Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (𝐸‘𝑋) ∈ ran 𝑄) |
2 | | fourierdlem41.q |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
3 | | fourierdlem41.m |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℕ) |
4 | | fourierdlem41.p |
. . . . . . . . . . . . 13
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
5 | 4 | fourierdlem2 43657 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
6 | 3, 5 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
7 | 2, 6 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
8 | 7 | simpld 495 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
9 | | elmapi 8646 |
. . . . . . . . 9
⊢ (𝑄 ∈ (ℝ
↑m (0...𝑀))
→ 𝑄:(0...𝑀)⟶ℝ) |
10 | | ffn 6609 |
. . . . . . . . 9
⊢ (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀)) |
11 | 8, 9, 10 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 Fn (0...𝑀)) |
12 | 11 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → 𝑄 Fn (0...𝑀)) |
13 | | fvelrnb 6839 |
. . . . . . 7
⊢ (𝑄 Fn (0...𝑀) → ((𝐸‘𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋))) |
14 | 12, 13 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ((𝐸‘𝑋) ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋))) |
15 | 1, 14 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋)) |
16 | | 0zd 12340 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 0 ∈ ℤ) |
17 | | elfzelz 13265 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ) |
18 | 17 | 3ad2ant2 1133 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ∈ ℤ) |
19 | | 1zzd 12360 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 1 ∈ ℤ) |
20 | 18, 19 | zsubcld 12440 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈ ℤ) |
21 | | simpll 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 0 < 𝑗) → 𝜑) |
22 | | elfzle1 13268 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗) |
23 | 22 | anim1i 615 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → (0 ≤ 𝑗 ∧ ¬ 0 < 𝑗)) |
24 | | 0red 10987 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → 0 ∈ ℝ) |
25 | 17 | zred 12435 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ) |
26 | 25 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → 𝑗 ∈ ℝ) |
27 | 24, 26 | eqleltd 11128 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → (0 = 𝑗 ↔ (0 ≤ 𝑗 ∧ ¬ 0 < 𝑗))) |
28 | 23, 27 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → 0 = 𝑗) |
29 | 28 | eqcomd 2745 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 0 < 𝑗) → 𝑗 = 0) |
30 | 29 | adantll 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 0 < 𝑗) → 𝑗 = 0) |
31 | | fveq2 6783 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 0 → (𝑄‘𝑗) = (𝑄‘0)) |
32 | 7 | simprld 769 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
33 | 32 | simpld 495 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
34 | 31, 33 | sylan9eqr 2801 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 = 0) → (𝑄‘𝑗) = 𝐴) |
35 | 21, 30, 34 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 0 < 𝑗) → (𝑄‘𝑗) = 𝐴) |
36 | 35 | 3adantl3 1167 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ ¬ 0 < 𝑗) → (𝑄‘𝑗) = 𝐴) |
37 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) = (𝐸‘𝑋)) |
38 | | fourierdlem41.a |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ∈ ℝ) |
39 | 38 | rexrd 11034 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
40 | | fourierdlem41.b |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐵 ∈ ℝ) |
41 | 40 | rexrd 11034 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
42 | | fourierdlem41.altb |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐴 < 𝐵) |
43 | | fourierdlem41.t |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑇 = (𝐵 − 𝐴) |
44 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
45 | 38, 40, 42, 43, 44 | fourierdlem4 43659 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))):ℝ⟶(𝐴(,]𝐵)) |
46 | | fourierdlem41.e |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥))) |
47 | 46 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥)))) |
48 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
49 | 40 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ) |
50 | 49, 48 | resubcld 11412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐵 − 𝑥) ∈ ℝ) |
51 | 40, 38 | resubcld 11412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
52 | 43, 51 | eqeltrid 2844 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 𝑇 ∈ ℝ) |
53 | 52 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑇 ∈ ℝ) |
54 | | 0red 10987 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 0 ∈
ℝ) |
55 | 38, 40 | posdifd 11571 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
56 | 42, 55 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
57 | 43 | eqcomi 2748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝐵 − 𝐴) = 𝑇 |
58 | 57 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → (𝐵 − 𝐴) = 𝑇) |
59 | 56, 58 | breqtrd 5101 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝜑 → 0 < 𝑇) |
60 | 54, 59 | gtned 11119 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝜑 → 𝑇 ≠ 0) |
61 | 60 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑇 ≠ 0) |
62 | 50, 53, 61 | redivcld 11812 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐵 − 𝑥) / 𝑇) ∈ ℝ) |
63 | 62 | flcld 13527 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐵 −
𝑥) / 𝑇)) ∈ ℤ) |
64 | 63 | zred 12435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐵 −
𝑥) / 𝑇)) ∈ ℝ) |
65 | 64, 53 | remulcld 11014 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) →
((⌊‘((𝐵 −
𝑥) / 𝑇)) · 𝑇) ∈ ℝ) |
66 | | fourierdlem41.z |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑍 = (𝑥 ∈ ℝ ↦
((⌊‘((𝐵 −
𝑥) / 𝑇)) · 𝑇)) |
67 | 66 | fvmpt2 6895 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ ℝ ∧
((⌊‘((𝐵 −
𝑥) / 𝑇)) · 𝑇) ∈ ℝ) → (𝑍‘𝑥) = ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) |
68 | 48, 65, 67 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑍‘𝑥) = ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)) |
69 | 68 | oveq2d 7300 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥 + (𝑍‘𝑥)) = (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
70 | 69 | mpteq2dva 5175 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 + (𝑍‘𝑥))) = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)))) |
71 | 47, 70 | eqtrd 2779 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇)))) |
72 | 71 | feq1d 6594 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐸:ℝ⟶(𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))):ℝ⟶(𝐴(,]𝐵))) |
73 | 45, 72 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐸:ℝ⟶(𝐴(,]𝐵)) |
74 | | fourierdlem41.x |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑋 ∈ ℝ) |
75 | 73, 74 | ffvelrnd 6971 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) |
76 | | iocgtlb 43047 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐸‘𝑋) ∈ (𝐴(,]𝐵)) → 𝐴 < (𝐸‘𝑋)) |
77 | 39, 41, 75, 76 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 < (𝐸‘𝑋)) |
78 | 38, 77 | gtned 11119 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐸‘𝑋) ≠ 𝐴) |
79 | 78 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≠ 𝐴) |
80 | 37, 79 | eqnetrd 3012 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) ≠ 𝐴) |
81 | 80 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ ¬ 0 < 𝑗) → (𝑄‘𝑗) ≠ 𝐴) |
82 | 81 | 3adantl2 1166 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ ¬ 0 < 𝑗) → (𝑄‘𝑗) ≠ 𝐴) |
83 | 82 | neneqd 2949 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ ¬ 0 < 𝑗) → ¬ (𝑄‘𝑗) = 𝐴) |
84 | 36, 83 | condan 815 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 0 < 𝑗) |
85 | | zltlem1 12382 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℤ ∧ 𝑗
∈ ℤ) → (0 < 𝑗 ↔ 0 ≤ (𝑗 − 1))) |
86 | 16, 18, 85 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (0 < 𝑗 ↔ 0 ≤ (𝑗 − 1))) |
87 | 84, 86 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 0 ≤ (𝑗 − 1)) |
88 | | eluz2 12597 |
. . . . . . . . . . 11
⊢ ((𝑗 − 1) ∈
(ℤ≥‘0) ↔ (0 ∈ ℤ ∧ (𝑗 − 1) ∈ ℤ ∧
0 ≤ (𝑗 −
1))) |
89 | 16, 20, 87, 88 | syl3anbrc 1342 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈
(ℤ≥‘0)) |
90 | | elfzel2 13263 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ) |
91 | 90 | 3ad2ant2 1133 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑀 ∈ ℤ) |
92 | | 1red 10985 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → 1 ∈ ℝ) |
93 | 25, 92 | resubcld 11412 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ) |
94 | 90 | zred 12435 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ) |
95 | 25 | ltm1d 11916 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑗) |
96 | | elfzle2 13269 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ≤ 𝑀) |
97 | 93, 25, 94, 95, 96 | ltletrd 11144 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀) |
98 | 97 | 3ad2ant2 1133 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) < 𝑀) |
99 | | elfzo2 13399 |
. . . . . . . . . 10
⊢ ((𝑗 − 1) ∈ (0..^𝑀) ↔ ((𝑗 − 1) ∈
(ℤ≥‘0) ∧ 𝑀 ∈ ℤ ∧ (𝑗 − 1) < 𝑀)) |
100 | 89, 91, 98, 99 | syl3anbrc 1342 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈ (0..^𝑀)) |
101 | 8, 9 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
102 | 101 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑄:(0...𝑀)⟶ℝ) |
103 | 93, 94, 97 | ltled 11132 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ≤ 𝑀) |
104 | 103 | 3ad2ant2 1133 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ≤ 𝑀) |
105 | 16, 91, 20, 87, 104 | elfzd 13256 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑗 − 1) ∈ (0...𝑀)) |
106 | 102, 105 | ffvelrnd 6971 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) ∈ ℝ) |
107 | 106 | rexrd 11034 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) ∈
ℝ*) |
108 | 25 | recnd 11012 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ) |
109 | | 1cnd 10979 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑀) → 1 ∈ ℂ) |
110 | 108, 109 | npcand 11345 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0...𝑀) → ((𝑗 − 1) + 1) = 𝑗) |
111 | 110 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄‘𝑗)) |
112 | 111 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄‘𝑗)) |
113 | 101 | ffvelrnda 6970 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘𝑗) ∈ ℝ) |
114 | 113 | rexrd 11034 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘𝑗) ∈
ℝ*) |
115 | 112, 114 | eqeltrd 2840 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘((𝑗 − 1) + 1)) ∈
ℝ*) |
116 | 115 | 3adant3 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘((𝑗 − 1) + 1)) ∈
ℝ*) |
117 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) |
118 | | fveq2 6783 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑋 → (𝑍‘𝑥) = (𝑍‘𝑋)) |
119 | 117, 118 | oveq12d 7302 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑋 → (𝑥 + (𝑍‘𝑥)) = (𝑋 + (𝑍‘𝑋))) |
120 | 119 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝑥 + (𝑍‘𝑥)) = (𝑋 + (𝑍‘𝑋))) |
121 | 66 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑍 = (𝑥 ∈ ℝ ↦
((⌊‘((𝐵 −
𝑥) / 𝑇)) · 𝑇))) |
122 | | oveq2 7292 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑋 → (𝐵 − 𝑥) = (𝐵 − 𝑋)) |
123 | 122 | oveq1d 7299 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑋 → ((𝐵 − 𝑥) / 𝑇) = ((𝐵 − 𝑋) / 𝑇)) |
124 | 123 | fveq2d 6787 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑋 → (⌊‘((𝐵 − 𝑥) / 𝑇)) = (⌊‘((𝐵 − 𝑋) / 𝑇))) |
125 | 124 | oveq1d 7299 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑋 → ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
126 | 125 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
127 | 40, 74 | resubcld 11412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐵 − 𝑋) ∈ ℝ) |
128 | 127, 52, 60 | redivcld 11812 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝐵 − 𝑋) / 𝑇) ∈ ℝ) |
129 | 128 | flcld 13527 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
130 | 129 | zred 12435 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℝ) |
131 | 130, 52 | remulcld 11014 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) ∈ ℝ) |
132 | 121, 126,
74, 131 | fvmptd 6891 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑍‘𝑋) = ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
133 | 132, 131 | eqeltrd 2840 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑍‘𝑋) ∈ ℝ) |
134 | 74, 133 | readdcld 11013 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 + (𝑍‘𝑋)) ∈ ℝ) |
135 | 47, 120, 74, 134 | fvmptd 6891 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸‘𝑋) = (𝑋 + (𝑍‘𝑋))) |
136 | 135, 134 | eqeltrd 2840 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸‘𝑋) ∈ ℝ) |
137 | 136 | rexrd 11034 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸‘𝑋) ∈
ℝ*) |
138 | 137 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈
ℝ*) |
139 | | simp1 1135 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝜑) |
140 | | ovex 7317 |
. . . . . . . . . . . . . 14
⊢ (𝑗 − 1) ∈
V |
141 | | eleq1 2827 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑗 − 1) → (𝑖 ∈ (0..^𝑀) ↔ (𝑗 − 1) ∈ (0..^𝑀))) |
142 | 141 | anbi2d 629 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = (𝑗 − 1) → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)))) |
143 | | fveq2 6783 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑗 − 1) → (𝑄‘𝑖) = (𝑄‘(𝑗 − 1))) |
144 | | oveq1 7291 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = (𝑗 − 1) → (𝑖 + 1) = ((𝑗 − 1) + 1)) |
145 | 144 | fveq2d 6787 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑗 − 1) → (𝑄‘(𝑖 + 1)) = (𝑄‘((𝑗 − 1) + 1))) |
146 | 143, 145 | breq12d 5088 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = (𝑗 − 1) → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1)))) |
147 | 142, 146 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = (𝑗 − 1) → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))))) |
148 | 7 | simprrd 771 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
149 | 148 | r19.21bi 3135 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
150 | 140, 147,
149 | vtocl 3499 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 − 1) ∈ (0..^𝑀)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))) |
151 | 139, 100,
150 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘((𝑗 − 1) + 1))) |
152 | 111 | 3ad2ant2 1133 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘((𝑗 − 1) + 1)) = (𝑄‘𝑗)) |
153 | 151, 152 | breqtrd 5101 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) < (𝑄‘𝑗)) |
154 | | simp3 1137 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) = (𝐸‘𝑋)) |
155 | 153, 154 | breqtrd 5101 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 − 1)) < (𝐸‘𝑋)) |
156 | 136 | leidd 11550 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐸‘𝑋) ≤ (𝐸‘𝑋)) |
157 | 156 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≤ (𝐸‘𝑋)) |
158 | 37 | eqcomd 2745 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
159 | 157, 158 | breqtrd 5101 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≤ (𝑄‘𝑗)) |
160 | 159 | 3adant2 1130 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≤ (𝑄‘𝑗)) |
161 | 110 | eqcomd 2745 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 = ((𝑗 − 1) + 1)) |
162 | 161 | fveq2d 6787 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → (𝑄‘𝑗) = (𝑄‘((𝑗 − 1) + 1))) |
163 | 162 | 3ad2ant2 1133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) = (𝑄‘((𝑗 − 1) + 1))) |
164 | 160, 163 | breqtrd 5101 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ≤ (𝑄‘((𝑗 − 1) + 1))) |
165 | 107, 116,
138, 155, 164 | eliocd 43052 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) |
166 | 143, 145 | oveq12d 7302 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑗 − 1) → ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) = ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) |
167 | 166 | eleq2d 2825 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑗 − 1) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) ↔ (𝐸‘𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1))))) |
168 | 167 | rspcev 3562 |
. . . . . . . . 9
⊢ (((𝑗 − 1) ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘(𝑗 − 1))(,](𝑄‘((𝑗 − 1) + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
169 | 100, 165,
168 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
170 | 169 | 3exp 1118 |
. . . . . . 7
⊢ (𝜑 → (𝑗 ∈ (0...𝑀) → ((𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))))) |
171 | 170 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (𝑗 ∈ (0...𝑀) → ((𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))))) |
172 | 171 | rexlimdv 3213 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))))) |
173 | 15, 172 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
174 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → 𝑀 ∈ ℕ) |
175 | 101 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ) |
176 | | iocssicc 13178 |
. . . . . . . 8
⊢ ((𝑄‘0)(,](𝑄‘𝑀)) ⊆ ((𝑄‘0)[,](𝑄‘𝑀)) |
177 | 32 | simprd 496 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
178 | 33, 177 | oveq12d 7302 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑄‘0)(,](𝑄‘𝑀)) = (𝐴(,]𝐵)) |
179 | 75, 178 | eleqtrrd 2843 |
. . . . . . . 8
⊢ (𝜑 → (𝐸‘𝑋) ∈ ((𝑄‘0)(,](𝑄‘𝑀))) |
180 | 176, 179 | sselid 3920 |
. . . . . . 7
⊢ (𝜑 → (𝐸‘𝑋) ∈ ((𝑄‘0)[,](𝑄‘𝑀))) |
181 | 180 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → (𝐸‘𝑋) ∈ ((𝑄‘0)[,](𝑄‘𝑀))) |
182 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ¬ (𝐸‘𝑋) ∈ ran 𝑄) |
183 | | fveq2 6783 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → (𝑄‘𝑘) = (𝑄‘𝑗)) |
184 | 183 | breq1d 5085 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → ((𝑄‘𝑘) < (𝐸‘𝑋) ↔ (𝑄‘𝑗) < (𝐸‘𝑋))) |
185 | 184 | cbvrabv 3427 |
. . . . . . 7
⊢ {𝑘 ∈ (0..^𝑀) ∣ (𝑄‘𝑘) < (𝐸‘𝑋)} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) < (𝐸‘𝑋)} |
186 | 185 | supeq1i 9215 |
. . . . . 6
⊢
sup({𝑘 ∈
(0..^𝑀) ∣ (𝑄‘𝑘) < (𝐸‘𝑋)}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) < (𝐸‘𝑋)}, ℝ, < ) |
187 | 174, 175,
181, 182, 186 | fourierdlem25 43680 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
188 | | ioossioc 43037 |
. . . . . . . 8
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) |
189 | 188 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
190 | 189 | sseld 3921 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))))) |
191 | 190 | reximdva 3204 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))))) |
192 | 187, 191 | mpd 15 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
193 | 173, 192 | pm2.61dan 810 |
. . 3
⊢ (𝜑 → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
194 | 101 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
195 | | elfzofz 13412 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
196 | 195 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
197 | 194, 196 | ffvelrnd 6971 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
198 | 197 | 3adant3 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
199 | 133 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑍‘𝑋) ∈ ℝ) |
200 | 198, 199 | resubcld 11412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ) |
201 | 136 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ℝ) |
202 | 198 | rexrd 11034 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
203 | | fzofzp1 13493 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
204 | 203 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
205 | 194, 204 | ffvelrnd 6971 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
206 | 205 | rexrd 11034 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
207 | 206 | 3adant3 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
208 | | simp3 1137 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) |
209 | | iocgtlb 43047 |
. . . . . . . . 9
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝐸‘𝑋)) |
210 | 202, 207,
208, 209 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) < (𝐸‘𝑋)) |
211 | 198, 201,
199, 210 | ltsub1dd 11596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < ((𝐸‘𝑋) − (𝑍‘𝑋))) |
212 | 135 | oveq1d 7299 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸‘𝑋) − (𝑍‘𝑋)) = ((𝑋 + (𝑍‘𝑋)) − (𝑍‘𝑋))) |
213 | 74 | recnd 11012 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ ℂ) |
214 | 133 | recnd 11012 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑍‘𝑋) ∈ ℂ) |
215 | 213, 214 | pncand 11342 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋 + (𝑍‘𝑋)) − (𝑍‘𝑋)) = 𝑋) |
216 | 212, 215 | eqtrd 2779 |
. . . . . . . 8
⊢ (𝜑 → ((𝐸‘𝑋) − (𝑍‘𝑋)) = 𝑋) |
217 | 216 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝐸‘𝑋) − (𝑍‘𝑋)) = 𝑋) |
218 | 211, 217 | breqtrd 5101 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑋) |
219 | | elioore 13118 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) → 𝑦 ∈ ℝ) |
220 | 132 | oveq2d 7300 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑦 + (𝑍‘𝑋)) = (𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
221 | 130 | recnd 11012 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℂ) |
222 | 52 | recnd 11012 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑇 ∈ ℂ) |
223 | 221, 222 | mulneg1d 11437 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) = -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
224 | 220, 223 | oveq12d 7302 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) + -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
225 | 224 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) + -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
226 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ) |
227 | 131 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) →
((⌊‘((𝐵 −
𝑋) / 𝑇)) · 𝑇) ∈ ℝ) |
228 | 226, 227 | readdcld 11013 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ ℝ) |
229 | 228 | recnd 11012 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ ℂ) |
230 | 227 | recnd 11012 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) →
((⌊‘((𝐵 −
𝑋) / 𝑇)) · 𝑇) ∈ ℂ) |
231 | 229, 230 | negsubd 11347 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) + -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) = ((𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) − ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
232 | 226 | recnd 11012 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ) |
233 | 232, 230 | pncand 11342 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) − ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) = 𝑦) |
234 | 225, 231,
233 | 3eqtrrd 2784 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
235 | 219, 234 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
236 | 235 | 3ad2antl1 1184 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
237 | | simpl1 1190 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝜑) |
238 | | fourierdlem41.qssd |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
239 | 238 | 3adant3 1131 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
240 | 239 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
241 | 202 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘𝑖) ∈
ℝ*) |
242 | 207 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
243 | 219 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ ℝ) |
244 | 133 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑍‘𝑋) ∈ ℝ) |
245 | 243, 244 | readdcld 11013 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ ℝ) |
246 | 245 | 3ad2antl1 1184 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ ℝ) |
247 | 133 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑍‘𝑋) ∈ ℝ) |
248 | 197, 247 | resubcld 11412 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ) |
249 | 248 | rexrd 11034 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈
ℝ*) |
250 | 249 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) ∈
ℝ*) |
251 | 74 | rexrd 11034 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑋 ∈
ℝ*) |
252 | 251 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑋 ∈
ℝ*) |
253 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) |
254 | | ioogtlb 43040 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*
∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑦) |
255 | 250, 252,
253, 254 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑦) |
256 | 197 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘𝑖) ∈ ℝ) |
257 | 133 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑍‘𝑋) ∈ ℝ) |
258 | 219 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ ℝ) |
259 | 256, 257,
258 | ltsubaddd 11580 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑦 ↔ (𝑄‘𝑖) < (𝑦 + (𝑍‘𝑋)))) |
260 | 255, 259 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘𝑖) < (𝑦 + (𝑍‘𝑋))) |
261 | 260 | 3adantl3 1167 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘𝑖) < (𝑦 + (𝑍‘𝑋))) |
262 | 237, 136 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝐸‘𝑋) ∈ ℝ) |
263 | 205 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
264 | 263 | 3adantl3 1167 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
265 | 74 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑋 ∈ ℝ) |
266 | | iooltub 43055 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*
∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 < 𝑋) |
267 | 250, 252,
253, 266 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 < 𝑋) |
268 | 258, 265,
257, 267 | ltadd1dd 11595 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) < (𝑋 + (𝑍‘𝑋))) |
269 | 135 | eqcomd 2745 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑋 + (𝑍‘𝑋)) = (𝐸‘𝑋)) |
270 | 269 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑋 + (𝑍‘𝑋)) = (𝐸‘𝑋)) |
271 | 268, 270 | breqtrd 5101 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) < (𝐸‘𝑋)) |
272 | 271 | 3adantl3 1167 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) < (𝐸‘𝑋)) |
273 | | iocleub 43048 |
. . . . . . . . . . . . . . 15
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ≤ (𝑄‘(𝑖 + 1))) |
274 | 202, 207,
208, 273 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ≤ (𝑄‘(𝑖 + 1))) |
275 | 274 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝐸‘𝑋) ≤ (𝑄‘(𝑖 + 1))) |
276 | 246, 262,
264, 272, 275 | ltletrd 11144 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) < (𝑄‘(𝑖 + 1))) |
277 | 241, 242,
246, 261, 276 | eliood 43043 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
278 | 240, 277 | sseldd 3923 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (𝑦 + (𝑍‘𝑋)) ∈ 𝐷) |
279 | 237, 128 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝐵 − 𝑋) / 𝑇) ∈ ℝ) |
280 | 279 | flcld 13527 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → (⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
281 | 280 | znegcld 12437 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
282 | | negex 11228 |
. . . . . . . . . . 11
⊢
-(⌊‘((𝐵
− 𝑋) / 𝑇)) ∈ V |
283 | | eleq1 2827 |
. . . . . . . . . . . . 13
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (𝑘 ∈ ℤ ↔
-(⌊‘((𝐵 −
𝑋) / 𝑇)) ∈ ℤ)) |
284 | 283 | 3anbi3d 1441 |
. . . . . . . . . . . 12
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ))) |
285 | | oveq1 7291 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (𝑘 · 𝑇) = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) |
286 | 285 | oveq2d 7300 |
. . . . . . . . . . . . 13
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
287 | 286 | eleq1d 2824 |
. . . . . . . . . . . 12
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷)) |
288 | 284, 287 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑘 = -(⌊‘((𝐵 − 𝑋) / 𝑇)) → (((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷))) |
289 | | ovex 7317 |
. . . . . . . . . . . 12
⊢ (𝑦 + (𝑍‘𝑋)) ∈ V |
290 | | eleq1 2827 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → (𝑥 ∈ 𝐷 ↔ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷)) |
291 | 290 | 3anbi2d 1440 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ))) |
292 | | oveq1 7291 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → (𝑥 + (𝑘 · 𝑇)) = ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇))) |
293 | 292 | eleq1d 2824 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷)) |
294 | 291, 293 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 + (𝑍‘𝑋)) → (((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷))) |
295 | | fourierdlem41.dper |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) |
296 | 289, 294,
295 | vtocl 3499 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (𝑘 · 𝑇)) ∈ 𝐷) |
297 | 282, 288,
296 | vtocl 3499 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 + (𝑍‘𝑋)) ∈ 𝐷 ∧ -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷) |
298 | 237, 278,
281, 297 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷) |
299 | 236, 298 | eqeltrd 2840 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) → 𝑦 ∈ 𝐷) |
300 | 299 | ralrimiva 3104 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ∀𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑦 ∈ 𝐷) |
301 | | dfss3 3910 |
. . . . . . 7
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷 ↔ ∀𝑦 ∈ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)𝑦 ∈ 𝐷) |
302 | 300, 301 | sylibr 233 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷) |
303 | | breq1 5078 |
. . . . . . . 8
⊢ (𝑦 = ((𝑄‘𝑖) − (𝑍‘𝑋)) → (𝑦 < 𝑋 ↔ ((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑋)) |
304 | | oveq1 7291 |
. . . . . . . . 9
⊢ (𝑦 = ((𝑄‘𝑖) − (𝑍‘𝑋)) → (𝑦(,)𝑋) = (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋)) |
305 | 304 | sseq1d 3953 |
. . . . . . . 8
⊢ (𝑦 = ((𝑄‘𝑖) − (𝑍‘𝑋)) → ((𝑦(,)𝑋) ⊆ 𝐷 ↔ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷)) |
306 | 303, 305 | anbi12d 631 |
. . . . . . 7
⊢ (𝑦 = ((𝑄‘𝑖) − (𝑍‘𝑋)) → ((𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷) ↔ (((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑋 ∧ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷))) |
307 | 306 | rspcev 3562 |
. . . . . 6
⊢ ((((𝑄‘𝑖) − (𝑍‘𝑋)) ∈ ℝ ∧ (((𝑄‘𝑖) − (𝑍‘𝑋)) < 𝑋 ∧ (((𝑄‘𝑖) − (𝑍‘𝑋))(,)𝑋) ⊆ 𝐷)) → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷)) |
308 | 200, 218,
302, 307 | syl12anc 834 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1)))) → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷)) |
309 | 308 | 3exp 1118 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷)))) |
310 | 309 | rexlimdv 3213 |
. . 3
⊢ (𝜑 → (∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,](𝑄‘(𝑖 + 1))) → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷))) |
311 | 193, 310 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷)) |
312 | | 0zd 12340 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℤ) |
313 | 3 | nnzd 12434 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
314 | | 1zzd 12360 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℤ) |
315 | | 0le1 11507 |
. . . . . . . . 9
⊢ 0 ≤
1 |
316 | 315 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 1) |
317 | 3 | nnge1d 12030 |
. . . . . . . 8
⊢ (𝜑 → 1 ≤ 𝑀) |
318 | 312, 313,
314, 316, 317 | elfzd 13256 |
. . . . . . 7
⊢ (𝜑 → 1 ∈ (0...𝑀)) |
319 | 101, 318 | ffvelrnd 6971 |
. . . . . 6
⊢ (𝜑 → (𝑄‘1) ∈ ℝ) |
320 | 133, 52 | resubcld 11412 |
. . . . . 6
⊢ (𝜑 → ((𝑍‘𝑋) − 𝑇) ∈ ℝ) |
321 | 319, 320 | resubcld 11412 |
. . . . 5
⊢ (𝜑 → ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∈ ℝ) |
322 | 321 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∈ ℝ) |
323 | 38 | recnd 11012 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℂ) |
324 | 323, 222 | pncand 11342 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴) |
325 | 324 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝐴 + 𝑇) − 𝑇) = 𝐴) |
326 | 43 | oveq2i 7295 |
. . . . . . . . . . 11
⊢ (𝐴 + 𝑇) = (𝐴 + (𝐵 − 𝐴)) |
327 | 326 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝐴 + 𝑇) = (𝐴 + (𝐵 − 𝐴))) |
328 | 40 | recnd 11012 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℂ) |
329 | 323, 328 | pncan3d 11344 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
330 | 329 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
331 | | id 22 |
. . . . . . . . . . . 12
⊢ ((𝐸‘𝑋) = 𝐵 → (𝐸‘𝑋) = 𝐵) |
332 | 331 | eqcomd 2745 |
. . . . . . . . . . 11
⊢ ((𝐸‘𝑋) = 𝐵 → 𝐵 = (𝐸‘𝑋)) |
333 | 332 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → 𝐵 = (𝐸‘𝑋)) |
334 | 327, 330,
333 | 3eqtrrd 2784 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝐸‘𝑋) = (𝐴 + 𝑇)) |
335 | 334 | oveq1d 7299 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝐸‘𝑋) − 𝑇) = ((𝐴 + 𝑇) − 𝑇)) |
336 | 33 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑄‘0) = 𝐴) |
337 | 325, 335,
336 | 3eqtr4rd 2790 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑄‘0) = ((𝐸‘𝑋) − 𝑇)) |
338 | 337 | oveq1d 7299 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝑄‘0) − ((𝑍‘𝑋) − 𝑇)) = (((𝐸‘𝑋) − 𝑇) − ((𝑍‘𝑋) − 𝑇))) |
339 | 136 | recnd 11012 |
. . . . . . . 8
⊢ (𝜑 → (𝐸‘𝑋) ∈ ℂ) |
340 | 339, 214,
222 | nnncan2d 11376 |
. . . . . . 7
⊢ (𝜑 → (((𝐸‘𝑋) − 𝑇) − ((𝑍‘𝑋) − 𝑇)) = ((𝐸‘𝑋) − (𝑍‘𝑋))) |
341 | 340 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (((𝐸‘𝑋) − 𝑇) − ((𝑍‘𝑋) − 𝑇)) = ((𝐸‘𝑋) − (𝑍‘𝑋))) |
342 | 216 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝐸‘𝑋) − (𝑍‘𝑋)) = 𝑋) |
343 | 338, 341,
342 | 3eqtrrd 2784 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → 𝑋 = ((𝑄‘0) − ((𝑍‘𝑋) − 𝑇))) |
344 | 33, 38 | eqeltrd 2840 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
345 | 3 | nngt0d 12031 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < 𝑀) |
346 | | fzolb 13402 |
. . . . . . . . . 10
⊢ (0 ∈
(0..^𝑀) ↔ (0 ∈
ℤ ∧ 𝑀 ∈
ℤ ∧ 0 < 𝑀)) |
347 | 312, 313,
345, 346 | syl3anbrc 1342 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ (0..^𝑀)) |
348 | | 0re 10986 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
349 | | eleq1 2827 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀))) |
350 | 349 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑖 = 0 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀)))) |
351 | | fveq2 6783 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑄‘𝑖) = (𝑄‘0)) |
352 | | oveq1 7291 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → (𝑖 + 1) = (0 + 1)) |
353 | 352 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1))) |
354 | 351, 353 | breq12d 5088 |
. . . . . . . . . . . 12
⊢ (𝑖 = 0 → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1)))) |
355 | 350, 354 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑖 = 0 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))) |
356 | 355, 149 | vtoclg 3506 |
. . . . . . . . . 10
⊢ (0 ∈
ℝ → ((𝜑 ∧ 0
∈ (0..^𝑀)) →
(𝑄‘0) < (𝑄‘(0 +
1)))) |
357 | 348, 356 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))) |
358 | 347, 357 | mpdan 684 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1))) |
359 | | 0p1e1 12104 |
. . . . . . . . . 10
⊢ (0 + 1) =
1 |
360 | 359 | fveq2i 6786 |
. . . . . . . . 9
⊢ (𝑄‘(0 + 1)) = (𝑄‘1) |
361 | 360 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘(0 + 1)) = (𝑄‘1)) |
362 | 358, 361 | breqtrd 5101 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘0) < (𝑄‘1)) |
363 | 344, 319,
320, 362 | ltsub1dd 11596 |
. . . . . 6
⊢ (𝜑 → ((𝑄‘0) − ((𝑍‘𝑋) − 𝑇)) < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) |
364 | 363 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝑄‘0) − ((𝑍‘𝑋) − 𝑇)) < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) |
365 | 343, 364 | eqbrtrd 5097 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → 𝑋 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) |
366 | | elioore 13118 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) → 𝑦 ∈ ℝ) |
367 | 132 | eqcomd 2745 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) = (𝑍‘𝑋)) |
368 | 367 | negeqd 11224 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → -((⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) = -(𝑍‘𝑋)) |
369 | 223, 368 | eqtrd 2779 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) = -(𝑍‘𝑋)) |
370 | 222 | mulid2d 11002 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1 · 𝑇) = 𝑇) |
371 | 369, 370 | oveq12d 7302 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) + (1 · 𝑇)) = (-(𝑍‘𝑋) + 𝑇)) |
372 | 221 | negcld 11328 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℂ) |
373 | | 1cnd 10979 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℂ) |
374 | 372, 373,
222 | adddird 11009 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇) = ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇) + (1 · 𝑇))) |
375 | 214, 222 | negsubdid 11356 |
. . . . . . . . . . . . 13
⊢ (𝜑 → -((𝑍‘𝑋) − 𝑇) = (-(𝑍‘𝑋) + 𝑇)) |
376 | 371, 374,
375 | 3eqtr4d 2789 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇) = -((𝑍‘𝑋) − 𝑇)) |
377 | 376 | oveq2d 7300 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + -((𝑍‘𝑋) − 𝑇))) |
378 | 377 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + -((𝑍‘𝑋) − 𝑇))) |
379 | 320 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑍‘𝑋) − 𝑇) ∈ ℝ) |
380 | 226, 379 | readdcld 11013 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ ℝ) |
381 | 380 | recnd 11012 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ ℂ) |
382 | 379 | recnd 11012 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑍‘𝑋) − 𝑇) ∈ ℂ) |
383 | 381, 382 | negsubd 11347 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + -((𝑍‘𝑋) − 𝑇)) = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) − ((𝑍‘𝑋) − 𝑇))) |
384 | 232, 382 | pncand 11342 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) − ((𝑍‘𝑋) − 𝑇)) = 𝑦) |
385 | 378, 383,
384 | 3eqtrrd 2784 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 𝑦 = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇))) |
386 | 366, 385 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇))) |
387 | 386 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇))) |
388 | | simpll 764 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝜑) |
389 | 361 | eqcomd 2745 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑄‘1) = (𝑄‘(0 + 1))) |
390 | 389 | oveq2d 7300 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑄‘0)(,)(𝑄‘1)) = ((𝑄‘0)(,)(𝑄‘(0 + 1)))) |
391 | 351, 353 | oveq12d 7302 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 0 → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) = ((𝑄‘0)(,)(𝑄‘(0 + 1)))) |
392 | 391 | sseq1d 3953 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 0 → (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷 ↔ ((𝑄‘0)(,)(𝑄‘(0 + 1))) ⊆ 𝐷)) |
393 | 350, 392 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 0 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → ((𝑄‘0)(,)(𝑄‘(0 + 1))) ⊆ 𝐷))) |
394 | 393, 238 | vtoclg 3506 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℝ → ((𝜑 ∧ 0
∈ (0..^𝑀)) →
((𝑄‘0)(,)(𝑄‘(0 + 1))) ⊆ 𝐷)) |
395 | 348, 394 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → ((𝑄‘0)(,)(𝑄‘(0 + 1))) ⊆ 𝐷) |
396 | 347, 395 | mpdan 684 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑄‘0)(,)(𝑄‘(0 + 1))) ⊆ 𝐷) |
397 | 390, 396 | eqsstrd 3960 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑄‘0)(,)(𝑄‘1)) ⊆ 𝐷) |
398 | 397 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → ((𝑄‘0)(,)(𝑄‘1)) ⊆ 𝐷) |
399 | 33, 39 | eqeltrd 2840 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄‘0) ∈
ℝ*) |
400 | 399 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑄‘0) ∈
ℝ*) |
401 | 319 | rexrd 11034 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄‘1) ∈
ℝ*) |
402 | 401 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑄‘1) ∈
ℝ*) |
403 | 366, 380 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ ℝ) |
404 | 403 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ ℝ) |
405 | 339, 213,
214 | subaddd 11359 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝐸‘𝑋) − 𝑋) = (𝑍‘𝑋) ↔ (𝑋 + (𝑍‘𝑋)) = (𝐸‘𝑋))) |
406 | 269, 405 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐸‘𝑋) − 𝑋) = (𝑍‘𝑋)) |
407 | | oveq1 7291 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐸‘𝑋) = 𝐵 → ((𝐸‘𝑋) − 𝑋) = (𝐵 − 𝑋)) |
408 | 406, 407 | sylan9req 2800 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑍‘𝑋) = (𝐵 − 𝑋)) |
409 | 408 | oveq1d 7299 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝑍‘𝑋) − 𝑇) = ((𝐵 − 𝑋) − 𝑇)) |
410 | 409 | oveq2d 7300 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑋 + ((𝑍‘𝑋) − 𝑇)) = (𝑋 + ((𝐵 − 𝑋) − 𝑇))) |
411 | 127 | recnd 11012 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐵 − 𝑋) ∈ ℂ) |
412 | 213, 411,
222 | addsubassd 11361 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑋 + (𝐵 − 𝑋)) − 𝑇) = (𝑋 + ((𝐵 − 𝑋) − 𝑇))) |
413 | 412 | eqcomd 2745 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 + ((𝐵 − 𝑋) − 𝑇)) = ((𝑋 + (𝐵 − 𝑋)) − 𝑇)) |
414 | 413 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑋 + ((𝐵 − 𝑋) − 𝑇)) = ((𝑋 + (𝐵 − 𝑋)) − 𝑇)) |
415 | 328, 222,
323 | subsub23d 42833 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐵 − 𝑇) = 𝐴 ↔ (𝐵 − 𝐴) = 𝑇)) |
416 | 58, 415 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 − 𝑇) = 𝐴) |
417 | 213, 328 | pncan3d 11344 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑋 + (𝐵 − 𝑋)) = 𝐵) |
418 | 417 | oveq1d 7299 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑋 + (𝐵 − 𝑋)) − 𝑇) = (𝐵 − 𝑇)) |
419 | 416, 418,
33 | 3eqtr4d 2789 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑋 + (𝐵 − 𝑋)) − 𝑇) = (𝑄‘0)) |
420 | 419 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ((𝑋 + (𝐵 − 𝑋)) − 𝑇) = (𝑄‘0)) |
421 | 410, 414,
420 | 3eqtrrd 2784 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑄‘0) = (𝑋 + ((𝑍‘𝑋) − 𝑇))) |
422 | 421 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑄‘0) = (𝑋 + ((𝑍‘𝑋) − 𝑇))) |
423 | 74 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑋 ∈ ℝ) |
424 | 366 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 ∈ ℝ) |
425 | 320 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → ((𝑍‘𝑋) − 𝑇) ∈ ℝ) |
426 | 251 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑋 ∈
ℝ*) |
427 | 321 | rexrd 11034 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∈
ℝ*) |
428 | 427 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∈
ℝ*) |
429 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) |
430 | | ioogtlb 43040 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℝ*
∧ ((𝑄‘1) −
((𝑍‘𝑋) − 𝑇)) ∈ ℝ* ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑋 < 𝑦) |
431 | 426, 428,
429, 430 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑋 < 𝑦) |
432 | 423, 424,
425, 431 | ltadd1dd 11595 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑋 + ((𝑍‘𝑋) − 𝑇)) < (𝑦 + ((𝑍‘𝑋) − 𝑇))) |
433 | 432 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑋 + ((𝑍‘𝑋) − 𝑇)) < (𝑦 + ((𝑍‘𝑋) − 𝑇))) |
434 | 422, 433 | eqbrtrd 5097 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑄‘0) < (𝑦 + ((𝑍‘𝑋) − 𝑇))) |
435 | | iooltub 43055 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ ℝ*
∧ ((𝑄‘1) −
((𝑍‘𝑋) − 𝑇)) ∈ ℝ* ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) |
436 | 426, 428,
429, 435 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) |
437 | 319 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑄‘1) ∈ ℝ) |
438 | 424, 425,
437 | ltaddsubd 11584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) < (𝑄‘1) ↔ 𝑦 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) |
439 | 436, 438 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) < (𝑄‘1)) |
440 | 439 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) < (𝑄‘1)) |
441 | 400, 402,
404, 434, 440 | eliood 43043 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ ((𝑄‘0)(,)(𝑄‘1))) |
442 | 398, 441 | sseldd 3923 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷) |
443 | 129 | znegcld 12437 |
. . . . . . . . . 10
⊢ (𝜑 → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
444 | 443 | peano2zd 12438 |
. . . . . . . . 9
⊢ (𝜑 → (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) ∈ ℤ) |
445 | 444 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) ∈ ℤ) |
446 | | ovex 7317 |
. . . . . . . . 9
⊢
(-(⌊‘((𝐵
− 𝑋) / 𝑇)) + 1) ∈
V |
447 | | eleq1 2827 |
. . . . . . . . . . 11
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → (𝑘 ∈ ℤ ↔
(-(⌊‘((𝐵
− 𝑋) / 𝑇)) + 1) ∈
ℤ)) |
448 | 447 | 3anbi3d 1441 |
. . . . . . . . . 10
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → ((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) ∈ ℤ))) |
449 | | oveq1 7291 |
. . . . . . . . . . . 12
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → (𝑘 · 𝑇) = ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) |
450 | 449 | oveq2d 7300 |
. . . . . . . . . . 11
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇))) |
451 | 450 | eleq1d 2824 |
. . . . . . . . . 10
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → (((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) ∈ 𝐷)) |
452 | 448, 451 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑘 = (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) → (((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) ∈ ℤ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) ∈ 𝐷))) |
453 | | ovex 7317 |
. . . . . . . . . 10
⊢ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ V |
454 | | eleq1 2827 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 + ((𝑍‘𝑋) − 𝑇)) → (𝑥 ∈ 𝐷 ↔ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷)) |
455 | 454 | 3anbi2d 1440 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 + ((𝑍‘𝑋) − 𝑇)) → ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) ↔ (𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ))) |
456 | | oveq1 7291 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑦 + ((𝑍‘𝑋) − 𝑇)) → (𝑥 + (𝑘 · 𝑇)) = ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇))) |
457 | 456 | eleq1d 2824 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑦 + ((𝑍‘𝑋) − 𝑇)) → ((𝑥 + (𝑘 · 𝑇)) ∈ 𝐷 ↔ ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) ∈ 𝐷)) |
458 | 455, 457 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 + ((𝑍‘𝑋) − 𝑇)) → (((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → (𝑥 + (𝑘 · 𝑇)) ∈ 𝐷) ↔ ((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) ∈ 𝐷))) |
459 | 453, 458,
295 | vtocl 3499 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ 𝑘 ∈ ℤ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + (𝑘 · 𝑇)) ∈ 𝐷) |
460 | 446, 452,
459 | vtocl 3499 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 + ((𝑍‘𝑋) − 𝑇)) ∈ 𝐷 ∧ (-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) ∈ ℤ) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) ∈ 𝐷) |
461 | 388, 442,
445, 460 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → ((𝑦 + ((𝑍‘𝑋) − 𝑇)) + ((-(⌊‘((𝐵 − 𝑋) / 𝑇)) + 1) · 𝑇)) ∈ 𝐷) |
462 | 387, 461 | eqeltrd 2840 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐸‘𝑋) = 𝐵) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) → 𝑦 ∈ 𝐷) |
463 | 462 | ralrimiva 3104 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ∀𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))𝑦 ∈ 𝐷) |
464 | | dfss3 3910 |
. . . . 5
⊢ ((𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) ⊆ 𝐷 ↔ ∀𝑦 ∈ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))𝑦 ∈ 𝐷) |
465 | 463, 464 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) ⊆ 𝐷) |
466 | | breq2 5079 |
. . . . . 6
⊢ (𝑦 = ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) → (𝑋 < 𝑦 ↔ 𝑋 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) |
467 | | oveq2 7292 |
. . . . . . 7
⊢ (𝑦 = ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) → (𝑋(,)𝑦) = (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)))) |
468 | 467 | sseq1d 3953 |
. . . . . 6
⊢ (𝑦 = ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) → ((𝑋(,)𝑦) ⊆ 𝐷 ↔ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) ⊆ 𝐷)) |
469 | 466, 468 | anbi12d 631 |
. . . . 5
⊢ (𝑦 = ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) → ((𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷) ↔ (𝑋 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∧ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) ⊆ 𝐷))) |
470 | 469 | rspcev 3562 |
. . . 4
⊢ ((((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∈ ℝ ∧ (𝑋 < ((𝑄‘1) − ((𝑍‘𝑋) − 𝑇)) ∧ (𝑋(,)((𝑄‘1) − ((𝑍‘𝑋) − 𝑇))) ⊆ 𝐷)) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
471 | 322, 365,
465, 470 | syl12anc 834 |
. . 3
⊢ ((𝜑 ∧ (𝐸‘𝑋) = 𝐵) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
472 | 15 | adantlr 712 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋)) |
473 | | simp2 1136 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ∈ (0...𝑀)) |
474 | 25 | 3ad2ant2 1133 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ∈ ℝ) |
475 | 94 | 3ad2ant2 1133 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑀 ∈ ℝ) |
476 | 96 | 3ad2ant2 1133 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ≤ 𝑀) |
477 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑄‘𝑗) = (𝐸‘𝑋) → (𝑄‘𝑗) = (𝐸‘𝑋)) |
478 | 477 | eqcomd 2745 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑄‘𝑗) = (𝐸‘𝑋) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
479 | 478 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘𝑗) = (𝐸‘𝑋) ∧ 𝑀 = 𝑗) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
480 | 479 | 3ad2antl3 1186 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑀 = 𝑗) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
481 | | fveq2 6783 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 = 𝑗 → (𝑄‘𝑀) = (𝑄‘𝑗)) |
482 | 481 | eqcomd 2745 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 = 𝑗 → (𝑄‘𝑗) = (𝑄‘𝑀)) |
483 | 482 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑀 = 𝑗) → (𝑄‘𝑗) = (𝑄‘𝑀)) |
484 | 177 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑀 = 𝑗) → (𝑄‘𝑀) = 𝐵) |
485 | 484 | 3ad2antl1 1184 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑀 = 𝑗) → (𝑄‘𝑀) = 𝐵) |
486 | 480, 483,
485 | 3eqtrd 2783 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑀 = 𝑗) → (𝐸‘𝑋) = 𝐵) |
487 | | neneq 2950 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐸‘𝑋) ≠ 𝐵 → ¬ (𝐸‘𝑋) = 𝐵) |
488 | 487 | ad2antlr 724 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑀 = 𝑗) → ¬ (𝐸‘𝑋) = 𝐵) |
489 | 488 | 3ad2antl1 1184 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) ∧ 𝑀 = 𝑗) → ¬ (𝐸‘𝑋) = 𝐵) |
490 | 486, 489 | pm2.65da 814 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → ¬ 𝑀 = 𝑗) |
491 | 490 | neqned 2951 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑀 ≠ 𝑗) |
492 | 474, 475,
476, 491 | leneltd 11138 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 < 𝑀) |
493 | | elfzfzo 42822 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0..^𝑀) ↔ (𝑗 ∈ (0...𝑀) ∧ 𝑗 < 𝑀)) |
494 | 473, 492,
493 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝑗 ∈ (0..^𝑀)) |
495 | 114 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘𝑗) ∈
ℝ*) |
496 | 495 | 3adant3 1131 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) ∈
ℝ*) |
497 | | simp1l 1196 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → 𝜑) |
498 | 101 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
499 | | fzofzp1 13493 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0..^𝑀) → (𝑗 + 1) ∈ (0...𝑀)) |
500 | 499 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑗 + 1) ∈ (0...𝑀)) |
501 | 498, 500 | ffvelrnd 6971 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈ ℝ) |
502 | 501 | rexrd 11034 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘(𝑗 + 1)) ∈
ℝ*) |
503 | 497, 494,
502 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘(𝑗 + 1)) ∈
ℝ*) |
504 | 138 | 3adant1r 1176 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈
ℝ*) |
505 | 37, 157 | eqbrtrd 5097 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) ≤ (𝐸‘𝑋)) |
506 | 505 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) ≤ (𝐸‘𝑋)) |
507 | 506 | 3adant2 1130 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) ≤ (𝐸‘𝑋)) |
508 | 478 | 3ad2ant3 1134 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) = (𝑄‘𝑗)) |
509 | | eleq1 2827 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → (𝑖 ∈ (0..^𝑀) ↔ 𝑗 ∈ (0..^𝑀))) |
510 | 509 | anbi2d 629 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 𝑗 ∈ (0..^𝑀)))) |
511 | | fveq2 6783 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → (𝑄‘𝑖) = (𝑄‘𝑗)) |
512 | | oveq1 7291 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑗 → (𝑖 + 1) = (𝑗 + 1)) |
513 | 512 | fveq2d 6787 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑗 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑗 + 1))) |
514 | 511, 513 | breq12d 5088 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘𝑗) < (𝑄‘(𝑗 + 1)))) |
515 | 510, 514 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))))) |
516 | 515, 149 | chvarvv 2003 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))) |
517 | 497, 494,
516 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝑄‘𝑗) < (𝑄‘(𝑗 + 1))) |
518 | 508, 517 | eqbrtrd 5097 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) < (𝑄‘(𝑗 + 1))) |
519 | 496, 503,
504, 507, 518 | elicod 13138 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → (𝐸‘𝑋) ∈ ((𝑄‘𝑗)[,)(𝑄‘(𝑗 + 1)))) |
520 | 511, 513 | oveq12d 7302 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) = ((𝑄‘𝑗)[,)(𝑄‘(𝑗 + 1)))) |
521 | 520 | eleq2d 2825 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) ↔ (𝐸‘𝑋) ∈ ((𝑄‘𝑗)[,)(𝑄‘(𝑗 + 1))))) |
522 | 521 | rspcev 3562 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑗)[,)(𝑄‘(𝑗 + 1)))) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
523 | 494, 519,
522 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = (𝐸‘𝑋)) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
524 | 523 | 3exp 1118 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) → (𝑗 ∈ (0...𝑀) → ((𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))))) |
525 | 524 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (𝑗 ∈ (0...𝑀) → ((𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))))) |
526 | 525 | rexlimdv 3213 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → (∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = (𝐸‘𝑋) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))))) |
527 | 472, 526 | mpd 15 |
. . . . 5
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
528 | | ioossico 13179 |
. . . . . . . . . . 11
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) |
529 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
530 | 528, 529 | sselid 3920 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
531 | 530 | ex 413 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))))) |
532 | 531 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))))) |
533 | 532 | reximdva 3204 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → (∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))))) |
534 | 187, 533 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
535 | 534 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) ∧ ¬ (𝐸‘𝑋) ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
536 | 527, 535 | pm2.61dan 810 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) → ∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
537 | 205, 247 | resubcld 11412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ) |
538 | 537 | 3adant3 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ) |
539 | 216 | eqcomd 2745 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 = ((𝐸‘𝑋) − (𝑍‘𝑋))) |
540 | 539 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → 𝑋 = ((𝐸‘𝑋) − (𝑍‘𝑋))) |
541 | 136 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ℝ) |
542 | 205 | 3adant3 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
543 | 133 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑍‘𝑋) ∈ ℝ) |
544 | 197 | rexrd 11034 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈
ℝ*) |
545 | 544 | 3adant3 1131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈
ℝ*) |
546 | 206 | 3adant3 1131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
547 | | simp3 1137 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) |
548 | | icoltub 43053 |
. . . . . . . . . . 11
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) < (𝑄‘(𝑖 + 1))) |
549 | 545, 546,
547, 548 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝐸‘𝑋) < (𝑄‘(𝑖 + 1))) |
550 | 541, 542,
543, 549 | ltsub1dd 11596 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → ((𝐸‘𝑋) − (𝑍‘𝑋)) < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) |
551 | 540, 550 | eqbrtrd 5097 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → 𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) |
552 | | elioore 13118 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) → 𝑦 ∈ ℝ) |
553 | 552, 234 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
554 | 553 | 3ad2antl1 1184 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 = ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇))) |
555 | | simpl1 1190 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝜑) |
556 | 238 | 3adant3 1131 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
557 | 556 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ 𝐷) |
558 | 545 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑄‘𝑖) ∈
ℝ*) |
559 | 546 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑄‘(𝑖 + 1)) ∈
ℝ*) |
560 | 552 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 ∈ ℝ) |
561 | 133 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑍‘𝑋) ∈ ℝ) |
562 | 560, 561 | readdcld 11013 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) ∈ ℝ) |
563 | 562 | 3ad2antl1 1184 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) ∈ ℝ) |
564 | 197 | 3adant3 1131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ∈ ℝ) |
565 | 564 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑄‘𝑖) ∈ ℝ) |
566 | 555, 136 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝐸‘𝑋) ∈ ℝ) |
567 | | icogelb 13139 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧
(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ≤ (𝐸‘𝑋)) |
568 | 545, 546,
547, 567 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑄‘𝑖) ≤ (𝐸‘𝑋)) |
569 | 568 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑄‘𝑖) ≤ (𝐸‘𝑋)) |
570 | 135 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝐸‘𝑋) = (𝑋 + (𝑍‘𝑋))) |
571 | 74 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑋 ∈ ℝ) |
572 | 552 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 ∈ ℝ) |
573 | 133 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑍‘𝑋) ∈ ℝ) |
574 | 251 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑋 ∈
ℝ*) |
575 | 537 | rexrd 11034 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈
ℝ*) |
576 | 575 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈
ℝ*) |
577 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) |
578 | | ioogtlb 43040 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 ∈ ℝ*
∧ ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑋 < 𝑦) |
579 | 574, 576,
577, 578 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑋 < 𝑦) |
580 | 571, 572,
573, 579 | ltadd1dd 11595 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑋 + (𝑍‘𝑋)) < (𝑦 + (𝑍‘𝑋))) |
581 | 570, 580 | eqbrtrd 5097 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝐸‘𝑋) < (𝑦 + (𝑍‘𝑋))) |
582 | 581 | 3adantl3 1167 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝐸‘𝑋) < (𝑦 + (𝑍‘𝑋))) |
583 | 565, 566,
563, 569, 582 | lelttrd 11142 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑄‘𝑖) < (𝑦 + (𝑍‘𝑋))) |
584 | 537 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ) |
585 | | iooltub 43055 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋 ∈ ℝ*
∧ ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ* ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) |
586 | 574, 576,
577, 585 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) |
587 | 572, 584,
573, 586 | ltadd1dd 11595 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) < (((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) + (𝑍‘𝑋))) |
588 | 205 | recnd 11012 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℂ) |
589 | 214 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑍‘𝑋) ∈ ℂ) |
590 | 588, 589 | npcand 11345 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) + (𝑍‘𝑋)) = (𝑄‘(𝑖 + 1))) |
591 | 590 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) + (𝑍‘𝑋)) = (𝑄‘(𝑖 + 1))) |
592 | 587, 591 | breqtrd 5101 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) < (𝑄‘(𝑖 + 1))) |
593 | 592 | 3adantl3 1167 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) < (𝑄‘(𝑖 + 1))) |
594 | 558, 559,
563, 583, 593 | eliood 43043 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
595 | 557, 594 | sseldd 3923 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → (𝑦 + (𝑍‘𝑋)) ∈ 𝐷) |
596 | 555, 443 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → -(⌊‘((𝐵 − 𝑋) / 𝑇)) ∈ ℤ) |
597 | 555, 595,
596, 297 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → ((𝑦 + (𝑍‘𝑋)) + (-(⌊‘((𝐵 − 𝑋) / 𝑇)) · 𝑇)) ∈ 𝐷) |
598 | 554, 597 | eqeltrd 2840 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) ∧ 𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) → 𝑦 ∈ 𝐷) |
599 | 598 | ralrimiva 3104 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → ∀𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))𝑦 ∈ 𝐷) |
600 | | dfss3 3910 |
. . . . . . . . 9
⊢ ((𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) ⊆ 𝐷 ↔ ∀𝑦 ∈ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))𝑦 ∈ 𝐷) |
601 | 599, 600 | sylibr 233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) ⊆ 𝐷) |
602 | | breq2 5079 |
. . . . . . . . . 10
⊢ (𝑦 = ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) → (𝑋 < 𝑦 ↔ 𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) |
603 | | oveq2 7292 |
. . . . . . . . . . 11
⊢ (𝑦 = ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) → (𝑋(,)𝑦) = (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)))) |
604 | 603 | sseq1d 3953 |
. . . . . . . . . 10
⊢ (𝑦 = ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) → ((𝑋(,)𝑦) ⊆ 𝐷 ↔ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) ⊆ 𝐷)) |
605 | 602, 604 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑦 = ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) → ((𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷) ↔ (𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∧ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) ⊆ 𝐷))) |
606 | 605 | rspcev 3562 |
. . . . . . . 8
⊢ ((((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∈ ℝ ∧ (𝑋 < ((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋)) ∧ (𝑋(,)((𝑄‘(𝑖 + 1)) − (𝑍‘𝑋))) ⊆ 𝐷)) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
607 | 538, 551,
601, 606 | syl12anc 834 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀) ∧ (𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1)))) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
608 | 607 | 3exp 1118 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)))) |
609 | 608 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) → (𝑖 ∈ (0..^𝑀) → ((𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)))) |
610 | 609 | rexlimdv 3213 |
. . . 4
⊢ ((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) → (∃𝑖 ∈ (0..^𝑀)(𝐸‘𝑋) ∈ ((𝑄‘𝑖)[,)(𝑄‘(𝑖 + 1))) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷))) |
611 | 536, 610 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ (𝐸‘𝑋) ≠ 𝐵) → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
612 | 471, 611 | pm2.61dane 3033 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷)) |
613 | 311, 612 | jca 512 |
1
⊢ (𝜑 → (∃𝑦 ∈ ℝ (𝑦 < 𝑋 ∧ (𝑦(,)𝑋) ⊆ 𝐷) ∧ ∃𝑦 ∈ ℝ (𝑋 < 𝑦 ∧ (𝑋(,)𝑦) ⊆ 𝐷))) |