| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanl1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.) |
| Ref | Expression |
|---|---|
| sylanl1.1 | ⊢ (𝜑 → 𝜓) |
| sylanl1.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanl1 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanl1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
| 3 | sylanl1.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantlll 718 adantllr 719 adantl3r 750 isocnv 7270 f1iun 7882 odi 8500 oeoelem 8519 mapxpen 9063 xadddilem 13195 hashgt23el 14333 pcqmul 16767 infpnlem1 16824 setsn0fun 17086 chpdmat 22757 neitr 23096 hausflimi 23896 nmoix 24645 nmoleub 24647 metdsre 24770 bncssbn 25302 usgr2edg 29190 usgr2edg1 29192 crctcshwlkn0 29801 unoplin 31902 hmoplin 31924 chirredlem1 32372 mdsymlem2 32386 foresf1o 32486 zarcls1 33903 ordtconnlem1 33958 signstfvn 34603 isbasisrelowllem1 37420 isbasisrelowllem2 37421 pibt2 37482 lindsadd 37674 lindsdom 37675 matunitlindflem1 37677 matunitlindflem2 37678 poimirlem25 37706 poimirlem29 37710 heicant 37716 cnambfre 37729 itg2addnclem 37732 ftc1anclem5 37758 ftc1anc 37762 rrnequiv 37896 isfldidl 38129 ispridlc 38131 supxrgelem 45461 supminfxr 45587 uhgrimisgrgric 48056 cycl3grtri 48072 gpg5nbgrvtx03star 48205 gpg5nbgr3star 48206 itcovalt2lem2 48802 reccot 49884 rectan 49885 |
| Copyright terms: Public domain | W3C validator |