MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0subcl Structured version   Visualization version   GIF version

Theorem mulgnn0subcl 19117
Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b 𝐵 = (Base‘𝐺)
mulgnnsubcl.t · = (.g𝐺)
mulgnnsubcl.p + = (+g𝐺)
mulgnnsubcl.g (𝜑𝐺𝑉)
mulgnnsubcl.s (𝜑𝑆𝐵)
mulgnnsubcl.c ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
mulgnn0subcl.z 0 = (0g𝐺)
mulgnn0subcl.c (𝜑0𝑆)
Assertion
Ref Expression
mulgnn0subcl ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥, ·   𝑥,𝑋,𝑦
Allowed substitution hints:   · (𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem mulgnn0subcl
StepHypRef Expression
1 mulgnnsubcl.b . . . . . 6 𝐵 = (Base‘𝐺)
2 mulgnnsubcl.t . . . . . 6 · = (.g𝐺)
3 mulgnnsubcl.p . . . . . 6 + = (+g𝐺)
4 mulgnnsubcl.g . . . . . 6 (𝜑𝐺𝑉)
5 mulgnnsubcl.s . . . . . 6 (𝜑𝑆𝐵)
6 mulgnnsubcl.c . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
71, 2, 3, 4, 5, 6mulgnnsubcl 19116 . . . . 5 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
873expa 1117 . . . 4 (((𝜑𝑁 ∈ ℕ) ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
98an32s 652 . . 3 (((𝜑𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆)
1093adantl2 1166 . 2 (((𝜑𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆)
11 oveq1 7437 . . . 4 (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋))
1253ad2ant1 1132 . . . . . 6 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → 𝑆𝐵)
13 simp3 1137 . . . . . 6 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → 𝑋𝑆)
1412, 13sseldd 3995 . . . . 5 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → 𝑋𝐵)
15 mulgnn0subcl.z . . . . . 6 0 = (0g𝐺)
161, 15, 2mulg0 19104 . . . . 5 (𝑋𝐵 → (0 · 𝑋) = 0 )
1714, 16syl 17 . . . 4 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (0 · 𝑋) = 0 )
1811, 17sylan9eqr 2796 . . 3 (((𝜑𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = 0 )
19 mulgnn0subcl.c . . . . 5 (𝜑0𝑆)
20193ad2ant1 1132 . . . 4 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → 0𝑆)
2120adantr 480 . . 3 (((𝜑𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 0𝑆)
2218, 21eqeltrd 2838 . 2 (((𝜑𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) ∈ 𝑆)
23 simp2 1136 . . 3 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → 𝑁 ∈ ℕ0)
24 elnn0 12525 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2523, 24sylib 218 . 2 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2610, 22, 25mpjaodan 960 1 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wss 3962  cfv 6562  (class class class)co 7430  0cc0 11152  cn 12263  0cn0 12523  Basecbs 17244  +gcplusg 17297  0gc0g 17485  .gcmg 19097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-seq 14039  df-mulg 19098
This theorem is referenced by:  mulgsubcl  19118  mulgnn0cl  19120  submmulgcl  19147  mplbas2  22077  evls1fldgencl  33694
  Copyright terms: Public domain W3C validator