| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanl1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.) |
| Ref | Expression |
|---|---|
| sylanl1.1 | ⊢ (𝜑 → 𝜓) |
| sylanl1.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanl1 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanl1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
| 3 | sylanl1.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantlll 718 adantllr 719 adantl3r 750 isocnv 7271 f1iun 7886 odi 8504 oeoelem 8523 mapxpen 9067 xadddilem 13214 hashgt23el 14349 pcqmul 16783 infpnlem1 16840 setsn0fun 17102 chpdmat 22744 neitr 23083 hausflimi 23883 nmoix 24633 nmoleub 24635 metdsre 24758 bncssbn 25290 usgr2edg 29173 usgr2edg1 29175 crctcshwlkn0 29784 unoplin 31882 hmoplin 31904 chirredlem1 32352 mdsymlem2 32366 foresf1o 32466 zarcls1 33835 ordtconnlem1 33890 signstfvn 34536 isbasisrelowllem1 37328 isbasisrelowllem2 37329 pibt2 37390 lindsadd 37592 lindsdom 37593 matunitlindflem1 37595 matunitlindflem2 37596 poimirlem25 37624 poimirlem29 37628 heicant 37634 cnambfre 37647 itg2addnclem 37650 ftc1anclem5 37676 ftc1anc 37680 rrnequiv 37814 isfldidl 38047 ispridlc 38049 supxrgelem 45317 supminfxr 45444 uhgrimisgrgric 47916 cycl3grtri 47932 gpg5nbgrvtx03star 48065 gpg5nbgr3star 48066 itcovalt2lem2 48662 reccot 49744 rectan 49745 |
| Copyright terms: Public domain | W3C validator |