| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanl1 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.) |
| Ref | Expression |
|---|---|
| sylanl1.1 | ⊢ (𝜑 → 𝜓) |
| sylanl1.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanl1 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanl1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
| 3 | sylanl1.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: adantlll 718 adantllr 719 adantl3r 750 isocnv 7350 f1iun 7968 odi 8617 oeoelem 8636 mapxpen 9183 xadddilem 13336 hashgt23el 14463 pcqmul 16891 infpnlem1 16948 setsn0fun 17210 chpdmat 22847 neitr 23188 hausflimi 23988 nmoix 24750 nmoleub 24752 metdsre 24875 bncssbn 25408 usgr2edg 29227 usgr2edg1 29229 crctcshwlkn0 29841 unoplin 31939 hmoplin 31961 chirredlem1 32409 mdsymlem2 32423 foresf1o 32523 zarcls1 33868 ordtconnlem1 33923 signstfvn 34584 isbasisrelowllem1 37356 isbasisrelowllem2 37357 pibt2 37418 lindsadd 37620 lindsdom 37621 matunitlindflem1 37623 matunitlindflem2 37624 poimirlem25 37652 poimirlem29 37656 heicant 37662 cnambfre 37675 itg2addnclem 37678 ftc1anclem5 37704 ftc1anc 37708 rrnequiv 37842 isfldidl 38075 ispridlc 38077 supxrgelem 45348 supminfxr 45475 uhgrimisgrgric 47899 cycl3grtri 47914 gpg5nbgrvtx03star 48036 gpg5nbgr3star 48037 itcovalt2lem2 48597 reccot 49277 rectan 49278 |
| Copyright terms: Public domain | W3C validator |