| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgnn0subcl | Structured version Visualization version GIF version | ||
| Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| mulgnnsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnnsubcl.t | ⊢ · = (.g‘𝐺) |
| mulgnnsubcl.p | ⊢ + = (+g‘𝐺) |
| mulgnnsubcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| mulgnnsubcl.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| mulgnnsubcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
| mulgnn0subcl.z | ⊢ 0 = (0g‘𝐺) |
| mulgnn0subcl.c | ⊢ (𝜑 → 0 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| mulgnn0subcl | ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnnsubcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mulgnnsubcl.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 3 | mulgnnsubcl.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
| 4 | mulgnnsubcl.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 5 | mulgnnsubcl.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 6 | mulgnnsubcl.c | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 7 | 1, 2, 3, 4, 5, 6 | mulgnnsubcl 19067 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
| 8 | 7 | 3expa 1118 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ) ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
| 9 | 8 | an32s 652 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆) |
| 10 | 9 | 3adantl2 1168 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆) |
| 11 | oveq1 7410 | . . . 4 ⊢ (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋)) | |
| 12 | 5 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
| 13 | simp3 1138 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 14 | 12, 13 | sseldd 3959 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
| 15 | mulgnn0subcl.z | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
| 16 | 1, 15, 2 | mulg0 19055 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
| 17 | 14, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (0 · 𝑋) = 0 ) |
| 18 | 11, 17 | sylan9eqr 2792 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = 0 ) |
| 19 | mulgnn0subcl.c | . . . . 5 ⊢ (𝜑 → 0 ∈ 𝑆) | |
| 20 | 19 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 0 ∈ 𝑆) |
| 21 | 20 | adantr 480 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → 0 ∈ 𝑆) |
| 22 | 18, 21 | eqeltrd 2834 | . 2 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) ∈ 𝑆) |
| 23 | simp2 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈ ℕ0) | |
| 24 | elnn0 12501 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 25 | 23, 24 | sylib 218 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
| 26 | 10, 22, 25 | mpjaodan 960 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ‘cfv 6530 (class class class)co 7403 0cc0 11127 ℕcn 12238 ℕ0cn0 12499 Basecbs 17226 +gcplusg 17269 0gc0g 17451 .gcmg 19048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-seq 14018 df-mulg 19049 |
| This theorem is referenced by: mulgsubcl 19069 mulgnn0cl 19071 submmulgcl 19098 mplbas2 21998 evls1fldgencl 33657 |
| Copyright terms: Public domain | W3C validator |