![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylanl1 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.) |
Ref | Expression |
---|---|
sylanl1.1 | ⊢ (𝜑 → 𝜓) |
sylanl1.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
sylanl1 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | anim1i 614 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
3 | sylanl1.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | sylan 579 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: adantlll 717 adantllr 718 adantl3r 749 isocnv 7366 f1iun 7984 odi 8635 oeoelem 8654 mapxpen 9209 xadddilem 13356 hashgt23el 14473 pcqmul 16900 infpnlem1 16957 setsn0fun 17220 chpdmat 22868 neitr 23209 hausflimi 24009 nmoix 24771 nmoleub 24773 metdsre 24894 bncssbn 25427 usgr2edg 29245 usgr2edg1 29247 crctcshwlkn0 29854 unoplin 31952 hmoplin 31974 chirredlem1 32422 mdsymlem2 32436 foresf1o 32532 zarcls1 33815 ordtconnlem1 33870 signstfvn 34546 isbasisrelowllem1 37321 isbasisrelowllem2 37322 pibt2 37383 lindsadd 37573 lindsdom 37574 matunitlindflem1 37576 matunitlindflem2 37577 poimirlem25 37605 poimirlem29 37609 heicant 37615 cnambfre 37628 itg2addnclem 37631 ftc1anclem5 37657 ftc1anc 37661 rrnequiv 37795 isfldidl 38028 ispridlc 38030 supxrgelem 45252 supminfxr 45379 uhgrimisgrgric 47783 itcovalt2lem2 48410 reccot 48850 rectan 48851 |
Copyright terms: Public domain | W3C validator |