| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (𝐸‘𝑋) ∈ ran 𝑄) |
| 2 | | fourierdlem41.q |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
| 3 | | fourierdlem41.m |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 4 | | fourierdlem41.p |
. . . . . . . . . . . . 13
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 5 | 4 | fourierdlem2 46118 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 6 | 3, 5 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 7 | 2, 6 | mpbid 232 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
| 8 | 7 | simpld 494 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
| 9 | | elmapi 8868 |
. . . . . . . . 9
⊢ (𝑄 ∈ (ℝ
↑m (0...𝑀))
→ 𝑄:(0...𝑀)⟶ℝ) |
| 10 | | ffn 6711 |
. . . . . . . . 9
⊢ (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀)) |
| 11 | 8, 9, 10 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 Fn (0...𝑀)) |
| 12 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → 𝑄 Fn (0...𝑀)) |
| 13 | | fvelrnb 6944 |
. . . . . . 7
⊢ (𝑄 Fn (0...𝑀) → ((𝐸‘𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋))) |
| 14 | 12, 13 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ((𝐸‘𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋))) |
| 15 | 1, 14 | mpbid 232 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋)) |
| 16 | | 0zd 12605 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 0 ∈ ℤ) |
| 17 | | elfzelz 13546 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ) |
| 18 | 17 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ∈ ℤ) |
| 19 | | 1zzd 12628 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 1 ∈ ℤ) |
| 20 | 18, 19 | zsubcld 12707 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈ ℤ) |
| 21 | | simpll 766 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 0 < 𝑗) → 𝜑) |
| 22 | | elfzle1 13549 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗) |
| 23 | 22 | anim1i 615 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → (0 ≤ 𝑗 ∧ ¬ 0 < 𝑗)) |
| 24 | | 0red 11243 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → 0 ∈ ℝ) |
| 25 | 17 | zred 12702 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ) |
| 26 | 25 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → 𝑗 ∈ ℝ) |
| 27 | 24, 26 | eqleltd 11384 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → (0 = 𝑗 ↔ (0 ≤ 𝑗 ∧ ¬ 0 < 𝑗))) |
| 28 | 23, 27 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → 0 = 𝑗) |
| 29 | 28 | eqcomd 2742 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → 𝑗 = 0) |
| 30 | 29 | adantll 714 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 0 < 𝑗) → 𝑗 = 0) |
| 31 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 0 → (𝑄‘𝑗) = (𝑄‘0)) |
| 32 | 7 | simprld 771 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
| 33 | 32 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
| 34 | 31, 33 | sylan9eqr 2793 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 = 0) → (𝑄‘𝑗) = 𝐴) |
| 35 | 21, 30, 34 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 0 < 𝑗) → (𝑄‘𝑗) = 𝐴) |
| 36 | 35 | 3adantl3 1169 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ ¬ 0 < 𝑗) → (𝑄‘𝑗) = 𝐴) |
| 37 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) = (𝐸‘𝑋)) |
| 38 | | fourierdlem41.a |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 39 | 38 | rexrd 11290 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 40 | | fourierdlem41.b |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 41 | 40 | rexrd 11290 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 42 | | fourierdlem41.altb |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐴 < 𝐵) |
| 43 | | fourierdlem41.t |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑇 = (𝐵 − 𝐴) |
| 44 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
| 45 | 38, 40, 42, 43, 44 | fourierdlem4 46120 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))):ℝ⟶(𝐴(,]𝐵)) |
| 46 | | fourierdlem41.e |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥))) |
| 47 | 46 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥)))) |
| 48 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
| 49 | 40 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ) |
| 50 | 49, 48 | resubcld 11670 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐵 − 𝑥) ∈ ℝ) |
| 51 | 40, 38 | resubcld 11670 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
| 52 | 43, 51 | eqeltrid 2839 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 𝑇 ∈ ℝ) |
| 53 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ) |
| 54 | | 0red 11243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 0 ∈
ℝ) |
| 55 | 38, 40 | posdifd 11829 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| 56 | 42, 55 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
| 57 | 43 | eqcomi 2745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝐵 − 𝐴) = 𝑇 |
| 58 | 57 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → (𝐵 − 𝐴) = 𝑇) |
| 59 | 56, 58 | breqtrd 5150 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 0 < 𝑇) |
| 60 | 54, 59 | gtned 11375 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 𝑇 ≠ 0) |
| 61 | 60 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑇 ≠ 0) |
| 62 | 50, 53, 61 | redivcld 12074 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐵 − 𝑥) / 𝑇) ∈ ℝ) |
| 63 | 62 | flcld 13820 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐵 −
𝑥) / 𝑇)) ∈ ℤ) |
| 64 | 63 | zred 12702 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐵 −
𝑥) / 𝑇)) ∈ ℝ) |
| 65 | 64, 53 | remulcld 11270 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
((⌊‘((𝐵 −
𝑥) / 𝑇)) · 𝑇) ∈ ℝ) |
| 66 | | fourierdlem41.z |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑍 = (𝑥 ∈ ℝ ↦
((⌊‘((𝐵 −
𝑥) / 𝑇)) · 𝑇)) |
| 67 | 66 | fvmpt2 7002 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ ℝ ∧
((⌊‘((𝐵 −
𝑥) / 𝑇)) · 𝑇) ∈ ℝ) → (𝑍‘𝑥) = ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) |
| 68 | 48, 65, 67 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑍‘𝑥) = ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) |
| 69 | 68 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 + (𝑍‘𝑥)) = (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
| 70 | 69 | mpteq2dva 5219 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)))) |
| 71 | 47, 70 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)))) |
| 72 | 71 | feq1d 6695 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐸:ℝ⟶(𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))):ℝ⟶(𝐴(,]𝐵))) |
| 73 | 45, 72 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐸:ℝ⟶(𝐴(,]𝐵)) |
| 74 | | fourierdlem41.x |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 75 | 73, 74 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) |
| 76 | | iocgtlb 45511 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸‘𝑋)) |
| 77 | 39, 41, 75, 76 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 < (𝐸‘𝑋)) |
| 78 | 38, 77 | gtned 11375 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐸‘𝑋) ≠ 𝐴) |
| 79 | 78 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≠ 𝐴) |
| 80 | 37, 79 | eqnetrd 3000 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) ≠ 𝐴) |
| 81 | 80 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ ¬ 0 < 𝑗) → (𝑄‘𝑗) ≠ 𝐴) |
| 82 | 81 | 3adantl2 1168 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ ¬ 0 < 𝑗) → (𝑄‘𝑗) ≠ 𝐴) |
| 83 | 82 | neneqd 2938 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ ¬ 0 < 𝑗) → ¬ (𝑄‘𝑗) = 𝐴) |
| 84 | 36, 83 | condan 817 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 0 < 𝑗) |
| 85 | | zltlem1 12650 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℤ ∧ 𝑗
∈ ℤ) → (0 < 𝑗 ↔ 0 ≤ (𝑗 − 1))) |
| 86 | 16, 18, 85 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (0 < 𝑗 ↔ 0 ≤ (𝑗 − 1))) |
| 87 | 84, 86 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 0 ≤ (𝑗 − 1)) |
| 88 | | eluz2 12863 |
. . . . . . . . . . 11
⊢ ((𝑗 − 1) ∈
(ℤ≥‘0) ↔ (0 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ ∧
0 ≤ (𝑗 −
1))) |
| 89 | 16, 20, 87, 88 | syl3anbrc 1344 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈
(ℤ≥‘0)) |
| 90 | | elfzel2 13544 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ) |
| 91 | 90 | 3ad2ant2 1134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑀 ∈ ℤ) |
| 92 | | 1red 11241 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → 1 ∈ ℝ) |
| 93 | 25, 92 | resubcld 11670 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ) |
| 94 | 90 | zred 12702 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ) |
| 95 | 25 | ltm1d 12179 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑗) |
| 96 | | elfzle2 13550 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ≤ 𝑀) |
| 97 | 93, 25, 94, 95, 96 | ltletrd 11400 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀) |
| 98 | 97 | 3ad2ant2 1134 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) < 𝑀) |
| 99 | | elfzo2 13684 |
. . . . . . . . . 10
⊢ ((𝑗 − 1) ∈ (0..^𝑀) ↔ ((𝑗 − 1) ∈
(ℤ≥‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) < 𝑀)) |
| 100 | 89, 91, 98, 99 | syl3anbrc 1344 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈ (0..^𝑀)) |
| 101 | 8, 9 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
| 102 | 101 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑄:(0...𝑀)⟶ℝ) |
| 103 | 93, 94, 97 | ltled 11388 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ≤ 𝑀) |
| 104 | 103 | 3ad2ant2 1134 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ≤ 𝑀) |
| 105 | 16, 91, 20, 87, 104 | elfzd 13537 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈ (0...𝑀)) |
| 106 | 102, 105 | ffvelcdmd 7080 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ) |
| 107 | 106 | rexrd 11290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) ∈
ℝ*) |
| 108 | 25 | recnd 11268 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ) |
| 109 | | 1cnd 11235 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑀) → 1 ∈ ℂ) |
| 110 | 108, 109 | npcand 11603 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑀) → ((𝑗 − 1) + 1) = 𝑗) |
| 111 | 110 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄‘𝑗)) |
| 112 | 111 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄‘𝑗)) |
| 113 | 101 | ffvelcdmda 7079 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘𝑗) ∈ ℝ) |
| 114 | 113 | rexrd 11290 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘𝑗) ∈
ℝ*) |
| 115 | 112, 114 | eqeltrd 2835 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘((𝑗 − 1) + 1)) ∈
ℝ*) |
| 116 | 115 | 3adant3 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘((𝑗 − 1) + 1)) ∈
ℝ*) |
| 117 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
| 118 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑋 → (𝑍‘𝑥) = (𝑍‘𝑋)) |
| 119 | 117, 118 | oveq12d 7428 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑋 → (𝑥 + (𝑍‘𝑥)) = (𝑋 + (𝑍‘𝑋))) |
| 120 | 119 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥 + (𝑍‘𝑥)) = (𝑋 + (𝑍‘𝑋))) |
| 121 | 66 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑍 = (𝑥 ∈ ℝ ↦
((⌊‘((𝐵 −
𝑥) / 𝑇)) · 𝑇))) |
| 122 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑋 → (𝐵 − 𝑥) = (𝐵 − 𝑋)) |
| 123 | 122 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑋 → ((𝐵 − 𝑥) / 𝑇) = ((𝐵 − 𝑋) / 𝑇)) |
| 124 | 123 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑋 → (⌊‘((𝐵 − 𝑥) / 𝑇)) = (⌊‘((𝐵 − 𝑋) / 𝑇))) |
| 125 | 124 | oveq1d 7425 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑋 → ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
| 126 | 125 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
| 127 | 40, 74 | resubcld 11670 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐵 − 𝑋) ∈ ℝ) |
| 128 | 127, 52, 60 | redivcld 12074 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐵 − 𝑋) / 𝑇) ∈ ℝ) |
| 129 | 128 | flcld 13820 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
| 130 | 129 | zred 12702 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℝ) |
| 131 | 130, 52 | remulcld 11270 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) ∈ ℝ) |
| 132 | 121, 126,
74, 131 | fvmptd 6998 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑍‘𝑋) = ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
| 133 | 132, 131 | eqeltrd 2835 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑍‘𝑋) ∈ ℝ) |
| 134 | 74, 133 | readdcld 11269 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 + (𝑍‘𝑋)) ∈ ℝ) |
| 135 | 47, 120, 74, 134 | fvmptd 6998 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸‘𝑋) = (𝑋 + (𝑍‘𝑋))) |
| 136 | 135, 134 | eqeltrd 2835 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸‘𝑋) ∈ ℝ) |
| 137 | 136 | rexrd 11290 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸‘𝑋) ∈
ℝ*) |
| 138 | 137 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈
ℝ*) |
| 139 | | simp1 1136 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝜑) |
| 140 | | ovex 7443 |
. . . . . . . . . . . . . 14
⊢ (𝑗 − 1) ∈
V |
| 141 | | eleq1 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑗 − 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 − 1) ∈ (0..^𝑀))) |
| 142 | 141 | anbi2d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = (𝑗 − 1) → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)))) |
| 143 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑗 − 1) → (𝑄‘𝑖) = (𝑄‘(𝑗 − 1))) |
| 144 | | oveq1 7417 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = (𝑗 − 1) → (𝑖 + 1) = ((𝑗 − 1) + 1)) |
| 145 | 144 | fveq2d 6885 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑗 − 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 − 1) + 1))) |
| 146 | 143, 145 | breq12d 5137 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = (𝑗 − 1) → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))) |
| 147 | 142, 146 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = (𝑗 − 1) → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))))) |
| 148 | 7 | simprrd 773 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 149 | 148 | r19.21bi 3238 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 150 | 140, 147,
149 | vtocl 3542 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))) |
| 151 | 139, 100,
150 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))) |
| 152 | 111 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄‘𝑗)) |
| 153 | 151, 152 | breqtrd 5150 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘𝑗)) |
| 154 | | simp3 1138 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) = (𝐸‘𝑋)) |
| 155 | 153, 154 | breqtrd 5150 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) < (𝐸‘𝑋)) |
| 156 | 136 | leidd 11808 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐸‘𝑋) ≤ (𝐸‘𝑋)) |
| 157 | 156 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≤ (𝐸‘𝑋)) |
| 158 | 37 | eqcomd 2742 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
| 159 | 157, 158 | breqtrd 5150 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≤ (𝑄‘𝑗)) |
| 160 | 159 | 3adant2 1131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≤ (𝑄‘𝑗)) |
| 161 | 110 | eqcomd 2742 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 = ((𝑗 − 1) + 1)) |
| 162 | 161 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → (𝑄‘𝑗) = (𝑄‘((𝑗 − 1) + 1))) |
| 163 | 162 | 3ad2ant2 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) = (𝑄‘((𝑗 − 1) + 1))) |
| 164 | 160, 163 | breqtrd 5150 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≤ (𝑄‘((𝑗 − 1) + 1))) |
| 165 | 107, 116,
138, 155, 164 | eliocd 45516 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) |
| 166 | 143, 145 | oveq12d 7428 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑗 − 1) → ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) |
| 167 | 166 | eleq2d 2821 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑗 − 1) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸‘𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))) |
| 168 | 167 | rspcev 3606 |
. . . . . . . . 9
⊢ (((𝑗 − 1) ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
| 169 | 100, 165,
168 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
| 170 | 169 | 3exp 1119 |
. . . . . . 7
⊢ (𝜑 → (𝑗 ∈ (0...𝑀) → ((𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))))) |
| 171 | 170 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (𝑗 ∈ (0...𝑀) → ((𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))))) |
| 172 | 171 | rexlimdv 3140 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))))) |
| 173 | 15, 172 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
| 174 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → 𝑀 ∈ ℕ) |
| 175 | 101 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ) |
| 176 | | iocssicc 13459 |
. . . . . . . 8
⊢ ((𝑄‘0)(,](𝑄‘𝑀)) ⊆ ((𝑄‘0)[,](𝑄‘𝑀)) |
| 177 | 32 | simprd 495 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
| 178 | 33, 177 | oveq12d 7428 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄‘0)(,](𝑄‘𝑀)) = (𝐴(,]𝐵)) |
| 179 | 75, 178 | eleqtrrd 2838 |
. . . . . . . 8
⊢ (𝜑 → (𝐸‘𝑋) ∈ ((𝑄‘0)(,](𝑄‘𝑀))) |
| 180 | 176, 179 | sselid 3961 |
. . . . . . 7
⊢ (𝜑 → (𝐸‘𝑋) ∈ ((𝑄‘0)[,](𝑄‘𝑀))) |
| 181 | 180 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → (𝐸‘𝑋) ∈ ((𝑄‘0)[,](𝑄‘𝑀))) |
| 182 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ¬ (𝐸‘𝑋) ∈ ran 𝑄) |
| 183 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (𝑄‘𝑘) = (𝑄‘𝑗)) |
| 184 | 183 | breq1d 5134 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → ((𝑄‘𝑘) < (𝐸‘𝑋) ↔ (𝑄‘𝑗) < (𝐸‘𝑋))) |
| 185 | 184 | cbvrabv 3431 |
. . . . . . 7
⊢ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) < (𝐸‘𝑋)} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) < (𝐸‘𝑋)} |
| 186 | 185 | supeq1i 9464 |
. . . . . 6
⊢
sup({𝑘 ∈
(0..^𝑀) ∣ (𝑄‘𝑘) < (𝐸‘𝑋)}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) < (𝐸‘𝑋)}, ℝ, < ) |
| 187 | 174, 175,
181, 182, 186 | fourierdlem25 46141 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 188 | | ioossioc 45501 |
. . . . . . . 8
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) |
| 189 | 188 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
| 190 | 189 | sseld 3962 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))))) |
| 191 | 190 | reximdva 3154 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))))) |
| 192 | 187, 191 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
| 193 | 173, 192 | pm2.61dan 812 |
. . 3
⊢ (𝜑 → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
| 194 | 101 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 195 | | elfzofz 13697 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
| 196 | 195 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
| 197 | 194, 196 | ffvelcdmd 7080 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
| 198 | 197 | 3adant3 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
| 199 | 133 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑍‘𝑋) ∈ ℝ) |
| 200 | 198, 199 | resubcld 11670 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ) |
| 201 | 136 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ℝ) |
| 202 | 198 | rexrd 11290 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
| 203 | | fzofzp1 13785 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
| 204 | 203 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
| 205 | 194, 204 | ffvelcdmd 7080 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 206 | 205 | rexrd 11290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 207 | 206 | 3adant3 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 208 | | simp3 1138 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
| 209 | | iocgtlb 45511 |
. . . . . . . . 9
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝐸‘𝑋)) |
| 210 | 202, 207,
208, 209 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝐸‘𝑋)) |
| 211 | 198, 201,
199, 210 | ltsub1dd 11854 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < ((𝐸‘𝑋) − (𝑍‘𝑋))) |
| 212 | 135 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸‘𝑋) − (𝑍‘𝑋)) = ((𝑋 + (𝑍‘𝑋)) − (𝑍‘𝑋))) |
| 213 | 74 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 214 | 133 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑍‘𝑋) ∈ ℂ) |
| 215 | 213, 214 | pncand 11600 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋 + (𝑍‘𝑋)) − (𝑍‘𝑋)) = 𝑋) |
| 216 | 212, 215 | eqtrd 2771 |
. . . . . . . 8
⊢ (𝜑 → ((𝐸‘𝑋) − (𝑍‘𝑋)) = 𝑋) |
| 217 | 216 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐸‘𝑋) − (𝑍‘𝑋)) = 𝑋) |
| 218 | 211, 217 | breqtrd 5150 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑋) |
| 219 | | elioore 13397 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) → 𝑦 ∈ ℝ) |
| 220 | 132 | oveq2d 7426 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑦 + (𝑍‘𝑋)) = (𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
| 221 | 130 | recnd 11268 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℂ) |
| 222 | 52 | recnd 11268 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 223 | 221, 222 | mulneg1d 11695 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) = -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
| 224 | 220, 223 | oveq12d 7428 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) + -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
| 225 | 224 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) + -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
| 226 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) |
| 227 | 131 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) →
((⌊‘((𝐵 −
𝑋) / 𝑇)) · 𝑇) ∈ ℝ) |
| 228 | 226, 227 | readdcld 11269 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ ℝ) |
| 229 | 228 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ ℂ) |
| 230 | 227 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) →
((⌊‘((𝐵 −
𝑋) / 𝑇)) · 𝑇) ∈ ℂ) |
| 231 | 229, 230 | negsubd 11605 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) + -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) − ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
| 232 | 226 | recnd 11268 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ) |
| 233 | 232, 230 | pncand 11600 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) − ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) = 𝑦) |
| 234 | 225, 231,
233 | 3eqtrrd 2776 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
| 235 | 219, 234 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
| 236 | 235 | 3ad2antl1 1186 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
| 237 | | simpl1 1192 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝜑) |
| 238 | | fourierdlem41.qssd |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
| 239 | 238 | 3adant3 1132 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
| 240 | 239 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
| 241 | 202 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘𝑖) ∈
ℝ*) |
| 242 | 207 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 243 | 219 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ ℝ) |
| 244 | 133 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑍‘𝑋) ∈ ℝ) |
| 245 | 243, 244 | readdcld 11269 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ ℝ) |
| 246 | 245 | 3ad2antl1 1186 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ ℝ) |
| 247 | 133 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑍‘𝑋) ∈ ℝ) |
| 248 | 197, 247 | resubcld 11670 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ) |
| 249 | 248 | rexrd 11290 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈
ℝ*) |
| 250 | 249 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈
ℝ*) |
| 251 | 74 | rexrd 11290 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈
ℝ*) |
| 252 | 251 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑋 ∈
ℝ*) |
| 253 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) |
| 254 | | ioogtlb 45504 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*
∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑦) |
| 255 | 250, 252,
253, 254 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑦) |
| 256 | 197 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘𝑖) ∈ ℝ) |
| 257 | 133 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑍‘𝑋) ∈ ℝ) |
| 258 | 219 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ ℝ) |
| 259 | 256, 257,
258 | ltsubaddd 11838 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑦 ↔ (𝑄‘𝑖) < (𝑦 + (𝑍‘𝑋)))) |
| 260 | 255, 259 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘𝑖) < (𝑦 + (𝑍‘𝑋))) |
| 261 | 260 | 3adantl3 1169 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘𝑖) < (𝑦 + (𝑍‘𝑋))) |
| 262 | 237, 136 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝐸‘𝑋) ∈ ℝ) |
| 263 | 205 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 264 | 263 | 3adantl3 1169 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 265 | 74 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑋 ∈ ℝ) |
| 266 | | iooltub 45519 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*
∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 < 𝑋) |
| 267 | 250, 252,
253, 266 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 < 𝑋) |
| 268 | 258, 265,
257, 267 | ltadd1dd 11853 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) < (𝑋 + (𝑍‘𝑋))) |
| 269 | 135 | eqcomd 2742 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑋 + (𝑍‘𝑋)) = (𝐸‘𝑋)) |
| 270 | 269 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑋 + (𝑍‘𝑋)) = (𝐸‘𝑋)) |
| 271 | 268, 270 | breqtrd 5150 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) < (𝐸‘𝑋)) |
| 272 | 271 | 3adantl3 1169 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) < (𝐸‘𝑋)) |
| 273 | | iocleub 45512 |
. . . . . . . . . . . . . . 15
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ≤ (𝑄‘(𝑖 + 1))) |
| 274 | 202, 207,
208, 273 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ≤ (𝑄‘(𝑖 + 1))) |
| 275 | 274 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝐸‘𝑋) ≤ (𝑄‘(𝑖 + 1))) |
| 276 | 246, 262,
264, 272, 275 | ltletrd 11400 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) < (𝑄‘(𝑖 + 1))) |
| 277 | 241, 242,
246, 261, 276 | eliood 45507 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 278 | 240, 277 | sseldd 3964 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ 𝐷) |
| 279 | 237, 128 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝐵 − 𝑋) / 𝑇) ∈ ℝ) |
| 280 | 279 | flcld 13820 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
| 281 | 280 | znegcld 12704 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
| 282 | | negex 11485 |
. . . . . . . . . . 11
⊢
-(⌊‘((𝐵
− 𝑋) / 𝑇)) ∈ V |
| 283 | | eleq1 2823 |
. . . . . . . . . . . . 13
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (𝑘 ∈ ℤ ↔
-(⌊‘((𝐵 −
𝑋) / 𝑇)) ∈ ℤ)) |
| 284 | 283 | 3anbi3d 1444 |
. . . . . . . . . . . 12
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ))) |
| 285 | | oveq1 7417 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (𝑘 · 𝑇) = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
| 286 | 285 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
| 287 | 286 | eleq1d 2820 |
. . . . . . . . . . . 12
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷)) |
| 288 | 284, 287 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷))) |
| 289 | | ovex 7443 |
. . . . . . . . . . . 12
⊢ (𝑦 + (𝑍‘𝑋)) ∈ V |
| 290 | | eleq1 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → (𝑥 ∈ 𝐷 ↔ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷)) |
| 291 | 290 | 3anbi2d 1443 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ))) |
| 292 | | oveq1 7417 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → (𝑥 + (𝑘 · 𝑇)) = ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇))) |
| 293 | 292 | eleq1d 2820 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷)) |
| 294 | 291, 293 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → (((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷))) |
| 295 | | fourierdlem41.dper |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) |
| 296 | 289, 294,
295 | vtocl 3542 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷) |
| 297 | 282, 288,
296 | vtocl 3542 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷) |
| 298 | 237, 278,
281, 297 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷) |
| 299 | 236, 298 | eqeltrd 2835 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ 𝐷) |
| 300 | 299 | ralrimiva 3133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ∀𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑦 ∈ 𝐷) |
| 301 | | dfss3 3952 |
. . . . . . 7
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷 ↔ ∀𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑦 ∈ 𝐷) |
| 302 | 300, 301 | sylibr 234 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷) |
| 303 | | breq1 5127 |
. . . . . . . 8
⊢ (𝑦 = ((𝑄‘𝑖) − (𝑍‘𝑋)) → (𝑦 < 𝑋 ↔ ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑋)) |
| 304 | | oveq1 7417 |
. . . . . . . . 9
⊢ (𝑦 = ((𝑄‘𝑖) − (𝑍‘𝑋)) → (𝑦(,)𝑋) = (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) |
| 305 | 304 | sseq1d 3995 |
. . . . . . . 8
⊢ (𝑦 = ((𝑄‘𝑖) − (𝑍‘𝑋)) → ((𝑦(,)𝑋) ⊆ 𝐷 ↔ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷)) |
| 306 | 303, 305 | anbi12d 632 |
. . . . . . 7
⊢ (𝑦 = ((𝑄‘𝑖) − (𝑍‘𝑋)) → ((𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷) ↔ (((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑋 ∧ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷))) |
| 307 | 306 | rspcev 3606 |
. . . . . 6
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ ∧ (((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑋 ∧ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷)) → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷)) |
| 308 | 200, 218,
302, 307 | syl12anc 836 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷)) |
| 309 | 308 | 3exp 1119 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷)))) |
| 310 | 309 | rexlimdv 3140 |
. . 3
⊢ (𝜑 → (∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷))) |
| 311 | 193, 310 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷)) |
| 312 | | 0zd 12605 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℤ) |
| 313 | 3 | nnzd 12620 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 314 | | 1zzd 12628 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℤ) |
| 315 | | 0le1 11765 |
. . . . . . . . 9
⊢ 0 ≤
1 |
| 316 | 315 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 1) |
| 317 | 3 | nnge1d 12293 |
. . . . . . . 8
⊢ (𝜑 → 1 ≤ 𝑀) |
| 318 | 312, 313,
314, 316, 317 | elfzd 13537 |
. . . . . . 7
⊢ (𝜑 → 1 ∈ (0...𝑀)) |
| 319 | 101, 318 | ffvelcdmd 7080 |
. . . . . 6
⊢ (𝜑 → (𝑄‘1) ∈ ℝ) |
| 320 | 133, 52 | resubcld 11670 |
. . . . . 6
⊢ (𝜑 → ((𝑍‘𝑋) − 𝑇) ∈ ℝ) |
| 321 | 319, 320 | resubcld 11670 |
. . . . 5
⊢ (𝜑 → ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∈ ℝ) |
| 322 | 321 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∈ ℝ) |
| 323 | 38 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 324 | 323, 222 | pncand 11600 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴) |
| 325 | 324 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝐴 + 𝑇) − 𝑇) = 𝐴) |
| 326 | 43 | oveq2i 7421 |
. . . . . . . . . . 11
⊢ (𝐴 + 𝑇) = (𝐴 + (𝐵 − 𝐴)) |
| 327 | 326 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝐴 + 𝑇) = (𝐴 + (𝐵 − 𝐴))) |
| 328 | 40 | recnd 11268 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 329 | 323, 328 | pncan3d 11602 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
| 330 | 329 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
| 331 | | id 22 |
. . . . . . . . . . . 12
⊢ ((𝐸‘𝑋) = 𝐵 → (𝐸‘𝑋) = 𝐵) |
| 332 | 331 | eqcomd 2742 |
. . . . . . . . . . 11
⊢ ((𝐸‘𝑋) = 𝐵 → 𝐵 = (𝐸‘𝑋)) |
| 333 | 332 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → 𝐵 = (𝐸‘𝑋)) |
| 334 | 327, 330,
333 | 3eqtrrd 2776 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝐸‘𝑋) = (𝐴 + 𝑇)) |
| 335 | 334 | oveq1d 7425 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝐸‘𝑋) − 𝑇) = ((𝐴 + 𝑇) − 𝑇)) |
| 336 | 33 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑄‘0) = 𝐴) |
| 337 | 325, 335,
336 | 3eqtr4rd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑄‘0) = ((𝐸‘𝑋) − 𝑇)) |
| 338 | 337 | oveq1d 7425 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝑄‘0) − ((𝑍‘𝑋) − 𝑇)) = (((𝐸‘𝑋) − 𝑇) − ((𝑍‘𝑋) − 𝑇))) |
| 339 | 136 | recnd 11268 |
. . . . . . . 8
⊢ (𝜑 → (𝐸‘𝑋) ∈ ℂ) |
| 340 | 339, 214,
222 | nnncan2d 11634 |
. . . . . . 7
⊢ (𝜑 → (((𝐸‘𝑋) − 𝑇) − ((𝑍‘𝑋) − 𝑇)) = ((𝐸‘𝑋) − (𝑍‘𝑋))) |
| 341 | 340 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (((𝐸‘𝑋) − 𝑇) − ((𝑍‘𝑋) − 𝑇)) = ((𝐸‘𝑋) − (𝑍‘𝑋))) |
| 342 | 216 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝐸‘𝑋) − (𝑍‘𝑋)) = 𝑋) |
| 343 | 338, 341,
342 | 3eqtrrd 2776 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → 𝑋 = ((𝑄‘0) − ((𝑍‘𝑋) − 𝑇))) |
| 344 | 33, 38 | eqeltrd 2835 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
| 345 | 3 | nngt0d 12294 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < 𝑀) |
| 346 | | fzolb 13687 |
. . . . . . . . . 10
⊢ (0 ∈
(0..^𝑀) ↔ (0 ∈
ℤ ∧ 𝑀 ∈
ℤ ∧ 0 < 𝑀)) |
| 347 | 312, 313,
345, 346 | syl3anbrc 1344 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ (0..^𝑀)) |
| 348 | | 0re 11242 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
| 349 | | eleq1 2823 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀))) |
| 350 | 349 | anbi2d 630 |
. . . . . . . . . . . 12
⊢ (𝑖 = 0 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀)))) |
| 351 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑄‘𝑖) = (𝑄‘0)) |
| 352 | | oveq1 7417 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → (𝑖 + 1) = (0 + 1)) |
| 353 | 352 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1))) |
| 354 | 351, 353 | breq12d 5137 |
. . . . . . . . . . . 12
⊢ (𝑖 = 0 → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1)))) |
| 355 | 350, 354 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑖 = 0 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))) |
| 356 | 355, 149 | vtoclg 3538 |
. . . . . . . . . 10
⊢ (0 ∈
ℝ → ((𝜑 ∧ 0
∈ (0..^𝑀)) →
(𝑄‘0) < (𝑄‘(0 +
1)))) |
| 357 | 348, 356 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))) |
| 358 | 347, 357 | mpdan 687 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1))) |
| 359 | | 0p1e1 12367 |
. . . . . . . . . 10
⊢ (0 + 1) =
1 |
| 360 | 359 | fveq2i 6884 |
. . . . . . . . 9
⊢ (𝑄‘(0 + 1)) = (𝑄‘1) |
| 361 | 360 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘(0 + 1)) = (𝑄‘1)) |
| 362 | 358, 361 | breqtrd 5150 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘0) < (𝑄‘1)) |
| 363 | 344, 319,
320, 362 | ltsub1dd 11854 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘0) − ((𝑍‘𝑋) − 𝑇)) < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) |
| 364 | 363 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝑄‘0) − ((𝑍‘𝑋) − 𝑇)) < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) |
| 365 | 343, 364 | eqbrtrd 5146 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → 𝑋 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) |
| 366 | | elioore 13397 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) → 𝑦 ∈ ℝ) |
| 367 | 132 | eqcomd 2742 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) = (𝑍‘𝑋)) |
| 368 | 367 | negeqd 11481 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) = -(𝑍‘𝑋)) |
| 369 | 223, 368 | eqtrd 2771 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) = -(𝑍‘𝑋)) |
| 370 | 222 | mullidd 11258 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1 · 𝑇) = 𝑇) |
| 371 | 369, 370 | oveq12d 7428 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) + (1 · 𝑇)) = (-(𝑍‘𝑋) + 𝑇)) |
| 372 | 221 | negcld 11586 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℂ) |
| 373 | | 1cnd 11235 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℂ) |
| 374 | 372, 373,
222 | adddird 11265 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇) = ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) + (1 · 𝑇))) |
| 375 | 214, 222 | negsubdid 11614 |
. . . . . . . . . . . . 13
⊢ (𝜑 → -((𝑍‘𝑋) − 𝑇) = (-(𝑍‘𝑋) + 𝑇)) |
| 376 | 371, 374,
375 | 3eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇) = -((𝑍‘𝑋) − 𝑇)) |
| 377 | 376 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + -((𝑍‘𝑋) − 𝑇))) |
| 378 | 377 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + -((𝑍‘𝑋) − 𝑇))) |
| 379 | 320 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑍‘𝑋) − 𝑇) ∈ ℝ) |
| 380 | 226, 379 | readdcld 11269 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ ℝ) |
| 381 | 380 | recnd 11268 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ ℂ) |
| 382 | 379 | recnd 11268 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑍‘𝑋) − 𝑇) ∈ ℂ) |
| 383 | 381, 382 | negsubd 11605 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + -((𝑍‘𝑋) − 𝑇)) = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) − ((𝑍‘𝑋) − 𝑇))) |
| 384 | 232, 382 | pncand 11600 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) − ((𝑍‘𝑋) − 𝑇)) = 𝑦) |
| 385 | 378, 383,
384 | 3eqtrrd 2776 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇))) |
| 386 | 366, 385 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇))) |
| 387 | 386 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇))) |
| 388 | | simpll 766 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝜑) |
| 389 | 361 | eqcomd 2742 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘1) = (𝑄‘(0 + 1))) |
| 390 | 389 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑄‘0)(,)(𝑄‘1)) = ((𝑄‘0)(,)(𝑄‘(0 + 1)))) |
| 391 | 351, 353 | oveq12d 7428 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 0 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘0)(,)(𝑄‘(0 + 1)))) |
| 392 | 391 | sseq1d 3995 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 0 → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷 ↔ ((𝑄‘0)(,)(𝑄‘(0 + 1))) ⊆ 𝐷)) |
| 393 | 350, 392 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → ((𝑄‘0)(,)(𝑄‘(0 + 1))) ⊆ 𝐷))) |
| 394 | 393, 238 | vtoclg 3538 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℝ → ((𝜑 ∧ 0
∈ (0..^𝑀)) →
((𝑄‘0)(,)(𝑄‘(0 + 1))) ⊆ 𝐷)) |
| 395 | 348, 394 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → ((𝑄‘0)(,)(𝑄‘(0 + 1))) ⊆ 𝐷) |
| 396 | 347, 395 | mpdan 687 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑄‘0)(,)(𝑄‘(0 + 1))) ⊆ 𝐷) |
| 397 | 390, 396 | eqsstrd 3998 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑄‘0)(,)(𝑄‘1)) ⊆ 𝐷) |
| 398 | 397 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → ((𝑄‘0)(,)(𝑄‘1)) ⊆ 𝐷) |
| 399 | 33, 39 | eqeltrd 2835 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄‘0) ∈
ℝ*) |
| 400 | 399 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑄‘0) ∈
ℝ*) |
| 401 | 319 | rexrd 11290 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄‘1) ∈
ℝ*) |
| 402 | 401 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑄‘1) ∈
ℝ*) |
| 403 | 366, 380 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ ℝ) |
| 404 | 403 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ ℝ) |
| 405 | 339, 213,
214 | subaddd 11617 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝐸‘𝑋) − 𝑋) = (𝑍‘𝑋) ↔ (𝑋 + (𝑍‘𝑋)) = (𝐸‘𝑋))) |
| 406 | 269, 405 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐸‘𝑋) − 𝑋) = (𝑍‘𝑋)) |
| 407 | | oveq1 7417 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐸‘𝑋) = 𝐵 → ((𝐸‘𝑋) − 𝑋) = (𝐵 − 𝑋)) |
| 408 | 406, 407 | sylan9req 2792 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑍‘𝑋) = (𝐵 − 𝑋)) |
| 409 | 408 | oveq1d 7425 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝑍‘𝑋) − 𝑇) = ((𝐵 − 𝑋) − 𝑇)) |
| 410 | 409 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑋 + ((𝑍‘𝑋) − 𝑇)) = (𝑋 + ((𝐵 − 𝑋) − 𝑇))) |
| 411 | 127 | recnd 11268 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐵 − 𝑋) ∈ ℂ) |
| 412 | 213, 411,
222 | addsubassd 11619 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑋 + (𝐵 − 𝑋)) − 𝑇) = (𝑋 + ((𝐵 − 𝑋) − 𝑇))) |
| 413 | 412 | eqcomd 2742 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 + ((𝐵 − 𝑋) − 𝑇)) = ((𝑋 + (𝐵 − 𝑋)) − 𝑇)) |
| 414 | 413 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑋 + ((𝐵 − 𝑋) − 𝑇)) = ((𝑋 + (𝐵 − 𝑋)) − 𝑇)) |
| 415 | 328, 222,
323 | subsub23d 45296 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐵 − 𝑇) = 𝐴 ↔ (𝐵 − 𝐴) = 𝑇)) |
| 416 | 58, 415 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 − 𝑇) = 𝐴) |
| 417 | 213, 328 | pncan3d 11602 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑋 + (𝐵 − 𝑋)) = 𝐵) |
| 418 | 417 | oveq1d 7425 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑋 + (𝐵 − 𝑋)) − 𝑇) = (𝐵 − 𝑇)) |
| 419 | 416, 418,
33 | 3eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑋 + (𝐵 − 𝑋)) − 𝑇) = (𝑄‘0)) |
| 420 | 419 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝑋 + (𝐵 − 𝑋)) − 𝑇) = (𝑄‘0)) |
| 421 | 410, 414,
420 | 3eqtrrd 2776 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑄‘0) = (𝑋 + ((𝑍‘𝑋) − 𝑇))) |
| 422 | 421 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑄‘0) = (𝑋 + ((𝑍‘𝑋) − 𝑇))) |
| 423 | 74 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑋 ∈ ℝ) |
| 424 | 366 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 ∈ ℝ) |
| 425 | 320 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → ((𝑍‘𝑋) − 𝑇) ∈ ℝ) |
| 426 | 251 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑋 ∈
ℝ*) |
| 427 | 321 | rexrd 11290 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∈
ℝ*) |
| 428 | 427 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∈
ℝ*) |
| 429 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) |
| 430 | | ioogtlb 45504 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℝ*
∧ ((𝑄‘1) −
((𝑍‘𝑋) − 𝑇)) ∈ ℝ* ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑋 < 𝑦) |
| 431 | 426, 428,
429, 430 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑋 < 𝑦) |
| 432 | 423, 424,
425, 431 | ltadd1dd 11853 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑋 + ((𝑍‘𝑋) − 𝑇)) < (𝑦 + ((𝑍‘𝑋) − 𝑇))) |
| 433 | 432 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑋 + ((𝑍‘𝑋) − 𝑇)) < (𝑦 + ((𝑍‘𝑋) − 𝑇))) |
| 434 | 422, 433 | eqbrtrd 5146 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑄‘0) < (𝑦 + ((𝑍‘𝑋) − 𝑇))) |
| 435 | | iooltub 45519 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ ℝ*
∧ ((𝑄‘1) −
((𝑍‘𝑋) − 𝑇)) ∈ ℝ* ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) |
| 436 | 426, 428,
429, 435 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) |
| 437 | 319 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑄‘1) ∈ ℝ) |
| 438 | 424, 425,
437 | ltaddsubd 11842 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) < (𝑄‘1) ↔ 𝑦 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) |
| 439 | 436, 438 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) < (𝑄‘1)) |
| 440 | 439 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) < (𝑄‘1)) |
| 441 | 400, 402,
404, 434, 440 | eliood 45507 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ ((𝑄‘0)(,)(𝑄‘1))) |
| 442 | 398, 441 | sseldd 3964 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷) |
| 443 | 129 | znegcld 12704 |
. . . . . . . . . 10
⊢ (𝜑 → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
| 444 | 443 | peano2zd 12705 |
. . . . . . . . 9
⊢ (𝜑 → (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) ∈ ℤ) |
| 445 | 444 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) ∈ ℤ) |
| 446 | | ovex 7443 |
. . . . . . . . 9
⊢
(-(⌊‘((𝐵
− 𝑋) / 𝑇)) + 1) ∈
V |
| 447 | | eleq1 2823 |
. . . . . . . . . . 11
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → (𝑘 ∈ ℤ ↔
(-(⌊‘((𝐵
− 𝑋) / 𝑇)) + 1) ∈
ℤ)) |
| 448 | 447 | 3anbi3d 1444 |
. . . . . . . . . 10
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → ((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) ∈ ℤ))) |
| 449 | | oveq1 7417 |
. . . . . . . . . . . 12
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → (𝑘 · 𝑇) = ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) |
| 450 | 449 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇))) |
| 451 | 450 | eleq1d 2820 |
. . . . . . . . . 10
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → (((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) ∈ 𝐷)) |
| 452 | 448, 451 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → (((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) ∈ ℤ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) ∈ 𝐷))) |
| 453 | | ovex 7443 |
. . . . . . . . . 10
⊢ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ V |
| 454 | | eleq1 2823 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 + ((𝑍‘𝑋) − 𝑇)) → (𝑥 ∈ 𝐷 ↔ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷)) |
| 455 | 454 | 3anbi2d 1443 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 + ((𝑍‘𝑋) − 𝑇)) → ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ))) |
| 456 | | oveq1 7417 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 + ((𝑍‘𝑋) − 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇))) |
| 457 | 456 | eleq1d 2820 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 + ((𝑍‘𝑋) − 𝑇)) → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) ∈ 𝐷)) |
| 458 | 455, 457 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 + ((𝑍‘𝑋) − 𝑇)) → (((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) ∈ 𝐷))) |
| 459 | 453, 458,
295 | vtocl 3542 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) ∈ 𝐷) |
| 460 | 446, 452,
459 | vtocl 3542 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) ∈ ℤ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) ∈ 𝐷) |
| 461 | 388, 442,
445, 460 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) ∈ 𝐷) |
| 462 | 387, 461 | eqeltrd 2835 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 ∈ 𝐷) |
| 463 | 462 | ralrimiva 3133 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ∀𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))𝑦 ∈ 𝐷) |
| 464 | | dfss3 3952 |
. . . . 5
⊢ ((𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) ⊆ 𝐷 ↔ ∀𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))𝑦 ∈ 𝐷) |
| 465 | 463, 464 | sylibr 234 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) ⊆ 𝐷) |
| 466 | | breq2 5128 |
. . . . . 6
⊢ (𝑦 = ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) → (𝑋 < 𝑦 ↔ 𝑋 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) |
| 467 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑦 = ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) → (𝑋(,)𝑦) = (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) |
| 468 | 467 | sseq1d 3995 |
. . . . . 6
⊢ (𝑦 = ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) → ((𝑋(,)𝑦) ⊆ 𝐷 ↔ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) ⊆ 𝐷)) |
| 469 | 466, 468 | anbi12d 632 |
. . . . 5
⊢ (𝑦 = ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) → ((𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷) ↔ (𝑋 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∧ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) ⊆ 𝐷))) |
| 470 | 469 | rspcev 3606 |
. . . 4
⊢ ((((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∈ ℝ ∧ (𝑋 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∧ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) ⊆ 𝐷)) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
| 471 | 322, 365,
465, 470 | syl12anc 836 |
. . 3
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
| 472 | 15 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋)) |
| 473 | | simp2 1137 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ∈ (0...𝑀)) |
| 474 | 25 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ∈ ℝ) |
| 475 | 94 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑀 ∈ ℝ) |
| 476 | 96 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ≤ 𝑀) |
| 477 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑄‘𝑗) = (𝐸‘𝑋) → (𝑄‘𝑗) = (𝐸‘𝑋)) |
| 478 | 477 | eqcomd 2742 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑄‘𝑗) = (𝐸‘𝑋) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
| 479 | 478 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝑗) = (𝐸‘𝑋) ∧ 𝑀 = 𝑗) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
| 480 | 479 | 3ad2antl3 1188 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑀 = 𝑗) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
| 481 | | fveq2 6881 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 = 𝑗 → (𝑄‘𝑀) = (𝑄‘𝑗)) |
| 482 | 481 | eqcomd 2742 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 = 𝑗 → (𝑄‘𝑗) = (𝑄‘𝑀)) |
| 483 | 482 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑀 = 𝑗) → (𝑄‘𝑗) = (𝑄‘𝑀)) |
| 484 | 177 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑀 = 𝑗) → (𝑄‘𝑀) = 𝐵) |
| 485 | 484 | 3ad2antl1 1186 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑀 = 𝑗) → (𝑄‘𝑀) = 𝐵) |
| 486 | 480, 483,
485 | 3eqtrd 2775 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑀 = 𝑗) → (𝐸‘𝑋) = 𝐵) |
| 487 | | neneq 2939 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐸‘𝑋) ≠ 𝐵 → ¬ (𝐸‘𝑋) = 𝐵) |
| 488 | 487 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑀 = 𝑗) → ¬ (𝐸‘𝑋) = 𝐵) |
| 489 | 488 | 3ad2antl1 1186 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑀 = 𝑗) → ¬ (𝐸‘𝑋) = 𝐵) |
| 490 | 486, 489 | pm2.65da 816 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → ¬ 𝑀 = 𝑗) |
| 491 | 490 | neqned 2940 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑀 ≠ 𝑗) |
| 492 | 474, 475,
476, 491 | leneltd 11394 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 < 𝑀) |
| 493 | | elfzfzo 45285 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0..^𝑀) ↔ (𝑗 ∈ (0...𝑀) ∧ 𝑗 < 𝑀)) |
| 494 | 473, 492,
493 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ∈ (0..^𝑀)) |
| 495 | 114 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘𝑗) ∈
ℝ*) |
| 496 | 495 | 3adant3 1132 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) ∈
ℝ*) |
| 497 | | simp1l 1198 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝜑) |
| 498 | 101 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 499 | | fzofzp1 13785 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀)) |
| 500 | 499 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀)) |
| 501 | 498, 500 | ffvelcdmd 7080 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ) |
| 502 | 501 | rexrd 11290 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈
ℝ*) |
| 503 | 497, 494,
502 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 + 1)) ∈
ℝ*) |
| 504 | 138 | 3adant1r 1178 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈
ℝ*) |
| 505 | 37, 157 | eqbrtrd 5146 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) ≤ (𝐸‘𝑋)) |
| 506 | 505 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) ≤ (𝐸‘𝑋)) |
| 507 | 506 | 3adant2 1131 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) ≤ (𝐸‘𝑋)) |
| 508 | 478 | 3ad2ant3 1135 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
| 509 | | eleq1 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀))) |
| 510 | 509 | anbi2d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 𝑗 ∈ (0..^𝑀)))) |
| 511 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → (𝑄‘𝑖) = (𝑄‘𝑗)) |
| 512 | | oveq1 7417 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1)) |
| 513 | 512 | fveq2d 6885 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1))) |
| 514 | 511, 513 | breq12d 5137 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘𝑗) < (𝑄‘(𝑗 + 1)))) |
| 515 | 510, 514 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))))) |
| 516 | 515, 149 | chvarvv 1989 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))) |
| 517 | 497, 494,
516 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))) |
| 518 | 508, 517 | eqbrtrd 5146 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) < (𝑄‘(𝑗 + 1))) |
| 519 | 496, 503,
504, 507, 518 | elicod 13417 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈ ((𝑄‘𝑗)[,)(𝑄‘(𝑗 + 1)))) |
| 520 | 511, 513 | oveq12d 7428 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄‘𝑗)[,)(𝑄‘(𝑗 + 1)))) |
| 521 | 520 | eleq2d 2821 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸‘𝑋) ∈ ((𝑄‘𝑗)[,)(𝑄‘(𝑗 + 1))))) |
| 522 | 521 | rspcev 3606 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑗)[,)(𝑄‘(𝑗 + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
| 523 | 494, 519,
522 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
| 524 | 523 | 3exp 1119 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) → (𝑗 ∈ (0...𝑀) → ((𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))))) |
| 525 | 524 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (𝑗 ∈ (0...𝑀) → ((𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))))) |
| 526 | 525 | rexlimdv 3140 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))))) |
| 527 | 472, 526 | mpd 15 |
. . . . 5
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
| 528 | | ioossico 13460 |
. . . . . . . . . . 11
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) |
| 529 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 530 | 528, 529 | sselid 3961 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
| 531 | 530 | ex 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))))) |
| 532 | 531 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))))) |
| 533 | 532 | reximdva 3154 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))))) |
| 534 | 187, 533 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
| 535 | 534 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
| 536 | 527, 535 | pm2.61dan 812 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
| 537 | 205, 247 | resubcld 11670 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ) |
| 538 | 537 | 3adant3 1132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ) |
| 539 | 216 | eqcomd 2742 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 = ((𝐸‘𝑋) − (𝑍‘𝑋))) |
| 540 | 539 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → 𝑋 = ((𝐸‘𝑋) − (𝑍‘𝑋))) |
| 541 | 136 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ℝ) |
| 542 | 205 | 3adant3 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 543 | 133 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑍‘𝑋) ∈ ℝ) |
| 544 | 197 | rexrd 11290 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈
ℝ*) |
| 545 | 544 | 3adant3 1132 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
| 546 | 206 | 3adant3 1132 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 547 | | simp3 1138 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
| 548 | | icoltub 45517 |
. . . . . . . . . . 11
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) < (𝑄‘(𝑖 + 1))) |
| 549 | 545, 546,
547, 548 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) < (𝑄‘(𝑖 + 1))) |
| 550 | 541, 542,
543, 549 | ltsub1dd 11854 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → ((𝐸‘𝑋) − (𝑍‘𝑋)) < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) |
| 551 | 540, 550 | eqbrtrd 5146 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → 𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) |
| 552 | | elioore 13397 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) → 𝑦 ∈ ℝ) |
| 553 | 552, 234 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
| 554 | 553 | 3ad2antl1 1186 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
| 555 | | simpl1 1192 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝜑) |
| 556 | 238 | 3adant3 1132 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
| 557 | 556 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
| 558 | 545 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑄‘𝑖) ∈
ℝ*) |
| 559 | 546 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
| 560 | 552 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 ∈ ℝ) |
| 561 | 133 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑍‘𝑋) ∈ ℝ) |
| 562 | 560, 561 | readdcld 11269 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) ∈ ℝ) |
| 563 | 562 | 3ad2antl1 1186 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) ∈ ℝ) |
| 564 | 197 | 3adant3 1132 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
| 565 | 564 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑄‘𝑖) ∈ ℝ) |
| 566 | 555, 136 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝐸‘𝑋) ∈ ℝ) |
| 567 | | icogelb 13418 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ≤ (𝐸‘𝑋)) |
| 568 | 545, 546,
547, 567 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ≤ (𝐸‘𝑋)) |
| 569 | 568 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑄‘𝑖) ≤ (𝐸‘𝑋)) |
| 570 | 135 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝐸‘𝑋) = (𝑋 + (𝑍‘𝑋))) |
| 571 | 74 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑋 ∈ ℝ) |
| 572 | 552 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 ∈ ℝ) |
| 573 | 133 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑍‘𝑋) ∈ ℝ) |
| 574 | 251 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑋 ∈
ℝ*) |
| 575 | 537 | rexrd 11290 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈
ℝ*) |
| 576 | 575 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈
ℝ*) |
| 577 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) |
| 578 | | ioogtlb 45504 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 ∈ ℝ*
∧ ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑋 < 𝑦) |
| 579 | 574, 576,
577, 578 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑋 < 𝑦) |
| 580 | 571, 572,
573, 579 | ltadd1dd 11853 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑋 + (𝑍‘𝑋)) < (𝑦 + (𝑍‘𝑋))) |
| 581 | 570, 580 | eqbrtrd 5146 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝐸‘𝑋) < (𝑦 + (𝑍‘𝑋))) |
| 582 | 581 | 3adantl3 1169 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝐸‘𝑋) < (𝑦 + (𝑍‘𝑋))) |
| 583 | 565, 566,
563, 569, 582 | lelttrd 11398 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑄‘𝑖) < (𝑦 + (𝑍‘𝑋))) |
| 584 | 537 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ) |
| 585 | | iooltub 45519 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋 ∈ ℝ*
∧ ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) |
| 586 | 574, 576,
577, 585 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) |
| 587 | 572, 584,
573, 586 | ltadd1dd 11853 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) < (((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) + (𝑍‘𝑋))) |
| 588 | 205 | recnd 11268 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ) |
| 589 | 214 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑍‘𝑋) ∈ ℂ) |
| 590 | 588, 589 | npcand 11603 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) + (𝑍‘𝑋)) = (𝑄‘(𝑖 + 1))) |
| 591 | 590 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) + (𝑍‘𝑋)) = (𝑄‘(𝑖 + 1))) |
| 592 | 587, 591 | breqtrd 5150 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) < (𝑄‘(𝑖 + 1))) |
| 593 | 592 | 3adantl3 1169 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) < (𝑄‘(𝑖 + 1))) |
| 594 | 558, 559,
563, 583, 593 | eliood 45507 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 595 | 557, 594 | sseldd 3964 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) ∈ 𝐷) |
| 596 | 555, 443 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
| 597 | 555, 595,
596, 297 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷) |
| 598 | 554, 597 | eqeltrd 2835 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 ∈ 𝐷) |
| 599 | 598 | ralrimiva 3133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → ∀𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))𝑦 ∈ 𝐷) |
| 600 | | dfss3 3952 |
. . . . . . . . 9
⊢ ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) ⊆ 𝐷 ↔ ∀𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))𝑦 ∈ 𝐷) |
| 601 | 599, 600 | sylibr 234 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) ⊆ 𝐷) |
| 602 | | breq2 5128 |
. . . . . . . . . 10
⊢ (𝑦 = ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) → (𝑋 < 𝑦 ↔ 𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) |
| 603 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑦 = ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) → (𝑋(,)𝑦) = (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) |
| 604 | 603 | sseq1d 3995 |
. . . . . . . . . 10
⊢ (𝑦 = ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) → ((𝑋(,)𝑦) ⊆ 𝐷 ↔ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) ⊆ 𝐷)) |
| 605 | 602, 604 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑦 = ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) → ((𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷) ↔ (𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∧ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) ⊆ 𝐷))) |
| 606 | 605 | rspcev 3606 |
. . . . . . . 8
⊢ ((((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ ∧ (𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∧ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) ⊆ 𝐷)) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
| 607 | 538, 551,
601, 606 | syl12anc 836 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
| 608 | 607 | 3exp 1119 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)))) |
| 609 | 608 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) → (𝑖 ∈ (0..^𝑀) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)))) |
| 610 | 609 | rexlimdv 3140 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) → (∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷))) |
| 611 | 536, 610 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
| 612 | 471, 611 | pm2.61dane 3020 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
| 613 | 311, 612 | jca 511 |
1
⊢ (𝜑 → (∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷) ∧ ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷))) |