| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanl1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.) |
| Ref | Expression |
|---|---|
| sylanl1.1 | ⊢ (𝜑 → 𝜓) |
| sylanl1.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanl1 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanl1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
| 3 | sylanl1.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantlll 718 adantllr 719 adantl3r 750 isocnv 7308 f1iun 7925 odi 8546 oeoelem 8565 mapxpen 9113 xadddilem 13261 hashgt23el 14396 pcqmul 16831 infpnlem1 16888 setsn0fun 17150 chpdmat 22735 neitr 23074 hausflimi 23874 nmoix 24624 nmoleub 24626 metdsre 24749 bncssbn 25281 usgr2edg 29144 usgr2edg1 29146 crctcshwlkn0 29758 unoplin 31856 hmoplin 31878 chirredlem1 32326 mdsymlem2 32340 foresf1o 32440 zarcls1 33866 ordtconnlem1 33921 signstfvn 34567 isbasisrelowllem1 37350 isbasisrelowllem2 37351 pibt2 37412 lindsadd 37614 lindsdom 37615 matunitlindflem1 37617 matunitlindflem2 37618 poimirlem25 37646 poimirlem29 37650 heicant 37656 cnambfre 37669 itg2addnclem 37672 ftc1anclem5 37698 ftc1anc 37702 rrnequiv 37836 isfldidl 38069 ispridlc 38071 supxrgelem 45340 supminfxr 45467 uhgrimisgrgric 47935 cycl3grtri 47950 gpg5nbgrvtx03star 48075 gpg5nbgr3star 48076 itcovalt2lem2 48669 reccot 49751 rectan 49752 |
| Copyright terms: Public domain | W3C validator |