Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylanl1 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.) |
Ref | Expression |
---|---|
sylanl1.1 | ⊢ (𝜑 → 𝜓) |
sylanl1.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
sylanl1 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl1.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | anim1i 615 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
3 | sylanl1.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: adantlll 715 adantllr 716 adantl3r 747 isocnv 7201 f1iun 7786 odi 8410 oeoelem 8429 mapxpen 8930 xadddilem 13028 hashgt23el 14139 pcqmul 16554 infpnlem1 16611 setsn0fun 16874 chpdmat 21990 neitr 22331 hausflimi 23131 nmoix 23893 nmoleub 23895 metdsre 24016 bncssbn 24538 usgr2edg 27577 usgr2edg1 27579 crctcshwlkn0 28186 unoplin 30282 hmoplin 30304 chirredlem1 30752 mdsymlem2 30766 foresf1o 30850 zarcls1 31819 ordtconnlem1 31874 signstfvn 32548 isbasisrelowllem1 35526 isbasisrelowllem2 35527 pibt2 35588 lindsadd 35770 lindsdom 35771 matunitlindflem1 35773 matunitlindflem2 35774 poimirlem25 35802 poimirlem29 35806 heicant 35812 cnambfre 35825 itg2addnclem 35828 ftc1anclem5 35854 ftc1anc 35858 rrnequiv 35993 isfldidl 36226 ispridlc 36228 supxrgelem 42876 supminfxr 43004 itcovalt2lem2 46022 reccot 46460 rectan 46461 |
Copyright terms: Public domain | W3C validator |