Step | Hyp | Ref
| Expression |
1 | | simpr 479 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (𝐸‘𝑋) ∈ ran 𝑄) |
2 | | fourierdlem41.q |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
3 | | fourierdlem41.m |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℕ) |
4 | | fourierdlem41.p |
. . . . . . . . . . . . 13
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
5 | 4 | fourierdlem2 41267 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
6 | 3, 5 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
7 | 2, 6 | mpbid 224 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑𝑚
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
8 | 7 | simpld 490 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑𝑚
(0...𝑀))) |
9 | | elmapi 8164 |
. . . . . . . . 9
⊢ (𝑄 ∈ (ℝ
↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
10 | | ffn 6293 |
. . . . . . . . 9
⊢ (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀)) |
11 | 8, 9, 10 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 Fn (0...𝑀)) |
12 | 11 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → 𝑄 Fn (0...𝑀)) |
13 | | fvelrnb 6505 |
. . . . . . 7
⊢ (𝑄 Fn (0...𝑀) → ((𝐸‘𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋))) |
14 | 12, 13 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ((𝐸‘𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋))) |
15 | 1, 14 | mpbid 224 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋)) |
16 | | 0zd 11745 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 0 ∈ ℤ) |
17 | | elfzelz 12664 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ) |
18 | 17 | 3ad2ant2 1125 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ∈ ℤ) |
19 | | 1zzd 11765 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 1 ∈ ℤ) |
20 | 18, 19 | zsubcld 11844 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈ ℤ) |
21 | | simpll 757 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 0 < 𝑗) → 𝜑) |
22 | | elfzle1 12666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗) |
23 | 22 | anim1i 608 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → (0 ≤ 𝑗 ∧ ¬ 0 < 𝑗)) |
24 | | 0red 10382 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → 0 ∈ ℝ) |
25 | 17 | zred 11839 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ) |
26 | 25 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → 𝑗 ∈ ℝ) |
27 | 24, 26 | eqleltd 10522 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → (0 = 𝑗 ↔ (0 ≤ 𝑗 ∧ ¬ 0 < 𝑗))) |
28 | 23, 27 | mpbird 249 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → 0 = 𝑗) |
29 | 28 | eqcomd 2784 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → 𝑗 = 0) |
30 | 29 | adantll 704 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 0 < 𝑗) → 𝑗 = 0) |
31 | | fveq2 6448 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 0 → (𝑄‘𝑗) = (𝑄‘0)) |
32 | 7 | simprld 762 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
33 | 32 | simpld 490 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
34 | 31, 33 | sylan9eqr 2836 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 = 0) → (𝑄‘𝑗) = 𝐴) |
35 | 21, 30, 34 | syl2anc 579 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 0 < 𝑗) → (𝑄‘𝑗) = 𝐴) |
36 | 35 | 3adantl3 1170 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ ¬ 0 < 𝑗) → (𝑄‘𝑗) = 𝐴) |
37 | | simpr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) = (𝐸‘𝑋)) |
38 | | fourierdlem41.a |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ∈ ℝ) |
39 | 38 | rexrd 10428 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
40 | | fourierdlem41.b |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐵 ∈ ℝ) |
41 | 40 | rexrd 10428 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
42 | | fourierdlem41.altb |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐴 < 𝐵) |
43 | | fourierdlem41.t |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑇 = (𝐵 − 𝐴) |
44 | | eqid 2778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
45 | 38, 40, 42, 43, 44 | fourierdlem4 41269 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))):ℝ⟶(𝐴(,]𝐵)) |
46 | | fourierdlem41.e |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥))) |
47 | 46 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥)))) |
48 | | simpr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
49 | 40 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ) |
50 | 49, 48 | resubcld 10806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐵 − 𝑥) ∈ ℝ) |
51 | 40, 38 | resubcld 10806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
52 | 43, 51 | syl5eqel 2863 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 𝑇 ∈ ℝ) |
53 | 52 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ) |
54 | | 0red 10382 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 0 ∈
ℝ) |
55 | 38, 40 | posdifd 10965 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
56 | 42, 55 | mpbid 224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
57 | 43 | eqcomi 2787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝐵 − 𝐴) = 𝑇 |
58 | 57 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → (𝐵 − 𝐴) = 𝑇) |
59 | 56, 58 | breqtrd 4914 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 0 < 𝑇) |
60 | 54, 59 | gtned 10513 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 𝑇 ≠ 0) |
61 | 60 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑇 ≠ 0) |
62 | 50, 53, 61 | redivcld 11206 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐵 − 𝑥) / 𝑇) ∈ ℝ) |
63 | 62 | flcld 12923 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐵 −
𝑥) / 𝑇)) ∈ ℤ) |
64 | 63 | zred 11839 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐵 −
𝑥) / 𝑇)) ∈ ℝ) |
65 | 64, 53 | remulcld 10409 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
((⌊‘((𝐵 −
𝑥) / 𝑇)) · 𝑇) ∈ ℝ) |
66 | | fourierdlem41.z |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑍 = (𝑥 ∈ ℝ ↦
((⌊‘((𝐵 −
𝑥) / 𝑇)) · 𝑇)) |
67 | 66 | fvmpt2 6554 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ ℝ ∧
((⌊‘((𝐵 −
𝑥) / 𝑇)) · 𝑇) ∈ ℝ) → (𝑍‘𝑥) = ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) |
68 | 48, 65, 67 | syl2anc 579 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑍‘𝑥) = ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) |
69 | 68 | oveq2d 6940 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 + (𝑍‘𝑥)) = (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
70 | 69 | mpteq2dva 4981 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)))) |
71 | 47, 70 | eqtrd 2814 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)))) |
72 | 71 | feq1d 6278 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐸:ℝ⟶(𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))):ℝ⟶(𝐴(,]𝐵))) |
73 | 45, 72 | mpbird 249 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐸:ℝ⟶(𝐴(,]𝐵)) |
74 | | fourierdlem41.x |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑋 ∈ ℝ) |
75 | 73, 74 | ffvelrnd 6626 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) |
76 | | iocgtlb 40650 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸‘𝑋)) |
77 | 39, 41, 75, 76 | syl3anc 1439 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 < (𝐸‘𝑋)) |
78 | 38, 77 | gtned 10513 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐸‘𝑋) ≠ 𝐴) |
79 | 78 | adantr 474 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≠ 𝐴) |
80 | 37, 79 | eqnetrd 3036 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) ≠ 𝐴) |
81 | 80 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ ¬ 0 < 𝑗) → (𝑄‘𝑗) ≠ 𝐴) |
82 | 81 | 3adantl2 1169 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ ¬ 0 < 𝑗) → (𝑄‘𝑗) ≠ 𝐴) |
83 | 82 | neneqd 2974 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ ¬ 0 < 𝑗) → ¬ (𝑄‘𝑗) = 𝐴) |
84 | 36, 83 | condan 808 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 0 < 𝑗) |
85 | | zltlem1 11787 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℤ ∧ 𝑗
∈ ℤ) → (0 < 𝑗 ↔ 0 ≤ (𝑗 − 1))) |
86 | 16, 18, 85 | syl2anc 579 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (0 < 𝑗 ↔ 0 ≤ (𝑗 − 1))) |
87 | 84, 86 | mpbid 224 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 0 ≤ (𝑗 − 1)) |
88 | | eluz2 12003 |
. . . . . . . . . . 11
⊢ ((𝑗 − 1) ∈
(ℤ≥‘0) ↔ (0 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ ∧
0 ≤ (𝑗 −
1))) |
89 | 16, 20, 87, 88 | syl3anbrc 1400 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈
(ℤ≥‘0)) |
90 | | elfzel2 12662 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ) |
91 | 90 | 3ad2ant2 1125 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑀 ∈ ℤ) |
92 | | 1red 10379 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → 1 ∈ ℝ) |
93 | 25, 92 | resubcld 10806 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ) |
94 | 90 | zred 11839 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ) |
95 | 25 | ltm1d 11313 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑗) |
96 | | elfzle2 12667 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ≤ 𝑀) |
97 | 93, 25, 94, 95, 96 | ltletrd 10538 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀) |
98 | 97 | 3ad2ant2 1125 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) < 𝑀) |
99 | | elfzo2 12797 |
. . . . . . . . . 10
⊢ ((𝑗 − 1) ∈ (0..^𝑀) ↔ ((𝑗 − 1) ∈
(ℤ≥‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) < 𝑀)) |
100 | 89, 91, 98, 99 | syl3anbrc 1400 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈ (0..^𝑀)) |
101 | 8, 9 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
102 | 101 | 3ad2ant1 1124 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑄:(0...𝑀)⟶ℝ) |
103 | 16, 91, 20 | 3jca 1119 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) ∈
ℤ)) |
104 | 93, 94, 97 | ltled 10526 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ≤ 𝑀) |
105 | 104 | 3ad2ant2 1125 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ≤ 𝑀) |
106 | 103, 87, 105 | jca32 511 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ)
∧ (0 ≤ (𝑗 − 1)
∧ (𝑗 − 1) ≤
𝑀))) |
107 | | elfz2 12655 |
. . . . . . . . . . . . 13
⊢ ((𝑗 − 1) ∈ (0...𝑀) ↔ ((0 ∈ ℤ
∧ 𝑀 ∈ ℤ
∧ (𝑗 − 1) ∈
ℤ) ∧ (0 ≤ (𝑗
− 1) ∧ (𝑗 −
1) ≤ 𝑀))) |
108 | 106, 107 | sylibr 226 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈ (0...𝑀)) |
109 | 102, 108 | ffvelrnd 6626 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ) |
110 | 109 | rexrd 10428 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) ∈
ℝ*) |
111 | 25 | recnd 10407 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ) |
112 | | 1cnd 10373 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑀) → 1 ∈ ℂ) |
113 | 111, 112 | npcand 10740 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑀) → ((𝑗 − 1) + 1) = 𝑗) |
114 | 113 | fveq2d 6452 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄‘𝑗)) |
115 | 114 | adantl 475 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄‘𝑗)) |
116 | 101 | ffvelrnda 6625 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘𝑗) ∈ ℝ) |
117 | 116 | rexrd 10428 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘𝑗) ∈
ℝ*) |
118 | 115, 117 | eqeltrd 2859 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘((𝑗 − 1) + 1)) ∈
ℝ*) |
119 | 118 | 3adant3 1123 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘((𝑗 − 1) + 1)) ∈
ℝ*) |
120 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
121 | | fveq2 6448 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑋 → (𝑍‘𝑥) = (𝑍‘𝑋)) |
122 | 120, 121 | oveq12d 6942 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑋 → (𝑥 + (𝑍‘𝑥)) = (𝑋 + (𝑍‘𝑋))) |
123 | 122 | adantl 475 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥 + (𝑍‘𝑥)) = (𝑋 + (𝑍‘𝑋))) |
124 | 66 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑍 = (𝑥 ∈ ℝ ↦
((⌊‘((𝐵 −
𝑥) / 𝑇)) · 𝑇))) |
125 | | oveq2 6932 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑋 → (𝐵 − 𝑥) = (𝐵 − 𝑋)) |
126 | 125 | oveq1d 6939 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑋 → ((𝐵 − 𝑥) / 𝑇) = ((𝐵 − 𝑋) / 𝑇)) |
127 | 126 | fveq2d 6452 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑋 → (⌊‘((𝐵 − 𝑥) / 𝑇)) = (⌊‘((𝐵 − 𝑋) / 𝑇))) |
128 | 127 | oveq1d 6939 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑋 → ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
129 | 128 | adantl 475 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
130 | 40, 74 | resubcld 10806 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐵 − 𝑋) ∈ ℝ) |
131 | 130, 52, 60 | redivcld 11206 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐵 − 𝑋) / 𝑇) ∈ ℝ) |
132 | 131 | flcld 12923 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
133 | 132 | zred 11839 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℝ) |
134 | 133, 52 | remulcld 10409 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) ∈ ℝ) |
135 | 124, 129,
74, 134 | fvmptd 6550 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑍‘𝑋) = ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
136 | 135, 134 | eqeltrd 2859 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑍‘𝑋) ∈ ℝ) |
137 | 74, 136 | readdcld 10408 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 + (𝑍‘𝑋)) ∈ ℝ) |
138 | 47, 123, 74, 137 | fvmptd 6550 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸‘𝑋) = (𝑋 + (𝑍‘𝑋))) |
139 | 138, 137 | eqeltrd 2859 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸‘𝑋) ∈ ℝ) |
140 | 139 | rexrd 10428 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸‘𝑋) ∈
ℝ*) |
141 | 140 | 3ad2ant1 1124 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈
ℝ*) |
142 | | simp1 1127 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝜑) |
143 | | ovex 6956 |
. . . . . . . . . . . . . 14
⊢ (𝑗 − 1) ∈
V |
144 | | eleq1 2847 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑗 − 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 − 1) ∈ (0..^𝑀))) |
145 | 144 | anbi2d 622 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = (𝑗 − 1) → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)))) |
146 | | fveq2 6448 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑗 − 1) → (𝑄‘𝑖) = (𝑄‘(𝑗 − 1))) |
147 | | oveq1 6931 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = (𝑗 − 1) → (𝑖 + 1) = ((𝑗 − 1) + 1)) |
148 | 147 | fveq2d 6452 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑗 − 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 − 1) + 1))) |
149 | 146, 148 | breq12d 4901 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = (𝑗 − 1) → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))) |
150 | 145, 149 | imbi12d 336 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = (𝑗 − 1) → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))))) |
151 | 7 | simprrd 764 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
152 | 151 | r19.21bi 3114 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
153 | 143, 150,
152 | vtocl 3460 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))) |
154 | 142, 100,
153 | syl2anc 579 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))) |
155 | 114 | 3ad2ant2 1125 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄‘𝑗)) |
156 | 154, 155 | breqtrd 4914 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘𝑗)) |
157 | | simp3 1129 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) = (𝐸‘𝑋)) |
158 | 156, 157 | breqtrd 4914 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) < (𝐸‘𝑋)) |
159 | 139 | leidd 10944 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐸‘𝑋) ≤ (𝐸‘𝑋)) |
160 | 159 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≤ (𝐸‘𝑋)) |
161 | 37 | eqcomd 2784 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
162 | 160, 161 | breqtrd 4914 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≤ (𝑄‘𝑗)) |
163 | 162 | 3adant2 1122 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≤ (𝑄‘𝑗)) |
164 | 113 | eqcomd 2784 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 = ((𝑗 − 1) + 1)) |
165 | 164 | fveq2d 6452 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → (𝑄‘𝑗) = (𝑄‘((𝑗 − 1) + 1))) |
166 | 165 | 3ad2ant2 1125 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) = (𝑄‘((𝑗 − 1) + 1))) |
167 | 163, 166 | breqtrd 4914 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≤ (𝑄‘((𝑗 − 1) + 1))) |
168 | 110, 119,
141, 158, 167 | eliocd 40656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) |
169 | 146, 148 | oveq12d 6942 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑗 − 1) → ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) |
170 | 169 | eleq2d 2845 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑗 − 1) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸‘𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))) |
171 | 170 | rspcev 3511 |
. . . . . . . . 9
⊢ (((𝑗 − 1) ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
172 | 100, 168,
171 | syl2anc 579 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
173 | 172 | 3exp 1109 |
. . . . . . 7
⊢ (𝜑 → (𝑗 ∈ (0...𝑀) → ((𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))))) |
174 | 173 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (𝑗 ∈ (0...𝑀) → ((𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))))) |
175 | 174 | rexlimdv 3212 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))))) |
176 | 15, 175 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
177 | 3 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → 𝑀 ∈ ℕ) |
178 | 101 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ) |
179 | | iocssicc 12579 |
. . . . . . . 8
⊢ ((𝑄‘0)(,](𝑄‘𝑀)) ⊆ ((𝑄‘0)[,](𝑄‘𝑀)) |
180 | 32 | simprd 491 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
181 | 33, 180 | oveq12d 6942 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄‘0)(,](𝑄‘𝑀)) = (𝐴(,]𝐵)) |
182 | 75, 181 | eleqtrrd 2862 |
. . . . . . . 8
⊢ (𝜑 → (𝐸‘𝑋) ∈ ((𝑄‘0)(,](𝑄‘𝑀))) |
183 | 179, 182 | sseldi 3819 |
. . . . . . 7
⊢ (𝜑 → (𝐸‘𝑋) ∈ ((𝑄‘0)[,](𝑄‘𝑀))) |
184 | 183 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → (𝐸‘𝑋) ∈ ((𝑄‘0)[,](𝑄‘𝑀))) |
185 | | simpr 479 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ¬ (𝐸‘𝑋) ∈ ran 𝑄) |
186 | | fveq2 6448 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (𝑄‘𝑘) = (𝑄‘𝑗)) |
187 | 186 | breq1d 4898 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → ((𝑄‘𝑘) < (𝐸‘𝑋) ↔ (𝑄‘𝑗) < (𝐸‘𝑋))) |
188 | 187 | cbvrabv 3396 |
. . . . . . 7
⊢ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) < (𝐸‘𝑋)} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) < (𝐸‘𝑋)} |
189 | 188 | supeq1i 8643 |
. . . . . 6
⊢
sup({𝑘 ∈
(0..^𝑀) ∣ (𝑄‘𝑘) < (𝐸‘𝑋)}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) < (𝐸‘𝑋)}, ℝ, < ) |
190 | 177, 178,
184, 185, 189 | fourierdlem25 41290 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
191 | | ioossioc 40639 |
. . . . . . . 8
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) |
192 | 191 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
193 | 192 | sseld 3820 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))))) |
194 | 193 | reximdva 3198 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))))) |
195 | 190, 194 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
196 | 176, 195 | pm2.61dan 803 |
. . 3
⊢ (𝜑 → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
197 | 101 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
198 | | elfzofz 12809 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
199 | 198 | adantl 475 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
200 | 197, 199 | ffvelrnd 6626 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
201 | 200 | 3adant3 1123 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
202 | 136 | 3ad2ant1 1124 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑍‘𝑋) ∈ ℝ) |
203 | 201, 202 | resubcld 10806 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ) |
204 | 139 | 3ad2ant1 1124 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ℝ) |
205 | 201 | rexrd 10428 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
206 | | fzofzp1 12889 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
207 | 206 | adantl 475 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
208 | 197, 207 | ffvelrnd 6626 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
209 | 208 | rexrd 10428 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
210 | 209 | 3adant3 1123 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
211 | | simp3 1129 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
212 | | iocgtlb 40650 |
. . . . . . . . 9
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝐸‘𝑋)) |
213 | 205, 210,
211, 212 | syl3anc 1439 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝐸‘𝑋)) |
214 | 201, 204,
202, 213 | ltsub1dd 10990 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < ((𝐸‘𝑋) − (𝑍‘𝑋))) |
215 | 138 | oveq1d 6939 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸‘𝑋) − (𝑍‘𝑋)) = ((𝑋 + (𝑍‘𝑋)) − (𝑍‘𝑋))) |
216 | 74 | recnd 10407 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ ℂ) |
217 | 136 | recnd 10407 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑍‘𝑋) ∈ ℂ) |
218 | 216, 217 | pncand 10737 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋 + (𝑍‘𝑋)) − (𝑍‘𝑋)) = 𝑋) |
219 | 215, 218 | eqtrd 2814 |
. . . . . . . 8
⊢ (𝜑 → ((𝐸‘𝑋) − (𝑍‘𝑋)) = 𝑋) |
220 | 219 | 3ad2ant1 1124 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐸‘𝑋) − (𝑍‘𝑋)) = 𝑋) |
221 | 214, 220 | breqtrd 4914 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑋) |
222 | | elioore 12522 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) → 𝑦 ∈ ℝ) |
223 | 135 | oveq2d 6940 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑦 + (𝑍‘𝑋)) = (𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
224 | 133 | recnd 10407 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℂ) |
225 | 52 | recnd 10407 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑇 ∈ ℂ) |
226 | 224, 225 | mulneg1d 10831 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) = -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
227 | 223, 226 | oveq12d 6942 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) + -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
228 | 227 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) + -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
229 | | simpr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) |
230 | 134 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) →
((⌊‘((𝐵 −
𝑋) / 𝑇)) · 𝑇) ∈ ℝ) |
231 | 229, 230 | readdcld 10408 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ ℝ) |
232 | 231 | recnd 10407 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ ℂ) |
233 | 230 | recnd 10407 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) →
((⌊‘((𝐵 −
𝑋) / 𝑇)) · 𝑇) ∈ ℂ) |
234 | 232, 233 | negsubd 10742 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) + -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) − ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
235 | 229 | recnd 10407 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ) |
236 | 235, 233 | pncand 10737 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) − ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) = 𝑦) |
237 | 228, 234,
236 | 3eqtrrd 2819 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
238 | 222, 237 | sylan2 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
239 | 238 | 3ad2antl1 1193 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
240 | | simpl1 1199 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝜑) |
241 | | fourierdlem41.qssd |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
242 | 241 | 3adant3 1123 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
243 | 242 | adantr 474 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
244 | 205 | adantr 474 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘𝑖) ∈
ℝ*) |
245 | 210 | adantr 474 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
246 | 222 | adantl 475 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ ℝ) |
247 | 136 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑍‘𝑋) ∈ ℝ) |
248 | 246, 247 | readdcld 10408 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ ℝ) |
249 | 248 | 3ad2antl1 1193 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ ℝ) |
250 | 136 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑍‘𝑋) ∈ ℝ) |
251 | 200, 250 | resubcld 10806 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ) |
252 | 251 | rexrd 10428 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈
ℝ*) |
253 | 252 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈
ℝ*) |
254 | 74 | rexrd 10428 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈
ℝ*) |
255 | 254 | ad2antrr 716 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑋 ∈
ℝ*) |
256 | | simpr 479 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) |
257 | | ioogtlb 40643 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*
∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑦) |
258 | 253, 255,
256, 257 | syl3anc 1439 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑦) |
259 | 200 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘𝑖) ∈ ℝ) |
260 | 136 | ad2antrr 716 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑍‘𝑋) ∈ ℝ) |
261 | 222 | adantl 475 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ ℝ) |
262 | 259, 260,
261 | ltsubaddd 10974 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑦 ↔ (𝑄‘𝑖) < (𝑦 + (𝑍‘𝑋)))) |
263 | 258, 262 | mpbid 224 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘𝑖) < (𝑦 + (𝑍‘𝑋))) |
264 | 263 | 3adantl3 1170 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘𝑖) < (𝑦 + (𝑍‘𝑋))) |
265 | 240, 139 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝐸‘𝑋) ∈ ℝ) |
266 | 208 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
267 | 266 | 3adantl3 1170 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
268 | 74 | ad2antrr 716 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑋 ∈ ℝ) |
269 | | iooltub 40659 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*
∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 < 𝑋) |
270 | 253, 255,
256, 269 | syl3anc 1439 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 < 𝑋) |
271 | 261, 268,
260, 270 | ltadd1dd 10989 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) < (𝑋 + (𝑍‘𝑋))) |
272 | 138 | eqcomd 2784 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑋 + (𝑍‘𝑋)) = (𝐸‘𝑋)) |
273 | 272 | ad2antrr 716 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑋 + (𝑍‘𝑋)) = (𝐸‘𝑋)) |
274 | 271, 273 | breqtrd 4914 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) < (𝐸‘𝑋)) |
275 | 274 | 3adantl3 1170 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) < (𝐸‘𝑋)) |
276 | | iocleub 40651 |
. . . . . . . . . . . . . . 15
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ≤ (𝑄‘(𝑖 + 1))) |
277 | 205, 210,
211, 276 | syl3anc 1439 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ≤ (𝑄‘(𝑖 + 1))) |
278 | 277 | adantr 474 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝐸‘𝑋) ≤ (𝑄‘(𝑖 + 1))) |
279 | 249, 265,
267, 275, 278 | ltletrd 10538 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) < (𝑄‘(𝑖 + 1))) |
280 | 244, 245,
249, 264, 279 | eliood 40646 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
281 | 243, 280 | sseldd 3822 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ 𝐷) |
282 | 240, 131 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝐵 − 𝑋) / 𝑇) ∈ ℝ) |
283 | 282 | flcld 12923 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
284 | 283 | znegcld 11841 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
285 | | negex 10622 |
. . . . . . . . . . 11
⊢
-(⌊‘((𝐵
− 𝑋) / 𝑇)) ∈ V |
286 | | eleq1 2847 |
. . . . . . . . . . . . 13
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (𝑘 ∈ ℤ ↔
-(⌊‘((𝐵 −
𝑋) / 𝑇)) ∈ ℤ)) |
287 | 286 | 3anbi3d 1515 |
. . . . . . . . . . . 12
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ))) |
288 | | oveq1 6931 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (𝑘 · 𝑇) = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
289 | 288 | oveq2d 6940 |
. . . . . . . . . . . . 13
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
290 | 289 | eleq1d 2844 |
. . . . . . . . . . . 12
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷)) |
291 | 287, 290 | imbi12d 336 |
. . . . . . . . . . 11
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷))) |
292 | | ovex 6956 |
. . . . . . . . . . . 12
⊢ (𝑦 + (𝑍‘𝑋)) ∈ V |
293 | | eleq1 2847 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → (𝑥 ∈ 𝐷 ↔ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷)) |
294 | 293 | 3anbi2d 1514 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ))) |
295 | | oveq1 6931 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → (𝑥 + (𝑘 · 𝑇)) = ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇))) |
296 | 295 | eleq1d 2844 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷)) |
297 | 294, 296 | imbi12d 336 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → (((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷))) |
298 | | fourierdlem41.dper |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) |
299 | 292, 297,
298 | vtocl 3460 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷) |
300 | 285, 291,
299 | vtocl 3460 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷) |
301 | 240, 281,
284, 300 | syl3anc 1439 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷) |
302 | 239, 301 | eqeltrd 2859 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ 𝐷) |
303 | 302 | ralrimiva 3148 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ∀𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑦 ∈ 𝐷) |
304 | | dfss3 3810 |
. . . . . . 7
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷 ↔ ∀𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑦 ∈ 𝐷) |
305 | 303, 304 | sylibr 226 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷) |
306 | | breq1 4891 |
. . . . . . . 8
⊢ (𝑦 = ((𝑄‘𝑖) − (𝑍‘𝑋)) → (𝑦 < 𝑋 ↔ ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑋)) |
307 | | oveq1 6931 |
. . . . . . . . 9
⊢ (𝑦 = ((𝑄‘𝑖) − (𝑍‘𝑋)) → (𝑦(,)𝑋) = (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) |
308 | 307 | sseq1d 3851 |
. . . . . . . 8
⊢ (𝑦 = ((𝑄‘𝑖) − (𝑍‘𝑋)) → ((𝑦(,)𝑋) ⊆ 𝐷 ↔ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷)) |
309 | 306, 308 | anbi12d 624 |
. . . . . . 7
⊢ (𝑦 = ((𝑄‘𝑖) − (𝑍‘𝑋)) → ((𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷) ↔ (((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑋 ∧ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷))) |
310 | 309 | rspcev 3511 |
. . . . . 6
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ ∧ (((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑋 ∧ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷)) → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷)) |
311 | 203, 221,
305, 310 | syl12anc 827 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷)) |
312 | 311 | 3exp 1109 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷)))) |
313 | 312 | rexlimdv 3212 |
. . 3
⊢ (𝜑 → (∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷))) |
314 | 196, 313 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷)) |
315 | | 0zd 11745 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℤ) |
316 | 3 | nnzd 11838 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
317 | | 1zzd 11765 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℤ) |
318 | 315, 316,
317 | 3jca 1119 |
. . . . . . . . 9
⊢ (𝜑 → (0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧ 1
∈ ℤ)) |
319 | | 0le1 10901 |
. . . . . . . . . 10
⊢ 0 ≤
1 |
320 | 319 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ 1) |
321 | 3 | nnge1d 11428 |
. . . . . . . . 9
⊢ (𝜑 → 1 ≤ 𝑀) |
322 | 318, 320,
321 | jca32 511 |
. . . . . . . 8
⊢ (𝜑 → ((0 ∈ ℤ ∧
𝑀 ∈ ℤ ∧ 1
∈ ℤ) ∧ (0 ≤ 1 ∧ 1 ≤ 𝑀))) |
323 | | elfz2 12655 |
. . . . . . . 8
⊢ (1 ∈
(0...𝑀) ↔ ((0 ∈
ℤ ∧ 𝑀 ∈
ℤ ∧ 1 ∈ ℤ) ∧ (0 ≤ 1 ∧ 1 ≤ 𝑀))) |
324 | 322, 323 | sylibr 226 |
. . . . . . 7
⊢ (𝜑 → 1 ∈ (0...𝑀)) |
325 | 101, 324 | ffvelrnd 6626 |
. . . . . 6
⊢ (𝜑 → (𝑄‘1) ∈ ℝ) |
326 | 136, 52 | resubcld 10806 |
. . . . . 6
⊢ (𝜑 → ((𝑍‘𝑋) − 𝑇) ∈ ℝ) |
327 | 325, 326 | resubcld 10806 |
. . . . 5
⊢ (𝜑 → ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∈ ℝ) |
328 | 327 | adantr 474 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∈ ℝ) |
329 | 38 | recnd 10407 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℂ) |
330 | 329, 225 | pncand 10737 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴) |
331 | 330 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝐴 + 𝑇) − 𝑇) = 𝐴) |
332 | 43 | oveq2i 6935 |
. . . . . . . . . . 11
⊢ (𝐴 + 𝑇) = (𝐴 + (𝐵 − 𝐴)) |
333 | 332 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝐴 + 𝑇) = (𝐴 + (𝐵 − 𝐴))) |
334 | 40 | recnd 10407 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℂ) |
335 | 329, 334 | pncan3d 10739 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
336 | 335 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
337 | | id 22 |
. . . . . . . . . . . 12
⊢ ((𝐸‘𝑋) = 𝐵 → (𝐸‘𝑋) = 𝐵) |
338 | 337 | eqcomd 2784 |
. . . . . . . . . . 11
⊢ ((𝐸‘𝑋) = 𝐵 → 𝐵 = (𝐸‘𝑋)) |
339 | 338 | adantl 475 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → 𝐵 = (𝐸‘𝑋)) |
340 | 333, 336,
339 | 3eqtrrd 2819 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝐸‘𝑋) = (𝐴 + 𝑇)) |
341 | 340 | oveq1d 6939 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝐸‘𝑋) − 𝑇) = ((𝐴 + 𝑇) − 𝑇)) |
342 | 33 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑄‘0) = 𝐴) |
343 | 331, 341,
342 | 3eqtr4rd 2825 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑄‘0) = ((𝐸‘𝑋) − 𝑇)) |
344 | 343 | oveq1d 6939 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝑄‘0) − ((𝑍‘𝑋) − 𝑇)) = (((𝐸‘𝑋) − 𝑇) − ((𝑍‘𝑋) − 𝑇))) |
345 | 139 | recnd 10407 |
. . . . . . . 8
⊢ (𝜑 → (𝐸‘𝑋) ∈ ℂ) |
346 | 345, 217,
225 | nnncan2d 10771 |
. . . . . . 7
⊢ (𝜑 → (((𝐸‘𝑋) − 𝑇) − ((𝑍‘𝑋) − 𝑇)) = ((𝐸‘𝑋) − (𝑍‘𝑋))) |
347 | 346 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (((𝐸‘𝑋) − 𝑇) − ((𝑍‘𝑋) − 𝑇)) = ((𝐸‘𝑋) − (𝑍‘𝑋))) |
348 | 219 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝐸‘𝑋) − (𝑍‘𝑋)) = 𝑋) |
349 | 344, 347,
348 | 3eqtrrd 2819 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → 𝑋 = ((𝑄‘0) − ((𝑍‘𝑋) − 𝑇))) |
350 | 33, 38 | eqeltrd 2859 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
351 | 3 | nngt0d 11429 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < 𝑀) |
352 | | fzolb 12800 |
. . . . . . . . . 10
⊢ (0 ∈
(0..^𝑀) ↔ (0 ∈
ℤ ∧ 𝑀 ∈
ℤ ∧ 0 < 𝑀)) |
353 | 315, 316,
351, 352 | syl3anbrc 1400 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ (0..^𝑀)) |
354 | | 0re 10380 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
355 | | eleq1 2847 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀))) |
356 | 355 | anbi2d 622 |
. . . . . . . . . . . 12
⊢ (𝑖 = 0 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀)))) |
357 | | fveq2 6448 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑄‘𝑖) = (𝑄‘0)) |
358 | | oveq1 6931 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → (𝑖 + 1) = (0 + 1)) |
359 | 358 | fveq2d 6452 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1))) |
360 | 357, 359 | breq12d 4901 |
. . . . . . . . . . . 12
⊢ (𝑖 = 0 → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1)))) |
361 | 356, 360 | imbi12d 336 |
. . . . . . . . . . 11
⊢ (𝑖 = 0 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))) |
362 | 361, 152 | vtoclg 3467 |
. . . . . . . . . 10
⊢ (0 ∈
ℝ → ((𝜑 ∧ 0
∈ (0..^𝑀)) →
(𝑄‘0) < (𝑄‘(0 +
1)))) |
363 | 354, 362 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))) |
364 | 353, 363 | mpdan 677 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1))) |
365 | | 0p1e1 11509 |
. . . . . . . . . 10
⊢ (0 + 1) =
1 |
366 | 365 | fveq2i 6451 |
. . . . . . . . 9
⊢ (𝑄‘(0 + 1)) = (𝑄‘1) |
367 | 366 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘(0 + 1)) = (𝑄‘1)) |
368 | 364, 367 | breqtrd 4914 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘0) < (𝑄‘1)) |
369 | 350, 325,
326, 368 | ltsub1dd 10990 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘0) − ((𝑍‘𝑋) − 𝑇)) < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) |
370 | 369 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝑄‘0) − ((𝑍‘𝑋) − 𝑇)) < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) |
371 | 349, 370 | eqbrtrd 4910 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → 𝑋 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) |
372 | | elioore 12522 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) → 𝑦 ∈ ℝ) |
373 | 135 | eqcomd 2784 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) = (𝑍‘𝑋)) |
374 | 373 | negeqd 10618 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) = -(𝑍‘𝑋)) |
375 | 226, 374 | eqtrd 2814 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) = -(𝑍‘𝑋)) |
376 | 225 | mulid2d 10397 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1 · 𝑇) = 𝑇) |
377 | 375, 376 | oveq12d 6942 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) + (1 · 𝑇)) = (-(𝑍‘𝑋) + 𝑇)) |
378 | 224 | negcld 10723 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℂ) |
379 | | 1cnd 10373 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℂ) |
380 | 378, 379,
225 | adddird 10404 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇) = ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) + (1 · 𝑇))) |
381 | 217, 225 | negsubdid 10751 |
. . . . . . . . . . . . 13
⊢ (𝜑 → -((𝑍‘𝑋) − 𝑇) = (-(𝑍‘𝑋) + 𝑇)) |
382 | 377, 380,
381 | 3eqtr4d 2824 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇) = -((𝑍‘𝑋) − 𝑇)) |
383 | 382 | oveq2d 6940 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + -((𝑍‘𝑋) − 𝑇))) |
384 | 383 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + -((𝑍‘𝑋) − 𝑇))) |
385 | 326 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑍‘𝑋) − 𝑇) ∈ ℝ) |
386 | 229, 385 | readdcld 10408 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ ℝ) |
387 | 386 | recnd 10407 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ ℂ) |
388 | 385 | recnd 10407 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑍‘𝑋) − 𝑇) ∈ ℂ) |
389 | 387, 388 | negsubd 10742 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + -((𝑍‘𝑋) − 𝑇)) = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) − ((𝑍‘𝑋) − 𝑇))) |
390 | 235, 388 | pncand 10737 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) − ((𝑍‘𝑋) − 𝑇)) = 𝑦) |
391 | 384, 389,
390 | 3eqtrrd 2819 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇))) |
392 | 372, 391 | sylan2 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇))) |
393 | 392 | adantlr 705 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇))) |
394 | | simpll 757 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝜑) |
395 | 367 | eqcomd 2784 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘1) = (𝑄‘(0 + 1))) |
396 | 395 | oveq2d 6940 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑄‘0)(,)(𝑄‘1)) = ((𝑄‘0)(,)(𝑄‘(0 + 1)))) |
397 | 357, 359 | oveq12d 6942 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 0 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘0)(,)(𝑄‘(0 + 1)))) |
398 | 397 | sseq1d 3851 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 0 → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷 ↔ ((𝑄‘0)(,)(𝑄‘(0 + 1))) ⊆ 𝐷)) |
399 | 356, 398 | imbi12d 336 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → ((𝑄‘0)(,)(𝑄‘(0 + 1))) ⊆ 𝐷))) |
400 | 399, 241 | vtoclg 3467 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℝ → ((𝜑 ∧ 0
∈ (0..^𝑀)) →
((𝑄‘0)(,)(𝑄‘(0 + 1))) ⊆ 𝐷)) |
401 | 354, 400 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → ((𝑄‘0)(,)(𝑄‘(0 + 1))) ⊆ 𝐷) |
402 | 353, 401 | mpdan 677 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑄‘0)(,)(𝑄‘(0 + 1))) ⊆ 𝐷) |
403 | 396, 402 | eqsstrd 3858 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑄‘0)(,)(𝑄‘1)) ⊆ 𝐷) |
404 | 403 | ad2antrr 716 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → ((𝑄‘0)(,)(𝑄‘1)) ⊆ 𝐷) |
405 | 33, 39 | eqeltrd 2859 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄‘0) ∈
ℝ*) |
406 | 405 | ad2antrr 716 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑄‘0) ∈
ℝ*) |
407 | 325 | rexrd 10428 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄‘1) ∈
ℝ*) |
408 | 407 | ad2antrr 716 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑄‘1) ∈
ℝ*) |
409 | 372, 386 | sylan2 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ ℝ) |
410 | 409 | adantlr 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ ℝ) |
411 | 345, 216,
217 | subaddd 10754 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝐸‘𝑋) − 𝑋) = (𝑍‘𝑋) ↔ (𝑋 + (𝑍‘𝑋)) = (𝐸‘𝑋))) |
412 | 272, 411 | mpbird 249 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐸‘𝑋) − 𝑋) = (𝑍‘𝑋)) |
413 | | oveq1 6931 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐸‘𝑋) = 𝐵 → ((𝐸‘𝑋) − 𝑋) = (𝐵 − 𝑋)) |
414 | 412, 413 | sylan9req 2835 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑍‘𝑋) = (𝐵 − 𝑋)) |
415 | 414 | oveq1d 6939 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝑍‘𝑋) − 𝑇) = ((𝐵 − 𝑋) − 𝑇)) |
416 | 415 | oveq2d 6940 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑋 + ((𝑍‘𝑋) − 𝑇)) = (𝑋 + ((𝐵 − 𝑋) − 𝑇))) |
417 | 130 | recnd 10407 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐵 − 𝑋) ∈ ℂ) |
418 | 216, 417,
225 | addsubassd 10756 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑋 + (𝐵 − 𝑋)) − 𝑇) = (𝑋 + ((𝐵 − 𝑋) − 𝑇))) |
419 | 418 | eqcomd 2784 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 + ((𝐵 − 𝑋) − 𝑇)) = ((𝑋 + (𝐵 − 𝑋)) − 𝑇)) |
420 | 419 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑋 + ((𝐵 − 𝑋) − 𝑇)) = ((𝑋 + (𝐵 − 𝑋)) − 𝑇)) |
421 | 334, 225,
329 | subsub23d 40423 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐵 − 𝑇) = 𝐴 ↔ (𝐵 − 𝐴) = 𝑇)) |
422 | 58, 421 | mpbird 249 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 − 𝑇) = 𝐴) |
423 | 216, 334 | pncan3d 10739 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑋 + (𝐵 − 𝑋)) = 𝐵) |
424 | 423 | oveq1d 6939 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑋 + (𝐵 − 𝑋)) − 𝑇) = (𝐵 − 𝑇)) |
425 | 422, 424,
33 | 3eqtr4d 2824 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑋 + (𝐵 − 𝑋)) − 𝑇) = (𝑄‘0)) |
426 | 425 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝑋 + (𝐵 − 𝑋)) − 𝑇) = (𝑄‘0)) |
427 | 416, 420,
426 | 3eqtrrd 2819 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑄‘0) = (𝑋 + ((𝑍‘𝑋) − 𝑇))) |
428 | 427 | adantr 474 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑄‘0) = (𝑋 + ((𝑍‘𝑋) − 𝑇))) |
429 | 74 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑋 ∈ ℝ) |
430 | 372 | adantl 475 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 ∈ ℝ) |
431 | 326 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → ((𝑍‘𝑋) − 𝑇) ∈ ℝ) |
432 | 254 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑋 ∈
ℝ*) |
433 | 327 | rexrd 10428 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∈
ℝ*) |
434 | 433 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∈
ℝ*) |
435 | | simpr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) |
436 | | ioogtlb 40643 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℝ*
∧ ((𝑄‘1) −
((𝑍‘𝑋) − 𝑇)) ∈ ℝ* ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑋 < 𝑦) |
437 | 432, 434,
435, 436 | syl3anc 1439 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑋 < 𝑦) |
438 | 429, 430,
431, 437 | ltadd1dd 10989 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑋 + ((𝑍‘𝑋) − 𝑇)) < (𝑦 + ((𝑍‘𝑋) − 𝑇))) |
439 | 438 | adantlr 705 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑋 + ((𝑍‘𝑋) − 𝑇)) < (𝑦 + ((𝑍‘𝑋) − 𝑇))) |
440 | 428, 439 | eqbrtrd 4910 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑄‘0) < (𝑦 + ((𝑍‘𝑋) − 𝑇))) |
441 | | iooltub 40659 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ ℝ*
∧ ((𝑄‘1) −
((𝑍‘𝑋) − 𝑇)) ∈ ℝ* ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) |
442 | 432, 434,
435, 441 | syl3anc 1439 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) |
443 | 325 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑄‘1) ∈ ℝ) |
444 | 430, 431,
443 | ltaddsubd 10978 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) < (𝑄‘1) ↔ 𝑦 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) |
445 | 442, 444 | mpbird 249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) < (𝑄‘1)) |
446 | 445 | adantlr 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) < (𝑄‘1)) |
447 | 406, 408,
410, 440, 446 | eliood 40646 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ ((𝑄‘0)(,)(𝑄‘1))) |
448 | 404, 447 | sseldd 3822 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷) |
449 | 132 | znegcld 11841 |
. . . . . . . . . 10
⊢ (𝜑 → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
450 | 449 | peano2zd 11842 |
. . . . . . . . 9
⊢ (𝜑 → (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) ∈ ℤ) |
451 | 450 | ad2antrr 716 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) ∈ ℤ) |
452 | | ovex 6956 |
. . . . . . . . 9
⊢
(-(⌊‘((𝐵
− 𝑋) / 𝑇)) + 1) ∈
V |
453 | | eleq1 2847 |
. . . . . . . . . . 11
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → (𝑘 ∈ ℤ ↔
(-(⌊‘((𝐵
− 𝑋) / 𝑇)) + 1) ∈
ℤ)) |
454 | 453 | 3anbi3d 1515 |
. . . . . . . . . 10
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → ((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) ∈ ℤ))) |
455 | | oveq1 6931 |
. . . . . . . . . . . 12
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → (𝑘 · 𝑇) = ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) |
456 | 455 | oveq2d 6940 |
. . . . . . . . . . 11
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇))) |
457 | 456 | eleq1d 2844 |
. . . . . . . . . 10
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → (((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) ∈ 𝐷)) |
458 | 454, 457 | imbi12d 336 |
. . . . . . . . 9
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → (((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) ∈ ℤ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) ∈ 𝐷))) |
459 | | ovex 6956 |
. . . . . . . . . 10
⊢ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ V |
460 | | eleq1 2847 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 + ((𝑍‘𝑋) − 𝑇)) → (𝑥 ∈ 𝐷 ↔ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷)) |
461 | 460 | 3anbi2d 1514 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 + ((𝑍‘𝑋) − 𝑇)) → ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ))) |
462 | | oveq1 6931 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 + ((𝑍‘𝑋) − 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇))) |
463 | 462 | eleq1d 2844 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 + ((𝑍‘𝑋) − 𝑇)) → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) ∈ 𝐷)) |
464 | 461, 463 | imbi12d 336 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 + ((𝑍‘𝑋) − 𝑇)) → (((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) ∈ 𝐷))) |
465 | 459, 464,
298 | vtocl 3460 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) ∈ 𝐷) |
466 | 452, 458,
465 | vtocl 3460 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) ∈ ℤ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) ∈ 𝐷) |
467 | 394, 448,
451, 466 | syl3anc 1439 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) ∈ 𝐷) |
468 | 393, 467 | eqeltrd 2859 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 ∈ 𝐷) |
469 | 468 | ralrimiva 3148 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ∀𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))𝑦 ∈ 𝐷) |
470 | | dfss3 3810 |
. . . . 5
⊢ ((𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) ⊆ 𝐷 ↔ ∀𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))𝑦 ∈ 𝐷) |
471 | 469, 470 | sylibr 226 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) ⊆ 𝐷) |
472 | | breq2 4892 |
. . . . . 6
⊢ (𝑦 = ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) → (𝑋 < 𝑦 ↔ 𝑋 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) |
473 | | oveq2 6932 |
. . . . . . 7
⊢ (𝑦 = ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) → (𝑋(,)𝑦) = (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) |
474 | 473 | sseq1d 3851 |
. . . . . 6
⊢ (𝑦 = ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) → ((𝑋(,)𝑦) ⊆ 𝐷 ↔ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) ⊆ 𝐷)) |
475 | 472, 474 | anbi12d 624 |
. . . . 5
⊢ (𝑦 = ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) → ((𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷) ↔ (𝑋 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∧ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) ⊆ 𝐷))) |
476 | 475 | rspcev 3511 |
. . . 4
⊢ ((((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∈ ℝ ∧ (𝑋 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∧ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) ⊆ 𝐷)) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
477 | 328, 371,
471, 476 | syl12anc 827 |
. . 3
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
478 | 15 | adantlr 705 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋)) |
479 | | simp2 1128 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ∈ (0...𝑀)) |
480 | 25 | 3ad2ant2 1125 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ∈ ℝ) |
481 | 94 | 3ad2ant2 1125 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑀 ∈ ℝ) |
482 | 96 | 3ad2ant2 1125 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ≤ 𝑀) |
483 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑄‘𝑗) = (𝐸‘𝑋) → (𝑄‘𝑗) = (𝐸‘𝑋)) |
484 | 483 | eqcomd 2784 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑄‘𝑗) = (𝐸‘𝑋) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
485 | 484 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝑗) = (𝐸‘𝑋) ∧ 𝑀 = 𝑗) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
486 | 485 | 3ad2antl3 1195 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑀 = 𝑗) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
487 | | fveq2 6448 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 = 𝑗 → (𝑄‘𝑀) = (𝑄‘𝑗)) |
488 | 487 | eqcomd 2784 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 = 𝑗 → (𝑄‘𝑗) = (𝑄‘𝑀)) |
489 | 488 | adantl 475 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑀 = 𝑗) → (𝑄‘𝑗) = (𝑄‘𝑀)) |
490 | 180 | ad2antrr 716 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑀 = 𝑗) → (𝑄‘𝑀) = 𝐵) |
491 | 490 | 3ad2antl1 1193 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑀 = 𝑗) → (𝑄‘𝑀) = 𝐵) |
492 | 486, 489,
491 | 3eqtrd 2818 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑀 = 𝑗) → (𝐸‘𝑋) = 𝐵) |
493 | | neneq 2975 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐸‘𝑋) ≠ 𝐵 → ¬ (𝐸‘𝑋) = 𝐵) |
494 | 493 | ad2antlr 717 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑀 = 𝑗) → ¬ (𝐸‘𝑋) = 𝐵) |
495 | 494 | 3ad2antl1 1193 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑀 = 𝑗) → ¬ (𝐸‘𝑋) = 𝐵) |
496 | 492, 495 | pm2.65da 807 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → ¬ 𝑀 = 𝑗) |
497 | 496 | neqned 2976 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑀 ≠ 𝑗) |
498 | 480, 481,
482, 497 | leneltd 10532 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 < 𝑀) |
499 | | elfzfzo 40412 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0..^𝑀) ↔ (𝑗 ∈ (0...𝑀) ∧ 𝑗 < 𝑀)) |
500 | 479, 498,
499 | sylanbrc 578 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ∈ (0..^𝑀)) |
501 | 117 | adantlr 705 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘𝑗) ∈
ℝ*) |
502 | 501 | 3adant3 1123 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) ∈
ℝ*) |
503 | | simp1l 1211 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝜑) |
504 | 101 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
505 | | fzofzp1 12889 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀)) |
506 | 505 | adantl 475 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀)) |
507 | 504, 506 | ffvelrnd 6626 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ) |
508 | 507 | rexrd 10428 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈
ℝ*) |
509 | 503, 500,
508 | syl2anc 579 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 + 1)) ∈
ℝ*) |
510 | 141 | 3adant1r 1180 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈
ℝ*) |
511 | 37, 160 | eqbrtrd 4910 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) ≤ (𝐸‘𝑋)) |
512 | 511 | adantlr 705 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) ≤ (𝐸‘𝑋)) |
513 | 512 | 3adant2 1122 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) ≤ (𝐸‘𝑋)) |
514 | 484 | 3ad2ant3 1126 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
515 | | eleq1 2847 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀))) |
516 | 515 | anbi2d 622 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 𝑗 ∈ (0..^𝑀)))) |
517 | | fveq2 6448 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → (𝑄‘𝑖) = (𝑄‘𝑗)) |
518 | | oveq1 6931 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1)) |
519 | 518 | fveq2d 6452 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1))) |
520 | 517, 519 | breq12d 4901 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘𝑗) < (𝑄‘(𝑗 + 1)))) |
521 | 516, 520 | imbi12d 336 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))))) |
522 | 521, 152 | chvarv 2361 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))) |
523 | 503, 500,
522 | syl2anc 579 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))) |
524 | 514, 523 | eqbrtrd 4910 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) < (𝑄‘(𝑗 + 1))) |
525 | 502, 509,
510, 513, 524 | elicod 12541 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈ ((𝑄‘𝑗)[,)(𝑄‘(𝑗 + 1)))) |
526 | 517, 519 | oveq12d 6942 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄‘𝑗)[,)(𝑄‘(𝑗 + 1)))) |
527 | 526 | eleq2d 2845 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸‘𝑋) ∈ ((𝑄‘𝑗)[,)(𝑄‘(𝑗 + 1))))) |
528 | 527 | rspcev 3511 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑗)[,)(𝑄‘(𝑗 + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
529 | 500, 525,
528 | syl2anc 579 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
530 | 529 | 3exp 1109 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) → (𝑗 ∈ (0...𝑀) → ((𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))))) |
531 | 530 | adantr 474 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (𝑗 ∈ (0...𝑀) → ((𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))))) |
532 | 531 | rexlimdv 3212 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))))) |
533 | 478, 532 | mpd 15 |
. . . . 5
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
534 | | ioossico 12580 |
. . . . . . . . . . 11
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) |
535 | | simpr 479 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
536 | 534, 535 | sseldi 3819 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
537 | 536 | ex 403 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))))) |
538 | 537 | adantlr 705 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))))) |
539 | 538 | reximdva 3198 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))))) |
540 | 190, 539 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
541 | 540 | adantlr 705 |
. . . . 5
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
542 | 533, 541 | pm2.61dan 803 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
543 | 208, 250 | resubcld 10806 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ) |
544 | 543 | 3adant3 1123 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ) |
545 | 219 | eqcomd 2784 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 = ((𝐸‘𝑋) − (𝑍‘𝑋))) |
546 | 545 | 3ad2ant1 1124 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → 𝑋 = ((𝐸‘𝑋) − (𝑍‘𝑋))) |
547 | 139 | 3ad2ant1 1124 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ℝ) |
548 | 208 | 3adant3 1123 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
549 | 136 | 3ad2ant1 1124 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑍‘𝑋) ∈ ℝ) |
550 | 200 | rexrd 10428 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈
ℝ*) |
551 | 550 | 3adant3 1123 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
552 | 209 | 3adant3 1123 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
553 | | simp3 1129 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
554 | | icoltub 40657 |
. . . . . . . . . . 11
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) < (𝑄‘(𝑖 + 1))) |
555 | 551, 552,
553, 554 | syl3anc 1439 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) < (𝑄‘(𝑖 + 1))) |
556 | 547, 548,
549, 555 | ltsub1dd 10990 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → ((𝐸‘𝑋) − (𝑍‘𝑋)) < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) |
557 | 546, 556 | eqbrtrd 4910 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → 𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) |
558 | | elioore 12522 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) → 𝑦 ∈ ℝ) |
559 | 558, 237 | sylan2 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
560 | 559 | 3ad2antl1 1193 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
561 | | simpl1 1199 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝜑) |
562 | 241 | 3adant3 1123 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
563 | 562 | adantr 474 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
564 | 551 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑄‘𝑖) ∈
ℝ*) |
565 | 552 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
566 | 558 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 ∈ ℝ) |
567 | 136 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑍‘𝑋) ∈ ℝ) |
568 | 566, 567 | readdcld 10408 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) ∈ ℝ) |
569 | 568 | 3ad2antl1 1193 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) ∈ ℝ) |
570 | 200 | 3adant3 1123 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
571 | 570 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑄‘𝑖) ∈ ℝ) |
572 | 561, 139 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝐸‘𝑋) ∈ ℝ) |
573 | | icogelb 12542 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ≤ (𝐸‘𝑋)) |
574 | 551, 552,
553, 573 | syl3anc 1439 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ≤ (𝐸‘𝑋)) |
575 | 574 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑄‘𝑖) ≤ (𝐸‘𝑋)) |
576 | 138 | ad2antrr 716 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝐸‘𝑋) = (𝑋 + (𝑍‘𝑋))) |
577 | 74 | ad2antrr 716 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑋 ∈ ℝ) |
578 | 558 | adantl 475 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 ∈ ℝ) |
579 | 136 | ad2antrr 716 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑍‘𝑋) ∈ ℝ) |
580 | 254 | ad2antrr 716 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑋 ∈
ℝ*) |
581 | 543 | rexrd 10428 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈
ℝ*) |
582 | 581 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈
ℝ*) |
583 | | simpr 479 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) |
584 | | ioogtlb 40643 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 ∈ ℝ*
∧ ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑋 < 𝑦) |
585 | 580, 582,
583, 584 | syl3anc 1439 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑋 < 𝑦) |
586 | 577, 578,
579, 585 | ltadd1dd 10989 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑋 + (𝑍‘𝑋)) < (𝑦 + (𝑍‘𝑋))) |
587 | 576, 586 | eqbrtrd 4910 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝐸‘𝑋) < (𝑦 + (𝑍‘𝑋))) |
588 | 587 | 3adantl3 1170 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝐸‘𝑋) < (𝑦 + (𝑍‘𝑋))) |
589 | 571, 572,
569, 575, 588 | lelttrd 10536 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑄‘𝑖) < (𝑦 + (𝑍‘𝑋))) |
590 | 543 | adantr 474 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ) |
591 | | iooltub 40659 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋 ∈ ℝ*
∧ ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) |
592 | 580, 582,
583, 591 | syl3anc 1439 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) |
593 | 578, 590,
579, 592 | ltadd1dd 10989 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) < (((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) + (𝑍‘𝑋))) |
594 | 208 | recnd 10407 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ) |
595 | 217 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑍‘𝑋) ∈ ℂ) |
596 | 594, 595 | npcand 10740 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) + (𝑍‘𝑋)) = (𝑄‘(𝑖 + 1))) |
597 | 596 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) + (𝑍‘𝑋)) = (𝑄‘(𝑖 + 1))) |
598 | 593, 597 | breqtrd 4914 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) < (𝑄‘(𝑖 + 1))) |
599 | 598 | 3adantl3 1170 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) < (𝑄‘(𝑖 + 1))) |
600 | 564, 565,
569, 589, 599 | eliood 40646 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
601 | 563, 600 | sseldd 3822 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) ∈ 𝐷) |
602 | 561, 449 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
603 | 561, 601,
602, 300 | syl3anc 1439 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷) |
604 | 560, 603 | eqeltrd 2859 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 ∈ 𝐷) |
605 | 604 | ralrimiva 3148 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → ∀𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))𝑦 ∈ 𝐷) |
606 | | dfss3 3810 |
. . . . . . . . 9
⊢ ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) ⊆ 𝐷 ↔ ∀𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))𝑦 ∈ 𝐷) |
607 | 605, 606 | sylibr 226 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) ⊆ 𝐷) |
608 | | breq2 4892 |
. . . . . . . . . 10
⊢ (𝑦 = ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) → (𝑋 < 𝑦 ↔ 𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) |
609 | | oveq2 6932 |
. . . . . . . . . . 11
⊢ (𝑦 = ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) → (𝑋(,)𝑦) = (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) |
610 | 609 | sseq1d 3851 |
. . . . . . . . . 10
⊢ (𝑦 = ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) → ((𝑋(,)𝑦) ⊆ 𝐷 ↔ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) ⊆ 𝐷)) |
611 | 608, 610 | anbi12d 624 |
. . . . . . . . 9
⊢ (𝑦 = ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) → ((𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷) ↔ (𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∧ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) ⊆ 𝐷))) |
612 | 611 | rspcev 3511 |
. . . . . . . 8
⊢ ((((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ ∧ (𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∧ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) ⊆ 𝐷)) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
613 | 544, 557,
607, 612 | syl12anc 827 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
614 | 613 | 3exp 1109 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)))) |
615 | 614 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) → (𝑖 ∈ (0..^𝑀) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)))) |
616 | 615 | rexlimdv 3212 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) → (∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷))) |
617 | 542, 616 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
618 | 477, 617 | pm2.61dane 3057 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
619 | 314, 618 | jca 507 |
1
⊢ (𝜑 → (∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷) ∧ ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷))) |