Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylanl1 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.) |
Ref | Expression |
---|---|
sylanl1.1 | ⊢ (𝜑 → 𝜓) |
sylanl1.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
sylanl1 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | anim1i 614 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
3 | sylanl1.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | sylan 579 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: adantlll 714 adantllr 715 adantl3r 746 isocnv 7181 f1iun 7760 odi 8372 oeoelem 8391 mapxpen 8879 xadddilem 12957 hashgt23el 14067 pcqmul 16482 infpnlem1 16539 setsn0fun 16802 chpdmat 21898 neitr 22239 hausflimi 23039 nmoix 23799 nmoleub 23801 metdsre 23922 bncssbn 24443 usgr2edg 27480 usgr2edg1 27482 crctcshwlkn0 28087 unoplin 30183 hmoplin 30205 chirredlem1 30653 mdsymlem2 30667 foresf1o 30751 zarcls1 31721 ordtconnlem1 31776 signstfvn 32448 isbasisrelowllem1 35453 isbasisrelowllem2 35454 pibt2 35515 lindsadd 35697 lindsdom 35698 matunitlindflem1 35700 matunitlindflem2 35701 poimirlem25 35729 poimirlem29 35733 heicant 35739 cnambfre 35752 itg2addnclem 35755 ftc1anclem5 35781 ftc1anc 35785 rrnequiv 35920 isfldidl 36153 ispridlc 36155 supxrgelem 42766 supminfxr 42894 itcovalt2lem2 45910 reccot 46346 rectan 46347 |
Copyright terms: Public domain | W3C validator |