Step | Hyp | Ref
| Expression |
1 | | suppovss.1 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐷) |
2 | 1 | ralrimivva 3123 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷) |
3 | | suppovss.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
4 | 3 | fmpo 7908 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ↔ 𝐹:(𝐴 × 𝐵)⟶𝐷) |
5 | 2, 4 | sylib 217 |
. 2
⊢ (𝜑 → 𝐹:(𝐴 × 𝐵)⟶𝐷) |
6 | | simpr 485 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝑧 = 〈𝑥, 𝑦〉) |
7 | 6 | fveq2d 6778 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝐹‘𝑧) = (𝐹‘〈𝑥, 𝑦〉)) |
8 | | df-ov 7278 |
. . . . . . . 8
⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) |
9 | | simpllr 773 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) |
10 | 9 | eldifad 3899 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝑥 ∈ 𝐴) |
11 | | simplr 766 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝑦 ∈ 𝐵) |
12 | | simplll 772 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝜑) |
13 | 12, 10, 11, 1 | syl12anc 834 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝐶 ∈ 𝐷) |
14 | 3 | ovmpt4g 7420 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → (𝑥𝐹𝑦) = 𝐶) |
15 | 10, 11, 13, 14 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝑥𝐹𝑦) = 𝐶) |
16 | 8, 15 | eqtr3id 2792 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝐹‘〈𝑥, 𝑦〉) = 𝐶) |
17 | | suppovss.b |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
18 | 17 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
19 | 18 | mptexd 7100 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
20 | | suppovss.g |
. . . . . . . . . . . 12
⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑦 ∈ 𝐵 ↦ 𝐶)) |
21 | 19, 20 | fmptd 6988 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:𝐴⟶V) |
22 | | ssidd 3944 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 supp (𝐵 × {𝑍})) ⊆ (𝐺 supp (𝐵 × {𝑍}))) |
23 | | suppovss.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
24 | | snex 5354 |
. . . . . . . . . . . . 13
⊢ {𝑍} ∈ V |
25 | 24 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑍} ∈ V) |
26 | 17, 25 | xpexd 7601 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐵 × {𝑍}) ∈ V) |
27 | 21, 22, 23, 26 | suppssr 8012 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) → (𝐺‘𝑥) = (𝐵 × {𝑍})) |
28 | 27 | fveq1d 6776 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) → ((𝐺‘𝑥)‘𝑦) = ((𝐵 × {𝑍})‘𝑦)) |
29 | 12, 9, 28 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 〈𝑥, 𝑦〉) → ((𝐺‘𝑥)‘𝑦) = ((𝐵 × {𝑍})‘𝑦)) |
30 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
31 | 20 | fvmpt2 6886 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) → (𝐺‘𝑥) = (𝑦 ∈ 𝐵 ↦ 𝐶)) |
32 | 30, 19, 31 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝑦 ∈ 𝐵 ↦ 𝐶)) |
33 | 1 | anassrs 468 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) |
34 | 32, 33 | fvmpt2d 6888 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ((𝐺‘𝑥)‘𝑦) = 𝐶) |
35 | 12, 10, 11, 34 | syl21anc 835 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 〈𝑥, 𝑦〉) → ((𝐺‘𝑥)‘𝑦) = 𝐶) |
36 | | suppovss.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ 𝐷) |
37 | 12, 36 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝑍 ∈ 𝐷) |
38 | | fvconst2g 7077 |
. . . . . . . . 9
⊢ ((𝑍 ∈ 𝐷 ∧ 𝑦 ∈ 𝐵) → ((𝐵 × {𝑍})‘𝑦) = 𝑍) |
39 | 37, 11, 38 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 〈𝑥, 𝑦〉) → ((𝐵 × {𝑍})‘𝑦) = 𝑍) |
40 | 29, 35, 39 | 3eqtr3d 2786 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝐶 = 𝑍) |
41 | 7, 16, 40 | 3eqtrd 2782 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝐹‘𝑧) = 𝑍) |
42 | 41 | adantl3r 747 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑧 ∈ ((𝐴 ∖ (𝐺 supp (𝐵 × {𝑍}))) × 𝐵)) ∧ 𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝐹‘𝑧) = 𝑍) |
43 | | elxp2 5613 |
. . . . . . 7
⊢ (𝑧 ∈ ((𝐴 ∖ (𝐺 supp (𝐵 × {𝑍}))) × 𝐵) ↔ ∃𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉) |
44 | 43 | biimpi 215 |
. . . . . 6
⊢ (𝑧 ∈ ((𝐴 ∖ (𝐺 supp (𝐵 × {𝑍}))) × 𝐵) → ∃𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉) |
45 | 44 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐴 ∖ (𝐺 supp (𝐵 × {𝑍}))) × 𝐵)) → ∃𝑥 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉) |
46 | 42, 45 | r19.29vva 3266 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐴 ∖ (𝐺 supp (𝐵 × {𝑍}))) × 𝐵)) → (𝐹‘𝑧) = 𝑍) |
47 | 46 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐴 × 𝐵) ∖ ((𝐺 supp (𝐵 × {𝑍})) × ∪ 𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)))) ∧ 𝑧 ∈ ((𝐴 ∖ (𝐺 supp (𝐵 × {𝑍}))) × 𝐵)) → (𝐹‘𝑧) = 𝑍) |
48 | | simpr 485 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝑧 = 〈𝑥, 𝑦〉) |
49 | 48 | fveq2d 6778 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝐹‘𝑧) = (𝐹‘〈𝑥, 𝑦〉)) |
50 | | simpllr 773 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝑥 ∈ 𝐴) |
51 | | simplr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) |
52 | 51 | eldifad 3899 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝑦 ∈ 𝐵) |
53 | | simplll 772 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝜑) |
54 | 53, 50, 52, 1 | syl12anc 834 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝐶 ∈ 𝐷) |
55 | 50, 52, 54, 14 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝑥𝐹𝑦) = 𝐶) |
56 | 8, 55 | eqtr3id 2792 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝐹‘〈𝑥, 𝑦〉) = 𝐶) |
57 | 53, 50, 52, 34 | syl21anc 835 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) ∧ 𝑧 = 〈𝑥, 𝑦〉) → ((𝐺‘𝑥)‘𝑦) = 𝐶) |
58 | | fvexd 6789 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ((𝐺‘𝑥)‘𝑦) ∈ V) |
59 | 33, 32, 58 | fmpt2d 6997 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥):𝐵⟶V) |
60 | | ssiun2 4977 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 → ((𝐺‘𝑥) supp 𝑍) ⊆ ∪ 𝑥 ∈ 𝐴 ((𝐺‘𝑥) supp 𝑍)) |
61 | 60 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) supp 𝑍) ⊆ ∪ 𝑥 ∈ 𝐴 ((𝐺‘𝑥) supp 𝑍)) |
62 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑘 → (𝐺‘𝑥) = (𝐺‘𝑘)) |
63 | 62 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑘 → ((𝐺‘𝑥) supp 𝑍) = ((𝐺‘𝑘) supp 𝑍)) |
64 | 63 | cbviunv 4970 |
. . . . . . . . . . . 12
⊢ ∪ 𝑥 ∈ 𝐴 ((𝐺‘𝑥) supp 𝑍) = ∪
𝑘 ∈ 𝐴 ((𝐺‘𝑘) supp 𝑍) |
65 | 61, 64 | sseqtrdi 3971 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) supp 𝑍) ⊆ ∪ 𝑘 ∈ 𝐴 ((𝐺‘𝑘) supp 𝑍)) |
66 | | simpl 483 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) → 𝜑) |
67 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) → 𝑘 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) |
68 | 67 | eldifad 3899 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) → 𝑘 ∈ 𝐴) |
69 | 21, 22, 23, 26 | suppssr 8012 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) → (𝐺‘𝑘) = (𝐵 × {𝑍})) |
70 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑘 → (𝑥 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
71 | 70 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑘 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑘 ∈ 𝐴))) |
72 | 62 | fneq1d 6526 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑘 → ((𝐺‘𝑥) Fn 𝐵 ↔ (𝐺‘𝑘) Fn 𝐵)) |
73 | 71, 72 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑘 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) Fn 𝐵) ↔ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘𝑘) Fn 𝐵))) |
74 | 59 | ffnd 6601 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) Fn 𝐵) |
75 | 73, 74 | chvarvv 2002 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘𝑘) Fn 𝐵) |
76 | 17 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
77 | 36 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑍 ∈ 𝐷) |
78 | | fnsuppeq0 8008 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺‘𝑘) Fn 𝐵 ∧ 𝐵 ∈ 𝑊 ∧ 𝑍 ∈ 𝐷) → (((𝐺‘𝑘) supp 𝑍) = ∅ ↔ (𝐺‘𝑘) = (𝐵 × {𝑍}))) |
79 | 75, 76, 77, 78 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (((𝐺‘𝑘) supp 𝑍) = ∅ ↔ (𝐺‘𝑘) = (𝐵 × {𝑍}))) |
80 | 79 | biimpar 478 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ (𝐺‘𝑘) = (𝐵 × {𝑍})) → ((𝐺‘𝑘) supp 𝑍) = ∅) |
81 | 66, 68, 69, 80 | syl21anc 835 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) → ((𝐺‘𝑘) supp 𝑍) = ∅) |
82 | 81 | ralrimiva 3103 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑘 ∈ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))((𝐺‘𝑘) supp 𝑍) = ∅) |
83 | | nfcv 2907 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝐴 ∖ (𝐺 supp (𝐵 × {𝑍}))) |
84 | 83 | iunxdif3 5024 |
. . . . . . . . . . . . . 14
⊢
(∀𝑘 ∈
(𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))((𝐺‘𝑘) supp 𝑍) = ∅ → ∪ 𝑘 ∈ (𝐴 ∖ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍}))))((𝐺‘𝑘) supp 𝑍) = ∪
𝑘 ∈ 𝐴 ((𝐺‘𝑘) supp 𝑍)) |
85 | 82, 84 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∪ 𝑘 ∈ (𝐴 ∖ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍}))))((𝐺‘𝑘) supp 𝑍) = ∪
𝑘 ∈ 𝐴 ((𝐺‘𝑘) supp 𝑍)) |
86 | | dfin4 4201 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∩ (𝐺 supp (𝐵 × {𝑍}))) = (𝐴 ∖ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) |
87 | | suppssdm 7993 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 supp (𝐵 × {𝑍})) ⊆ dom 𝐺 |
88 | 87, 21 | fssdm 6620 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐺 supp (𝐵 × {𝑍})) ⊆ 𝐴) |
89 | | sseqin2 4149 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 supp (𝐵 × {𝑍})) ⊆ 𝐴 ↔ (𝐴 ∩ (𝐺 supp (𝐵 × {𝑍}))) = (𝐺 supp (𝐵 × {𝑍}))) |
90 | 88, 89 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴 ∩ (𝐺 supp (𝐵 × {𝑍}))) = (𝐺 supp (𝐵 × {𝑍}))) |
91 | 86, 90 | eqtr3id 2792 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 ∖ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍})))) = (𝐺 supp (𝐵 × {𝑍}))) |
92 | 91 | iuneq1d 4951 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∪ 𝑘 ∈ (𝐴 ∖ (𝐴 ∖ (𝐺 supp (𝐵 × {𝑍}))))((𝐺‘𝑘) supp 𝑍) = ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)) |
93 | 85, 92 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 ((𝐺‘𝑘) supp 𝑍) = ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)) |
94 | 93 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∪
𝑘 ∈ 𝐴 ((𝐺‘𝑘) supp 𝑍) = ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)) |
95 | 65, 94 | sseqtrd 3961 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) supp 𝑍) ⊆ ∪ 𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)) |
96 | 36 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑍 ∈ 𝐷) |
97 | 59, 95, 18, 96 | suppssr 8012 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) → ((𝐺‘𝑥)‘𝑦) = 𝑍) |
98 | 97 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) ∧ 𝑧 = 〈𝑥, 𝑦〉) → ((𝐺‘𝑥)‘𝑦) = 𝑍) |
99 | 57, 98 | eqtr3d 2780 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) ∧ 𝑧 = 〈𝑥, 𝑦〉) → 𝐶 = 𝑍) |
100 | 49, 56, 99 | 3eqtrd 2782 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝐹‘𝑧) = 𝑍) |
101 | 100 | adantl3r 747 |
. . . . 5
⊢
(((((𝜑 ∧ 𝑧 ∈ (𝐴 × (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)))) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) ∧ 𝑧 = 〈𝑥, 𝑦〉) → (𝐹‘𝑧) = 𝑍) |
102 | | elxp2 5613 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 × (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))𝑧 = 〈𝑥, 𝑦〉) |
103 | 102 | biimpi 215 |
. . . . . 6
⊢ (𝑧 ∈ (𝐴 × (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))𝑧 = 〈𝑥, 𝑦〉) |
104 | 103 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 × (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)))) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))𝑧 = 〈𝑥, 𝑦〉) |
105 | 101, 104 | r19.29vva 3266 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴 × (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)))) → (𝐹‘𝑧) = 𝑍) |
106 | 105 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝐴 × 𝐵) ∖ ((𝐺 supp (𝐵 × {𝑍})) × ∪ 𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)))) ∧ 𝑧 ∈ (𝐴 × (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)))) → (𝐹‘𝑧) = 𝑍) |
107 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐴 × 𝐵) ∖ ((𝐺 supp (𝐵 × {𝑍})) × ∪ 𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)))) → 𝑧 ∈ ((𝐴 × 𝐵) ∖ ((𝐺 supp (𝐵 × {𝑍})) × ∪ 𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)))) |
108 | | difxp 6067 |
. . . . 5
⊢ ((𝐴 × 𝐵) ∖ ((𝐺 supp (𝐵 × {𝑍})) × ∪ 𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) = (((𝐴 ∖ (𝐺 supp (𝐵 × {𝑍}))) × 𝐵) ∪ (𝐴 × (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)))) |
109 | 107, 108 | eleqtrdi 2849 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐴 × 𝐵) ∖ ((𝐺 supp (𝐵 × {𝑍})) × ∪ 𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)))) → 𝑧 ∈ (((𝐴 ∖ (𝐺 supp (𝐵 × {𝑍}))) × 𝐵) ∪ (𝐴 × (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))))) |
110 | | elun 4083 |
. . . 4
⊢ (𝑧 ∈ (((𝐴 ∖ (𝐺 supp (𝐵 × {𝑍}))) × 𝐵) ∪ (𝐴 × (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)))) ↔ (𝑧 ∈ ((𝐴 ∖ (𝐺 supp (𝐵 × {𝑍}))) × 𝐵) ∨ 𝑧 ∈ (𝐴 × (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))))) |
111 | 109, 110 | sylib 217 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐴 × 𝐵) ∖ ((𝐺 supp (𝐵 × {𝑍})) × ∪ 𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)))) → (𝑧 ∈ ((𝐴 ∖ (𝐺 supp (𝐵 × {𝑍}))) × 𝐵) ∨ 𝑧 ∈ (𝐴 × (𝐵 ∖ ∪
𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))))) |
112 | 47, 106, 111 | mpjaodan 956 |
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝐴 × 𝐵) ∖ ((𝐺 supp (𝐵 × {𝑍})) × ∪ 𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍)))) → (𝐹‘𝑧) = 𝑍) |
113 | 5, 112 | suppss 8010 |
1
⊢ (𝜑 → (𝐹 supp 𝑍) ⊆ ((𝐺 supp (𝐵 × {𝑍})) × ∪ 𝑘 ∈ (𝐺 supp (𝐵 × {𝑍}))((𝐺‘𝑘) supp 𝑍))) |