MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatleglb Structured version   Visualization version   GIF version

Theorem clatleglb 17565
Description: Two ways of expressing "less than or equal to the greatest lower bound." (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
clatglb.b 𝐵 = (Base‘𝐾)
clatglb.l = (le‘𝐾)
clatglb.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatleglb ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑋 (𝐺𝑆) ↔ ∀𝑦𝑆 𝑋 𝑦))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦,𝐾   𝑦,   𝑦,𝑆   𝑦,𝑋

Proof of Theorem clatleglb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 clatglb.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 clatglb.l . . . . . . 7 = (le‘𝐾)
3 clatglb.g . . . . . . 7 𝐺 = (glb‘𝐾)
41, 2, 3clatglble 17564 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑦𝑆) → (𝐺𝑆) 𝑦)
543expa 1111 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑆𝐵) ∧ 𝑦𝑆) → (𝐺𝑆) 𝑦)
653adantl2 1160 . . . 4 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → (𝐺𝑆) 𝑦)
7 simpl1 1184 . . . . . 6 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ CLat)
8 clatl 17555 . . . . . 6 (𝐾 ∈ CLat → 𝐾 ∈ Lat)
97, 8syl 17 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ Lat)
10 simpl2 1185 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝑋𝐵)
111, 3clatglbcl 17553 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
12113adant2 1124 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
1312adantr 481 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → (𝐺𝑆) ∈ 𝐵)
14 ssel 3885 . . . . . . 7 (𝑆𝐵 → (𝑦𝑆𝑦𝐵))
15143ad2ant3 1128 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑦𝑆𝑦𝐵))
1615imp 407 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝑦𝐵)
171, 2lattr 17495 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝐺𝑆) ∈ 𝐵𝑦𝐵)) → ((𝑋 (𝐺𝑆) ∧ (𝐺𝑆) 𝑦) → 𝑋 𝑦))
189, 10, 13, 16, 17syl13anc 1365 . . . 4 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → ((𝑋 (𝐺𝑆) ∧ (𝐺𝑆) 𝑦) → 𝑋 𝑦))
196, 18mpan2d 690 . . 3 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → (𝑋 (𝐺𝑆) → 𝑋 𝑦))
2019ralrimdva 3155 . 2 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑋 (𝐺𝑆) → ∀𝑦𝑆 𝑋 𝑦))
211, 2, 3clatglb 17563 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (∀𝑦𝑆 (𝐺𝑆) 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝐺𝑆))))
22 breq1 4967 . . . . . . . . 9 (𝑧 = 𝑋 → (𝑧 𝑦𝑋 𝑦))
2322ralbidv 3163 . . . . . . . 8 (𝑧 = 𝑋 → (∀𝑦𝑆 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑋 𝑦))
24 breq1 4967 . . . . . . . 8 (𝑧 = 𝑋 → (𝑧 (𝐺𝑆) ↔ 𝑋 (𝐺𝑆)))
2523, 24imbi12d 346 . . . . . . 7 (𝑧 = 𝑋 → ((∀𝑦𝑆 𝑧 𝑦𝑧 (𝐺𝑆)) ↔ (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆))))
2625rspccv 3554 . . . . . 6 (∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝐺𝑆)) → (𝑋𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆))))
2721, 26simpl2im 504 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑋𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆))))
2827ex 413 . . . 4 (𝐾 ∈ CLat → (𝑆𝐵 → (𝑋𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆)))))
2928com23 86 . . 3 (𝐾 ∈ CLat → (𝑋𝐵 → (𝑆𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆)))))
30293imp 1104 . 2 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆)))
3120, 30impbid 213 1 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑋 (𝐺𝑆) ↔ ∀𝑦𝑆 𝑋 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2080  wral 3104  wss 3861   class class class wbr 4964  cfv 6228  Basecbs 16312  lecple 16401  glbcglb 17382  Latclat 17484  CLatccla 17546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-ral 3109  df-rex 3110  df-reu 3111  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-op 4481  df-uni 4748  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-id 5351  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-riota 6980  df-oprab 7023  df-poset 17385  df-lub 17413  df-glb 17414  df-join 17415  df-meet 17416  df-lat 17485  df-clat 17547
This theorem is referenced by:  clatglbss  17566  pmapglbx  36449  diaglbN  37735  dihglblem2N  37974  dihglbcpreN  37980  dihglblem6  38020  dochvalr  38037
  Copyright terms: Public domain W3C validator