| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanl1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.) |
| Ref | Expression |
|---|---|
| sylanl1.1 | ⊢ (𝜑 → 𝜓) |
| sylanl1.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanl1 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanl1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
| 3 | sylanl1.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantlll 718 adantllr 719 adantl3r 750 isocnv 7264 f1iun 7876 odi 8494 oeoelem 8513 mapxpen 9056 xadddilem 13193 hashgt23el 14331 pcqmul 16765 infpnlem1 16822 setsn0fun 17084 chpdmat 22757 neitr 23096 hausflimi 23896 nmoix 24645 nmoleub 24647 metdsre 24770 bncssbn 25302 usgr2edg 29189 usgr2edg1 29191 crctcshwlkn0 29800 unoplin 31898 hmoplin 31920 chirredlem1 32368 mdsymlem2 32382 foresf1o 32482 zarcls1 33880 ordtconnlem1 33935 signstfvn 34580 isbasisrelowllem1 37395 isbasisrelowllem2 37396 pibt2 37457 lindsadd 37659 lindsdom 37660 matunitlindflem1 37662 matunitlindflem2 37663 poimirlem25 37691 poimirlem29 37695 heicant 37701 cnambfre 37714 itg2addnclem 37717 ftc1anclem5 37743 ftc1anc 37747 rrnequiv 37881 isfldidl 38114 ispridlc 38116 supxrgelem 45382 supminfxr 45508 uhgrimisgrgric 47968 cycl3grtri 47984 gpg5nbgrvtx03star 48117 gpg5nbgr3star 48118 itcovalt2lem2 48714 reccot 49796 rectan 49797 |
| Copyright terms: Public domain | W3C validator |