MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatleglb Structured version   Visualization version   GIF version

Theorem clatleglb 18333
Description: Two ways of expressing "less than or equal to the greatest lower bound." (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
clatglb.b 𝐵 = (Base‘𝐾)
clatglb.l = (le‘𝐾)
clatglb.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatleglb ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑋 (𝐺𝑆) ↔ ∀𝑦𝑆 𝑋 𝑦))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦,𝐾   𝑦,   𝑦,𝑆   𝑦,𝑋

Proof of Theorem clatleglb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 clatglb.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 clatglb.l . . . . . . 7 = (le‘𝐾)
3 clatglb.g . . . . . . 7 𝐺 = (glb‘𝐾)
41, 2, 3clatglble 18332 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑦𝑆) → (𝐺𝑆) 𝑦)
543expa 1117 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑆𝐵) ∧ 𝑦𝑆) → (𝐺𝑆) 𝑦)
653adantl2 1166 . . . 4 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → (𝐺𝑆) 𝑦)
7 simpl1 1190 . . . . . 6 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ CLat)
8 clatl 18323 . . . . . 6 (𝐾 ∈ CLat → 𝐾 ∈ Lat)
97, 8syl 17 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ Lat)
10 simpl2 1191 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝑋𝐵)
111, 3clatglbcl 18320 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
12113adant2 1130 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
1312adantr 481 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → (𝐺𝑆) ∈ 𝐵)
14 ssel 3925 . . . . . . 7 (𝑆𝐵 → (𝑦𝑆𝑦𝐵))
15143ad2ant3 1134 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑦𝑆𝑦𝐵))
1615imp 407 . . . . 5 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → 𝑦𝐵)
171, 2lattr 18259 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵 ∧ (𝐺𝑆) ∈ 𝐵𝑦𝐵)) → ((𝑋 (𝐺𝑆) ∧ (𝐺𝑆) 𝑦) → 𝑋 𝑦))
189, 10, 13, 16, 17syl13anc 1371 . . . 4 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → ((𝑋 (𝐺𝑆) ∧ (𝐺𝑆) 𝑦) → 𝑋 𝑦))
196, 18mpan2d 691 . . 3 (((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) ∧ 𝑦𝑆) → (𝑋 (𝐺𝑆) → 𝑋 𝑦))
2019ralrimdva 3147 . 2 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑋 (𝐺𝑆) → ∀𝑦𝑆 𝑋 𝑦))
211, 2, 3clatglb 18331 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (∀𝑦𝑆 (𝐺𝑆) 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝐺𝑆))))
22 breq1 5095 . . . . . . . . 9 (𝑧 = 𝑋 → (𝑧 𝑦𝑋 𝑦))
2322ralbidv 3170 . . . . . . . 8 (𝑧 = 𝑋 → (∀𝑦𝑆 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑋 𝑦))
24 breq1 5095 . . . . . . . 8 (𝑧 = 𝑋 → (𝑧 (𝐺𝑆) ↔ 𝑋 (𝐺𝑆)))
2523, 24imbi12d 344 . . . . . . 7 (𝑧 = 𝑋 → ((∀𝑦𝑆 𝑧 𝑦𝑧 (𝐺𝑆)) ↔ (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆))))
2625rspccv 3567 . . . . . 6 (∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 (𝐺𝑆)) → (𝑋𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆))))
2721, 26simpl2im 504 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑋𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆))))
2827ex 413 . . . 4 (𝐾 ∈ CLat → (𝑆𝐵 → (𝑋𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆)))))
2928com23 86 . . 3 (𝐾 ∈ CLat → (𝑋𝐵 → (𝑆𝐵 → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆)))))
30293imp 1110 . 2 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (∀𝑦𝑆 𝑋 𝑦𝑋 (𝐺𝑆)))
3120, 30impbid 211 1 ((𝐾 ∈ CLat ∧ 𝑋𝐵𝑆𝐵) → (𝑋 (𝐺𝑆) ↔ ∀𝑦𝑆 𝑋 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  wss 3898   class class class wbr 5092  cfv 6479  Basecbs 17009  lecple 17066  glbcglb 18125  Latclat 18246  CLatccla 18313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-oprab 7341  df-poset 18128  df-lub 18161  df-glb 18162  df-join 18163  df-meet 18164  df-lat 18247  df-clat 18314
This theorem is referenced by:  clatglbss  18334  pmapglbx  38037  diaglbN  39323  dihglblem2N  39562  dihglbcpreN  39568  dihglblem6  39608  dochvalr  39625
  Copyright terms: Public domain W3C validator