MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0subcl Structured version   Visualization version   GIF version

Theorem mulgnn0subcl 19074
Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b 𝐵 = (Base‘𝐺)
mulgnnsubcl.t · = (.g𝐺)
mulgnnsubcl.p + = (+g𝐺)
mulgnnsubcl.g (𝜑𝐺𝑉)
mulgnnsubcl.s (𝜑𝑆𝐵)
mulgnnsubcl.c ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
mulgnn0subcl.z 0 = (0g𝐺)
mulgnn0subcl.c (𝜑0𝑆)
Assertion
Ref Expression
mulgnn0subcl ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥, ·   𝑥,𝑋,𝑦
Allowed substitution hints:   · (𝑦)   𝑉(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem mulgnn0subcl
StepHypRef Expression
1 mulgnnsubcl.b . . . . . 6 𝐵 = (Base‘𝐺)
2 mulgnnsubcl.t . . . . . 6 · = (.g𝐺)
3 mulgnnsubcl.p . . . . . 6 + = (+g𝐺)
4 mulgnnsubcl.g . . . . . 6 (𝜑𝐺𝑉)
5 mulgnnsubcl.s . . . . . 6 (𝜑𝑆𝐵)
6 mulgnnsubcl.c . . . . . 6 ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
71, 2, 3, 4, 5, 6mulgnnsubcl 19073 . . . . 5 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
873expa 1115 . . . 4 (((𝜑𝑁 ∈ ℕ) ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
98an32s 650 . . 3 (((𝜑𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆)
1093adantl2 1164 . 2 (((𝜑𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 ∈ ℕ) → (𝑁 · 𝑋) ∈ 𝑆)
11 oveq1 7420 . . . 4 (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋))
1253ad2ant1 1130 . . . . . 6 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → 𝑆𝐵)
13 simp3 1135 . . . . . 6 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → 𝑋𝑆)
1412, 13sseldd 3979 . . . . 5 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → 𝑋𝐵)
15 mulgnn0subcl.z . . . . . 6 0 = (0g𝐺)
161, 15, 2mulg0 19061 . . . . 5 (𝑋𝐵 → (0 · 𝑋) = 0 )
1714, 16syl 17 . . . 4 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (0 · 𝑋) = 0 )
1811, 17sylan9eqr 2788 . . 3 (((𝜑𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = 0 )
19 mulgnn0subcl.c . . . . 5 (𝜑0𝑆)
20193ad2ant1 1130 . . . 4 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → 0𝑆)
2120adantr 479 . . 3 (((𝜑𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → 0𝑆)
2218, 21eqeltrd 2826 . 2 (((𝜑𝑁 ∈ ℕ0𝑋𝑆) ∧ 𝑁 = 0) → (𝑁 · 𝑋) ∈ 𝑆)
23 simp2 1134 . . 3 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → 𝑁 ∈ ℕ0)
24 elnn0 12517 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2523, 24sylib 217 . 2 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2610, 22, 25mpjaodan 956 1 ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wss 3946  cfv 6543  (class class class)co 7413  0cc0 11146  cn 12255  0cn0 12515  Basecbs 17205  +gcplusg 17258  0gc0g 17446  .gcmg 19054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12256  df-n0 12516  df-z 12602  df-uz 12866  df-fz 13530  df-seq 14013  df-mulg 19055
This theorem is referenced by:  mulgsubcl  19075  mulgnn0cl  19077  submmulgcl  19104  mplbas2  22042  evls1fldgencl  33559
  Copyright terms: Public domain W3C validator