| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanl1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.) |
| Ref | Expression |
|---|---|
| sylanl1.1 | ⊢ (𝜑 → 𝜓) |
| sylanl1.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanl1 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanl1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
| 3 | sylanl1.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantlll 718 adantllr 719 adantl3r 750 isocnv 7305 f1iun 7922 odi 8543 oeoelem 8562 mapxpen 9107 xadddilem 13254 hashgt23el 14389 pcqmul 16824 infpnlem1 16881 setsn0fun 17143 chpdmat 22728 neitr 23067 hausflimi 23867 nmoix 24617 nmoleub 24619 metdsre 24742 bncssbn 25274 usgr2edg 29137 usgr2edg1 29139 crctcshwlkn0 29751 unoplin 31849 hmoplin 31871 chirredlem1 32319 mdsymlem2 32333 foresf1o 32433 zarcls1 33859 ordtconnlem1 33914 signstfvn 34560 isbasisrelowllem1 37343 isbasisrelowllem2 37344 pibt2 37405 lindsadd 37607 lindsdom 37608 matunitlindflem1 37610 matunitlindflem2 37611 poimirlem25 37639 poimirlem29 37643 heicant 37649 cnambfre 37662 itg2addnclem 37665 ftc1anclem5 37691 ftc1anc 37695 rrnequiv 37829 isfldidl 38062 ispridlc 38064 supxrgelem 45333 supminfxr 45460 uhgrimisgrgric 47931 cycl3grtri 47946 gpg5nbgrvtx03star 48071 gpg5nbgr3star 48072 itcovalt2lem2 48665 reccot 49747 rectan 49748 |
| Copyright terms: Public domain | W3C validator |