MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatleglb Structured version   Visualization version   GIF version

Theorem clatleglb 18407
Description: Two ways of expressing "less than or equal to the greatest lower bound." (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
clatglb.b 𝐵 = (Base‘𝐾)
clatglb.l = (le‘𝐾)
clatglb.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatleglb ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑋 (𝐺𝑆) ↔ ∀𝑦𝑆 𝑋 𝑦))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦,𝐾   𝑦,   𝑦,𝑆   𝑦,𝑋

Proof of Theorem clatleglb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 clatglb.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 clatglb.l . . . . . . 7 = (le‘𝐾)
3 clatglb.g . . . . . . 7 𝐺 = (glb‘𝐾)
41, 2, 3clatglble 18406 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑦𝑆) → (𝐺𝑆) 𝑦)
543expa 1118 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑆𝐵) ∧ 𝑦𝑆) → (𝐺𝑆) 𝑦)
653adantl2 1167 . . . 4 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → (𝐺𝑆) 𝑦)
7 simpl1 1191 . . . . . 6 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ CLat)
8 clatl 18397 . . . . . 6 (𝐾 ∈ CLat → 𝐾 ∈ Lat)
97, 8syl 17 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ Lat)
10 simpl2 1192 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝑋𝐵)
111, 3clatglbcl 18394 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
12113adant2 1131 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
1312adantr 481 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → (𝐺𝑆) ∈ 𝐵)
14 ssel 3937 . . . . . . 7 (𝑆𝐵 → (𝑦𝑆𝑦𝐵))
15143ad2ant3 1135 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑦𝑆𝑦𝐵))
1615imp 407 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝑦𝐵)
171, 2lattr 18333 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝐺𝑆) ∈ 𝐵𝑦𝐵)) → ((𝑋 (𝐺𝑆) ∧ (𝐺𝑆) 𝑦) → 𝑋 𝑦))
189, 10, 13, 16, 17syl13anc 1372 . . . 4 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → ((𝑋 (𝐺𝑆) ∧ (𝐺𝑆) 𝑦) → 𝑋 𝑦))
196, 18mpan2d 692 . . 3 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → (𝑋 (𝐺𝑆) → 𝑋 𝑦))
2019ralrimdva 3151 . 2 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑋 (𝐺𝑆) → ∀𝑦𝑆 𝑋 𝑦))
211, 2, 3clatglb 18405 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (∀𝑦𝑆 (𝐺𝑆) 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝐺𝑆))))
22 breq1 5108 . . . . . . . . 9 (𝑧 = 𝑋 → (𝑧 𝑦𝑋 𝑦))
2322ralbidv 3174 . . . . . . . 8 (𝑧 = 𝑋 → (∀𝑦𝑆 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑋 𝑦))
24 breq1 5108 . . . . . . . 8 (𝑧 = 𝑋 → (𝑧 (𝐺𝑆) ↔ 𝑋 (𝐺𝑆)))
2523, 24imbi12d 344 . . . . . . 7 (𝑧 = 𝑋 → ((∀𝑦𝑆 𝑧 𝑦𝑧 (𝐺𝑆)) ↔ (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆))))
2625rspccv 3578 . . . . . 6 (∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝐺𝑆)) → (𝑋𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆))))
2721, 26simpl2im 504 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑋𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆))))
2827ex 413 . . . 4 (𝐾 ∈ CLat → (𝑆𝐵 → (𝑋𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆)))))
2928com23 86 . . 3 (𝐾 ∈ CLat → (𝑋𝐵 → (𝑆𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆)))))
30293imp 1111 . 2 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆)))
3120, 30impbid 211 1 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑋 (𝐺𝑆) ↔ ∀𝑦𝑆 𝑋 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wss 3910   class class class wbr 5105  cfv 6496  Basecbs 17083  lecple 17140  glbcglb 18199  Latclat 18320  CLatccla 18387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-oprab 7361  df-poset 18202  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-lat 18321  df-clat 18388
This theorem is referenced by:  clatglbss  18408  pmapglbx  38232  diaglbN  39518  dihglblem2N  39757  dihglbcpreN  39763  dihglblem6  39803  dochvalr  39820
  Copyright terms: Public domain W3C validator