403 | 3expa 1118 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑘 ∈ (1...(𝐾 + 1))) → if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1))) = (𝑐‘𝑘)) |
| 405 | 404 | mpteq2dva 5219 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1)))) = (𝑘 ∈ (1...(𝐾 + 1)) ↦ (𝑐‘𝑘))) |
| 406 | 97 | ffnd 6712 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐 Fn (1...(𝐾 + 1))) |
| 407 | | dffn5 6942 |
. . . . . . . 8
⊢ (𝑐 Fn (1...(𝐾 + 1)) ↔ 𝑐 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ (𝑐‘𝑘))) |
| 408 | 407 | biimpi 216 |
. . . . . . 7
⊢ (𝑐 Fn (1...(𝐾 + 1)) → 𝑐 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ (𝑐‘𝑘))) |
| 409 | 406, 408 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐 = (𝑘 ∈ (1...(𝐾 + 1)) ↦ (𝑐‘𝑘))) |
| 410 | 409 | eqcomd 2742 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ (𝑐‘𝑘)) = 𝑐) |
| 411 | 405, 410 | eqtrd 2771 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑘 ∈ (1...(𝐾 + 1)) ↦ if(𝑘 = (𝐾 + 1), ((𝑁 + 𝐾) − ((𝐹‘𝑐)‘𝐾)), if(𝑘 = 1, (((𝐹‘𝑐)‘1) − 1), ((((𝐹‘𝑐)‘𝑘) − ((𝐹‘𝑐)‘(𝑘 − 1))) − 1)))) = 𝑐) |
| 412 | 37, 411 | eqtrd 2771 |
. . 3
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝐺‘(𝐹‘𝑐)) = 𝑐) |
| 413 | 412 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝐺‘(𝐹‘𝑐)) = 𝑐) |
| 414 | 1, 2, 4, 8, 5, 6 | sticksstones12a 42175 |
. 2
⊢ (𝜑 → ∀𝑑 ∈ 𝐵 (𝐹‘(𝐺‘𝑑)) = 𝑑) |
| 415 | 7, 9, 413, 414 | 2fvidf1od 7296 |
1
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |