MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatleglb Structured version   Visualization version   GIF version

Theorem clatleglb 18484
Description: Two ways of expressing "less than or equal to the greatest lower bound." (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
clatglb.b 𝐵 = (Base‘𝐾)
clatglb.l = (le‘𝐾)
clatglb.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatleglb ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑋 (𝐺𝑆) ↔ ∀𝑦𝑆 𝑋 𝑦))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦,𝐾   𝑦,   𝑦,𝑆   𝑦,𝑋

Proof of Theorem clatleglb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 clatglb.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 clatglb.l . . . . . . 7 = (le‘𝐾)
3 clatglb.g . . . . . . 7 𝐺 = (glb‘𝐾)
41, 2, 3clatglble 18483 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑦𝑆) → (𝐺𝑆) 𝑦)
543expa 1118 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑆𝐵) ∧ 𝑦𝑆) → (𝐺𝑆) 𝑦)
653adantl2 1168 . . . 4 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → (𝐺𝑆) 𝑦)
7 simpl1 1192 . . . . . 6 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ CLat)
8 clatl 18474 . . . . . 6 (𝐾 ∈ CLat → 𝐾 ∈ Lat)
97, 8syl 17 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ Lat)
10 simpl2 1193 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝑋𝐵)
111, 3clatglbcl 18471 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
12113adant2 1131 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
1312adantr 480 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → (𝐺𝑆) ∈ 𝐵)
14 ssel 3943 . . . . . . 7 (𝑆𝐵 → (𝑦𝑆𝑦𝐵))
15143ad2ant3 1135 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑦𝑆𝑦𝐵))
1615imp 406 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝑦𝐵)
171, 2lattr 18410 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝐺𝑆) ∈ 𝐵𝑦𝐵)) → ((𝑋 (𝐺𝑆) ∧ (𝐺𝑆) 𝑦) → 𝑋 𝑦))
189, 10, 13, 16, 17syl13anc 1374 . . . 4 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → ((𝑋 (𝐺𝑆) ∧ (𝐺𝑆) 𝑦) → 𝑋 𝑦))
196, 18mpan2d 694 . . 3 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → (𝑋 (𝐺𝑆) → 𝑋 𝑦))
2019ralrimdva 3134 . 2 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑋 (𝐺𝑆) → ∀𝑦𝑆 𝑋 𝑦))
211, 2, 3clatglb 18482 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (∀𝑦𝑆 (𝐺𝑆) 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝐺𝑆))))
22 breq1 5113 . . . . . . . . 9 (𝑧 = 𝑋 → (𝑧 𝑦𝑋 𝑦))
2322ralbidv 3157 . . . . . . . 8 (𝑧 = 𝑋 → (∀𝑦𝑆 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑋 𝑦))
24 breq1 5113 . . . . . . . 8 (𝑧 = 𝑋 → (𝑧 (𝐺𝑆) ↔ 𝑋 (𝐺𝑆)))
2523, 24imbi12d 344 . . . . . . 7 (𝑧 = 𝑋 → ((∀𝑦𝑆 𝑧 𝑦𝑧 (𝐺𝑆)) ↔ (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆))))
2625rspccv 3588 . . . . . 6 (∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝐺𝑆)) → (𝑋𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆))))
2721, 26simpl2im 503 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑋𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆))))
2827ex 412 . . . 4 (𝐾 ∈ CLat → (𝑆𝐵 → (𝑋𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆)))))
2928com23 86 . . 3 (𝐾 ∈ CLat → (𝑋𝐵 → (𝑆𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆)))))
30293imp 1110 . 2 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆)))
3120, 30impbid 212 1 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑋 (𝐺𝑆) ↔ ∀𝑦𝑆 𝑋 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wss 3917   class class class wbr 5110  cfv 6514  Basecbs 17186  lecple 17234  glbcglb 18278  Latclat 18397  CLatccla 18464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-oprab 7394  df-poset 18281  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-lat 18398  df-clat 18465
This theorem is referenced by:  clatglbss  18485  pmapglbx  39770  diaglbN  41056  dihglblem2N  41295  dihglbcpreN  41301  dihglblem6  41341  dochvalr  41358
  Copyright terms: Public domain W3C validator