![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipval2lem2 | Structured version Visualization version GIF version |
Description: Lemma for ipval3 30471. (Contributed by NM, 1-Feb-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dipfval.1 | β’ π = (BaseSetβπ) |
dipfval.2 | β’ πΊ = ( +π£ βπ) |
dipfval.4 | β’ π = ( Β·π OLD βπ) |
dipfval.6 | β’ π = (normCVβπ) |
dipfval.7 | β’ π = (Β·πOLDβπ) |
Ref | Expression |
---|---|
ipval2lem2 | β’ (((π β NrmCVec β§ π΄ β π β§ π΅ β π) β§ πΆ β β) β ((πβ(π΄πΊ(πΆππ΅)))β2) β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1188 | . . 3 β’ (((π β NrmCVec β§ π΄ β π β§ π΅ β π) β§ πΆ β β) β π β NrmCVec) | |
2 | simpl2 1189 | . . . 4 β’ (((π β NrmCVec β§ π΄ β π β§ π΅ β π) β§ πΆ β β) β π΄ β π) | |
3 | dipfval.1 | . . . . . . . 8 β’ π = (BaseSetβπ) | |
4 | dipfval.4 | . . . . . . . 8 β’ π = ( Β·π OLD βπ) | |
5 | 3, 4 | nvscl 30388 | . . . . . . 7 β’ ((π β NrmCVec β§ πΆ β β β§ π΅ β π) β (πΆππ΅) β π) |
6 | 5 | 3com23 1123 | . . . . . 6 β’ ((π β NrmCVec β§ π΅ β π β§ πΆ β β) β (πΆππ΅) β π) |
7 | 6 | 3expa 1115 | . . . . 5 β’ (((π β NrmCVec β§ π΅ β π) β§ πΆ β β) β (πΆππ΅) β π) |
8 | 7 | 3adantl2 1164 | . . . 4 β’ (((π β NrmCVec β§ π΄ β π β§ π΅ β π) β§ πΆ β β) β (πΆππ΅) β π) |
9 | dipfval.2 | . . . . 5 β’ πΊ = ( +π£ βπ) | |
10 | 3, 9 | nvgcl 30382 | . . . 4 β’ ((π β NrmCVec β§ π΄ β π β§ (πΆππ΅) β π) β (π΄πΊ(πΆππ΅)) β π) |
11 | 1, 2, 8, 10 | syl3anc 1368 | . . 3 β’ (((π β NrmCVec β§ π΄ β π β§ π΅ β π) β§ πΆ β β) β (π΄πΊ(πΆππ΅)) β π) |
12 | dipfval.6 | . . . 4 β’ π = (normCVβπ) | |
13 | 3, 12 | nvcl 30423 | . . 3 β’ ((π β NrmCVec β§ (π΄πΊ(πΆππ΅)) β π) β (πβ(π΄πΊ(πΆππ΅))) β β) |
14 | 1, 11, 13 | syl2anc 583 | . 2 β’ (((π β NrmCVec β§ π΄ β π β§ π΅ β π) β§ πΆ β β) β (πβ(π΄πΊ(πΆππ΅))) β β) |
15 | 14 | resqcld 14095 | 1 β’ (((π β NrmCVec β§ π΄ β π β§ π΅ β π) β§ πΆ β β) β ((πβ(π΄πΊ(πΆππ΅)))β2) β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 βcfv 6537 (class class class)co 7405 βcc 11110 βcr 11111 2c2 12271 βcexp 14032 NrmCVeccnv 30346 +π£ cpv 30347 BaseSetcba 30348 Β·π OLD cns 30349 normCVcnmcv 30352 Β·πOLDcdip 30462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-seq 13973 df-exp 14033 df-grpo 30255 df-ablo 30307 df-vc 30321 df-nv 30354 df-va 30357 df-ba 30358 df-sm 30359 df-0v 30360 df-nmcv 30362 |
This theorem is referenced by: ipval2lem3 30467 ipval2lem4 30468 dipcj 30476 |
Copyright terms: Public domain | W3C validator |