Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylanl1 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.) |
Ref | Expression |
---|---|
sylanl1.1 | ⊢ (𝜑 → 𝜓) |
sylanl1.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
sylanl1 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | anim1i 618 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
3 | sylanl1.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | sylan 584 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 |
This theorem is referenced by: adantlll 718 adantllr 719 adantl3r 750 isocnv 7075 f1iun 7647 odi 8213 oeoelem 8232 mapxpen 8702 xadddilem 12718 hashgt23el 13825 pcqmul 16235 infpnlem1 16291 setsn0fun 16568 chpdmat 21531 neitr 21870 hausflimi 22670 nmoix 23421 nmoleub 23423 metdsre 23544 bncssbn 24064 usgr2edg 27089 usgr2edg1 27091 crctcshwlkn0 27696 unoplin 29792 hmoplin 29814 chirredlem1 30262 mdsymlem2 30276 foresf1o 30362 zarcls1 31330 ordtconnlem1 31385 signstfvn 32057 isbasisrelowllem1 35042 isbasisrelowllem2 35043 pibt2 35104 lindsadd 35320 lindsdom 35321 matunitlindflem1 35323 matunitlindflem2 35324 poimirlem25 35352 poimirlem29 35356 heicant 35362 cnambfre 35375 itg2addnclem 35378 ftc1anclem5 35404 ftc1anc 35408 rrnequiv 35543 isfldidl 35776 ispridlc 35778 supxrgelem 42327 supminfxr 42459 itcovalt2lem2 45445 reccot 45639 rectan 45640 |
Copyright terms: Public domain | W3C validator |