![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipval2lem2 | Structured version Visualization version GIF version |
Description: Lemma for ipval3 28115. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dipfval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
dipfval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
dipfval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
dipfval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
dipfval.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
ipval2lem2 | ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → ((𝑁‘(𝐴𝐺(𝐶𝑆𝐵)))↑2) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1246 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → 𝑈 ∈ NrmCVec) | |
2 | simpl2 1248 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ 𝑋) | |
3 | dipfval.1 | . . . . . . . 8 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | dipfval.4 | . . . . . . . 8 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
5 | 3, 4 | nvscl 28032 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐶𝑆𝐵) ∈ 𝑋) |
6 | 5 | 3com23 1160 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ ℂ) → (𝐶𝑆𝐵) ∈ 𝑋) |
7 | 6 | 3expa 1151 | . . . . 5 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → (𝐶𝑆𝐵) ∈ 𝑋) |
8 | 7 | 3adantl2 1212 | . . . 4 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → (𝐶𝑆𝐵) ∈ 𝑋) |
9 | dipfval.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
10 | 3, 9 | nvgcl 28026 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ (𝐶𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(𝐶𝑆𝐵)) ∈ 𝑋) |
11 | 1, 2, 8, 10 | syl3anc 1494 | . . 3 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → (𝐴𝐺(𝐶𝑆𝐵)) ∈ 𝑋) |
12 | dipfval.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
13 | 3, 12 | nvcl 28067 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(𝐶𝑆𝐵)) ∈ 𝑋) → (𝑁‘(𝐴𝐺(𝐶𝑆𝐵))) ∈ ℝ) |
14 | 1, 11, 13 | syl2anc 579 | . 2 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → (𝑁‘(𝐴𝐺(𝐶𝑆𝐵))) ∈ ℝ) |
15 | 14 | resqcld 13338 | 1 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ ℂ) → ((𝑁‘(𝐴𝐺(𝐶𝑆𝐵)))↑2) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ‘cfv 6127 (class class class)co 6910 ℂcc 10257 ℝcr 10258 2c2 11413 ↑cexp 13161 NrmCVeccnv 27990 +𝑣 cpv 27991 BaseSetcba 27992 ·𝑠OLD cns 27993 normCVcnmcv 27996 ·𝑖OLDcdip 28106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-n0 11626 df-z 11712 df-uz 11976 df-seq 13103 df-exp 13162 df-grpo 27899 df-ablo 27951 df-vc 27965 df-nv 27998 df-va 28001 df-ba 28002 df-sm 28003 df-0v 28004 df-nmcv 28006 |
This theorem is referenced by: ipval2lem3 28111 ipval2lem4 28112 dipcj 28120 |
Copyright terms: Public domain | W3C validator |