| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanl1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.) |
| Ref | Expression |
|---|---|
| sylanl1.1 | ⊢ (𝜑 → 𝜓) |
| sylanl1.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanl1 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanl1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
| 3 | sylanl1.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantlll 718 adantllr 719 adantl3r 750 isocnv 7323 f1iun 7942 odi 8591 oeoelem 8610 mapxpen 9157 xadddilem 13310 hashgt23el 14442 pcqmul 16873 infpnlem1 16930 setsn0fun 17192 chpdmat 22779 neitr 23118 hausflimi 23918 nmoix 24668 nmoleub 24670 metdsre 24793 bncssbn 25326 usgr2edg 29189 usgr2edg1 29191 crctcshwlkn0 29803 unoplin 31901 hmoplin 31923 chirredlem1 32371 mdsymlem2 32385 foresf1o 32485 zarcls1 33900 ordtconnlem1 33955 signstfvn 34601 isbasisrelowllem1 37373 isbasisrelowllem2 37374 pibt2 37435 lindsadd 37637 lindsdom 37638 matunitlindflem1 37640 matunitlindflem2 37641 poimirlem25 37669 poimirlem29 37673 heicant 37679 cnambfre 37692 itg2addnclem 37695 ftc1anclem5 37721 ftc1anc 37725 rrnequiv 37859 isfldidl 38092 ispridlc 38094 supxrgelem 45364 supminfxr 45491 uhgrimisgrgric 47944 cycl3grtri 47959 gpg5nbgrvtx03star 48082 gpg5nbgr3star 48083 itcovalt2lem2 48656 reccot 49622 rectan 49623 |
| Copyright terms: Public domain | W3C validator |