MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatleglb Structured version   Visualization version   GIF version

Theorem clatleglb 18538
Description: Two ways of expressing "less than or equal to the greatest lower bound." (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
clatglb.b 𝐵 = (Base‘𝐾)
clatglb.l = (le‘𝐾)
clatglb.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatleglb ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑋 (𝐺𝑆) ↔ ∀𝑦𝑆 𝑋 𝑦))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦,𝐾   𝑦,   𝑦,𝑆   𝑦,𝑋

Proof of Theorem clatleglb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 clatglb.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 clatglb.l . . . . . . 7 = (le‘𝐾)
3 clatglb.g . . . . . . 7 𝐺 = (glb‘𝐾)
41, 2, 3clatglble 18537 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑦𝑆) → (𝐺𝑆) 𝑦)
543expa 1115 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑆𝐵) ∧ 𝑦𝑆) → (𝐺𝑆) 𝑦)
653adantl2 1164 . . . 4 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → (𝐺𝑆) 𝑦)
7 simpl1 1188 . . . . . 6 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ CLat)
8 clatl 18528 . . . . . 6 (𝐾 ∈ CLat → 𝐾 ∈ Lat)
97, 8syl 17 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ Lat)
10 simpl2 1189 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝑋𝐵)
111, 3clatglbcl 18525 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
12113adant2 1128 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
1312adantr 479 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → (𝐺𝑆) ∈ 𝐵)
14 ssel 3972 . . . . . . 7 (𝑆𝐵 → (𝑦𝑆𝑦𝐵))
15143ad2ant3 1132 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑦𝑆𝑦𝐵))
1615imp 405 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝑦𝐵)
171, 2lattr 18464 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝐺𝑆) ∈ 𝐵𝑦𝐵)) → ((𝑋 (𝐺𝑆) ∧ (𝐺𝑆) 𝑦) → 𝑋 𝑦))
189, 10, 13, 16, 17syl13anc 1369 . . . 4 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → ((𝑋 (𝐺𝑆) ∧ (𝐺𝑆) 𝑦) → 𝑋 𝑦))
196, 18mpan2d 692 . . 3 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → (𝑋 (𝐺𝑆) → 𝑋 𝑦))
2019ralrimdva 3144 . 2 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑋 (𝐺𝑆) → ∀𝑦𝑆 𝑋 𝑦))
211, 2, 3clatglb 18536 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (∀𝑦𝑆 (𝐺𝑆) 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝐺𝑆))))
22 breq1 5148 . . . . . . . . 9 (𝑧 = 𝑋 → (𝑧 𝑦𝑋 𝑦))
2322ralbidv 3168 . . . . . . . 8 (𝑧 = 𝑋 → (∀𝑦𝑆 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑋 𝑦))
24 breq1 5148 . . . . . . . 8 (𝑧 = 𝑋 → (𝑧 (𝐺𝑆) ↔ 𝑋 (𝐺𝑆)))
2523, 24imbi12d 343 . . . . . . 7 (𝑧 = 𝑋 → ((∀𝑦𝑆 𝑧 𝑦𝑧 (𝐺𝑆)) ↔ (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆))))
2625rspccv 3604 . . . . . 6 (∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝐺𝑆)) → (𝑋𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆))))
2721, 26simpl2im 502 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑋𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆))))
2827ex 411 . . . 4 (𝐾 ∈ CLat → (𝑆𝐵 → (𝑋𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆)))))
2928com23 86 . . 3 (𝐾 ∈ CLat → (𝑋𝐵 → (𝑆𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆)))))
30293imp 1108 . 2 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆)))
3120, 30impbid 211 1 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑋 (𝐺𝑆) ↔ ∀𝑦𝑆 𝑋 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wss 3946   class class class wbr 5145  cfv 6546  Basecbs 17208  lecple 17268  glbcglb 18330  Latclat 18451  CLatccla 18518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-oprab 7420  df-poset 18333  df-lub 18366  df-glb 18367  df-join 18368  df-meet 18369  df-lat 18452  df-clat 18519
This theorem is referenced by:  clatglbss  18539  pmapglbx  39481  diaglbN  40767  dihglblem2N  41006  dihglbcpreN  41012  dihglblem6  41052  dochvalr  41069
  Copyright terms: Public domain W3C validator