Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem35 Structured version   Visualization version   GIF version

Theorem etransclem35 45447
Description: 𝑃 does not divide the P-1 -th derivative of 𝐹 applied to 0. This is case 2 of the proof in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem35.p (𝜑𝑃 ∈ ℕ)
etransclem35.m (𝜑𝑀 ∈ ℕ0)
etransclem35.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem35.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem35.d 𝐷 = (𝑗 ∈ (0...𝑀) ↦ if(𝑗 = 0, (𝑃 − 1), 0))
Assertion
Ref Expression
etransclem35 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑥   𝐷,𝑐,𝑗   𝑀,𝑐,𝑗,𝑛,𝑥   𝑃,𝑐,𝑗,𝑛,𝑥   𝜑,𝑐,𝑗,𝑛,𝑥
Allowed substitution hints:   𝐶(𝑛)   𝐷(𝑥,𝑛)   𝐹(𝑥,𝑗,𝑛,𝑐)

Proof of Theorem etransclem35
Dummy variables 𝐴 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reelprrecn 11208 . . . 4 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
3 reopn 44461 . . . . 5 ℝ ∈ (topGen‘ran (,))
4 eqid 2731 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
54tgioo2 24640 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
63, 5eleqtri 2830 . . . 4 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
76a1i 11 . . 3 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
8 etransclem35.p . . 3 (𝜑𝑃 ∈ ℕ)
9 etransclem35.m . . 3 (𝜑𝑀 ∈ ℕ0)
10 etransclem35.f . . 3 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
11 nnm1nn0 12520 . . . 4 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
128, 11syl 17 . . 3 (𝜑 → (𝑃 − 1) ∈ ℕ0)
13 etransclem5 45417 . . 3 (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
14 etransclem35.c . . 3 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
15 0red 11224 . . 3 (𝜑 → 0 ∈ ℝ)
162, 7, 8, 9, 10, 12, 13, 14, 15etransclem31 45443 . 2 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) = Σ𝑐 ∈ (𝐶‘(𝑃 − 1))(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))))
17 nfv 1916 . . 3 𝑐𝜑
18 nfcv 2902 . . 3 𝑐(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗)))))))
1914, 12etransclem16 45428 . . 3 (𝜑 → (𝐶‘(𝑃 − 1)) ∈ Fin)
20 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐 ∈ (𝐶‘(𝑃 − 1)))
2114, 12etransclem12 45424 . . . . . . . . . . . . . 14 (𝜑 → (𝐶‘(𝑃 − 1)) = {𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1)})
2221adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (𝐶‘(𝑃 − 1)) = {𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1)})
2320, 22eleqtrd 2834 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐 ∈ {𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1)})
24 rabid 3451 . . . . . . . . . . . 12 (𝑐 ∈ {𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1)} ↔ (𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1)))
2523, 24sylib 217 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1)))
2625simprd 495 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1))
2726eqcomd 2737 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (𝑃 − 1) = Σ𝑗 ∈ (0...𝑀)(𝑐𝑗))
2827fveq2d 6895 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (!‘(𝑃 − 1)) = (!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)))
2928oveq1d 7427 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))))
30 nfcv 2902 . . . . . . . 8 𝑗𝑐
31 fzfid 13945 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (0...𝑀) ∈ Fin)
32 nn0ex 12485 . . . . . . . . . 10 0 ∈ V
33 fzssnn0 44489 . . . . . . . . . 10 (0...(𝑃 − 1)) ⊆ ℕ0
34 mapss 8889 . . . . . . . . . 10 ((ℕ0 ∈ V ∧ (0...(𝑃 − 1)) ⊆ ℕ0) → ((0...(𝑃 − 1)) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
3532, 33, 34mp2an 689 . . . . . . . . 9 ((0...(𝑃 − 1)) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀))
3625simpld 494 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)))
3735, 36sselid 3980 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐 ∈ (ℕ0m (0...𝑀)))
3830, 31, 37mccl 44776 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℕ)
3929, 38eqeltrd 2832 . . . . . 6 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℕ)
4039nnzd 12592 . . . . 5 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℤ)
418adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑃 ∈ ℕ)
429adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑀 ∈ ℕ0)
43 elmapi 8849 . . . . . . . 8 (𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...(𝑃 − 1)))
4436, 43syl 17 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐:(0...𝑀)⟶(0...(𝑃 − 1)))
45 0zd 12577 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 0 ∈ ℤ)
4641, 42, 44, 45etransclem10 45422 . . . . . 6 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ∈ ℤ)
47 fzfid 13945 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (1...𝑀) ∈ Fin)
488ad2antrr 723 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ)
4944adantr 480 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (1...𝑀)) → 𝑐:(0...𝑀)⟶(0...(𝑃 − 1)))
50 fz1ssfz0 13604 . . . . . . . . . 10 (1...𝑀) ⊆ (0...𝑀)
5150sseli 3978 . . . . . . . . 9 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
5251adantl 481 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
53 0zd 12577 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (1...𝑀)) → 0 ∈ ℤ)
5448, 49, 52, 53etransclem3 45415 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℤ)
5547, 54fprodzcl 15905 . . . . . 6 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℤ)
5646, 55zmulcld 12679 . . . . 5 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))) ∈ ℤ)
5740, 56zmulcld 12679 . . . 4 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ)
5857zcnd 12674 . . 3 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℂ)
59 nn0uz 12871 . . . . . . . . . . 11 0 = (ℤ‘0)
6012, 59eleqtrdi 2842 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ (ℤ‘0))
61 eluzfz2 13516 . . . . . . . . . 10 ((𝑃 − 1) ∈ (ℤ‘0) → (𝑃 − 1) ∈ (0...(𝑃 − 1)))
6260, 61syl 17 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ (0...(𝑃 − 1)))
63 eluzfz1 13515 . . . . . . . . . 10 ((𝑃 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑃 − 1)))
6460, 63syl 17 . . . . . . . . 9 (𝜑 → 0 ∈ (0...(𝑃 − 1)))
6562, 64ifcld 4574 . . . . . . . 8 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 0) ∈ (0...(𝑃 − 1)))
6665adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 0) ∈ (0...(𝑃 − 1)))
67 etransclem35.d . . . . . . 7 𝐷 = (𝑗 ∈ (0...𝑀) ↦ if(𝑗 = 0, (𝑃 − 1), 0))
6866, 67fmptd 7115 . . . . . 6 (𝜑𝐷:(0...𝑀)⟶(0...(𝑃 − 1)))
69 ovex 7445 . . . . . . 7 (0...(𝑃 − 1)) ∈ V
70 ovex 7445 . . . . . . 7 (0...𝑀) ∈ V
7169, 70elmap 8871 . . . . . 6 (𝐷 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ↔ 𝐷:(0...𝑀)⟶(0...(𝑃 − 1)))
7268, 71sylibr 233 . . . . 5 (𝜑𝐷 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)))
739, 59eleqtrdi 2842 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘0))
74 fzsscn 44483 . . . . . . . 8 (0...(𝑃 − 1)) ⊆ ℂ
7568ffvelcdmda 7086 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐷𝑗) ∈ (0...(𝑃 − 1)))
7674, 75sselid 3980 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐷𝑗) ∈ ℂ)
77 fveq2 6891 . . . . . . 7 (𝑗 = 0 → (𝐷𝑗) = (𝐷‘0))
7873, 76, 77fsum1p 15706 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = ((𝐷‘0) + Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷𝑗)))
7967a1i 11 . . . . . . . 8 (𝜑𝐷 = (𝑗 ∈ (0...𝑀) ↦ if(𝑗 = 0, (𝑃 − 1), 0)))
80 simpr 484 . . . . . . . . 9 ((𝜑𝑗 = 0) → 𝑗 = 0)
8180iftrued 4536 . . . . . . . 8 ((𝜑𝑗 = 0) → if(𝑗 = 0, (𝑃 − 1), 0) = (𝑃 − 1))
82 eluzfz1 13515 . . . . . . . . 9 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
8373, 82syl 17 . . . . . . . 8 (𝜑 → 0 ∈ (0...𝑀))
8479, 81, 83, 12fvmptd 7005 . . . . . . 7 (𝜑 → (𝐷‘0) = (𝑃 − 1))
85 0p1e1 12341 . . . . . . . . . . 11 (0 + 1) = 1
8685oveq1i 7422 . . . . . . . . . 10 ((0 + 1)...𝑀) = (1...𝑀)
8786sumeq1i 15651 . . . . . . . . 9 Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷𝑗) = Σ𝑗 ∈ (1...𝑀)(𝐷𝑗)
8887a1i 11 . . . . . . . 8 (𝜑 → Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷𝑗) = Σ𝑗 ∈ (1...𝑀)(𝐷𝑗))
8967fvmpt2 7009 . . . . . . . . . . 11 ((𝑗 ∈ (0...𝑀) ∧ if(𝑗 = 0, (𝑃 − 1), 0) ∈ (0...(𝑃 − 1))) → (𝐷𝑗) = if(𝑗 = 0, (𝑃 − 1), 0))
9051, 65, 89syl2anr 596 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐷𝑗) = if(𝑗 = 0, (𝑃 − 1), 0))
91 0red 11224 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ)
92 1red 11222 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ)
93 elfzelz 13508 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
9493zred 12673 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ)
95 0lt1 11743 . . . . . . . . . . . . . . . 16 0 < 1
9695a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → 0 < 1)
97 elfzle1 13511 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗)
9891, 92, 94, 96, 97ltletrd 11381 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 0 < 𝑗)
9991, 98gtned 11356 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 𝑗 ≠ 0)
10099neneqd 2944 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → ¬ 𝑗 = 0)
101100iffalsed 4539 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → if(𝑗 = 0, (𝑃 − 1), 0) = 0)
102101adantl 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 0) = 0)
10390, 102eqtrd 2771 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐷𝑗) = 0)
104103sumeq2dv 15656 . . . . . . . 8 (𝜑 → Σ𝑗 ∈ (1...𝑀)(𝐷𝑗) = Σ𝑗 ∈ (1...𝑀)0)
105 fzfi 13944 . . . . . . . . . 10 (1...𝑀) ∈ Fin
106105olci 863 . . . . . . . . 9 ((1...𝑀) ⊆ (ℤ𝐴) ∨ (1...𝑀) ∈ Fin)
107 sumz 15675 . . . . . . . . 9 (((1...𝑀) ⊆ (ℤ𝐴) ∨ (1...𝑀) ∈ Fin) → Σ𝑗 ∈ (1...𝑀)0 = 0)
108106, 107mp1i 13 . . . . . . . 8 (𝜑 → Σ𝑗 ∈ (1...𝑀)0 = 0)
10988, 104, 1083eqtrd 2775 . . . . . . 7 (𝜑 → Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷𝑗) = 0)
11084, 109oveq12d 7430 . . . . . 6 (𝜑 → ((𝐷‘0) + Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷𝑗)) = ((𝑃 − 1) + 0))
1118nncnd 12235 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
112 1cnd 11216 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
113111, 112subcld 11578 . . . . . . 7 (𝜑 → (𝑃 − 1) ∈ ℂ)
114113addridd 11421 . . . . . 6 (𝜑 → ((𝑃 − 1) + 0) = (𝑃 − 1))
11578, 110, 1143eqtrd 2775 . . . . 5 (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = (𝑃 − 1))
116 fveq1 6890 . . . . . . . 8 (𝑐 = 𝐷 → (𝑐𝑗) = (𝐷𝑗))
117116sumeq2sdv 15657 . . . . . . 7 (𝑐 = 𝐷 → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
118117eqeq1d 2733 . . . . . 6 (𝑐 = 𝐷 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1) ↔ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = (𝑃 − 1)))
119118elrab 3683 . . . . 5 (𝐷 ∈ {𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1)} ↔ (𝐷 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = (𝑃 − 1)))
12072, 115, 119sylanbrc 582 . . . 4 (𝜑𝐷 ∈ {𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1)})
121120, 21eleqtrrd 2835 . . 3 (𝜑𝐷 ∈ (𝐶‘(𝑃 − 1)))
122116fveq2d 6895 . . . . . 6 (𝑐 = 𝐷 → (!‘(𝑐𝑗)) = (!‘(𝐷𝑗)))
123122prodeq2ad 44770 . . . . 5 (𝑐 = 𝐷 → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) = ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗)))
124123oveq2d 7428 . . . 4 (𝑐 = 𝐷 → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) = ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))))
125 fveq1 6890 . . . . . . 7 (𝑐 = 𝐷 → (𝑐‘0) = (𝐷‘0))
126125breq2d 5160 . . . . . 6 (𝑐 = 𝐷 → ((𝑃 − 1) < (𝑐‘0) ↔ (𝑃 − 1) < (𝐷‘0)))
127125oveq2d 7428 . . . . . . . . 9 (𝑐 = 𝐷 → ((𝑃 − 1) − (𝑐‘0)) = ((𝑃 − 1) − (𝐷‘0)))
128127fveq2d 6895 . . . . . . . 8 (𝑐 = 𝐷 → (!‘((𝑃 − 1) − (𝑐‘0))) = (!‘((𝑃 − 1) − (𝐷‘0))))
129128oveq2d 7428 . . . . . . 7 (𝑐 = 𝐷 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) = ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))))
130127oveq2d 7428 . . . . . . 7 (𝑐 = 𝐷 → (0↑((𝑃 − 1) − (𝑐‘0))) = (0↑((𝑃 − 1) − (𝐷‘0))))
131129, 130oveq12d 7430 . . . . . 6 (𝑐 = 𝐷 → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0)))))
132126, 131ifbieq2d 4554 . . . . 5 (𝑐 = 𝐷 → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) = if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))))
133116breq2d 5160 . . . . . . 7 (𝑐 = 𝐷 → (𝑃 < (𝑐𝑗) ↔ 𝑃 < (𝐷𝑗)))
134116oveq2d 7428 . . . . . . . . . 10 (𝑐 = 𝐷 → (𝑃 − (𝑐𝑗)) = (𝑃 − (𝐷𝑗)))
135134fveq2d 6895 . . . . . . . . 9 (𝑐 = 𝐷 → (!‘(𝑃 − (𝑐𝑗))) = (!‘(𝑃 − (𝐷𝑗))))
136135oveq2d 7428 . . . . . . . 8 (𝑐 = 𝐷 → ((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))))
137134oveq2d 7428 . . . . . . . 8 (𝑐 = 𝐷 → ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))) = ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))
138136, 137oveq12d 7430 . . . . . . 7 (𝑐 = 𝐷 → (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗)))))
139133, 138ifbieq2d 4554 . . . . . 6 (𝑐 = 𝐷 → if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))) = if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))))
140139prodeq2ad 44770 . . . . 5 (𝑐 = 𝐷 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))))
141132, 140oveq12d 7430 . . . 4 (𝑐 = 𝐷 → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))) = (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗)))))))
142124, 141oveq12d 7430 . . 3 (𝑐 = 𝐷 → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))) = (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))))))
14317, 18, 19, 58, 121, 142fsumsplit1 15698 . 2 (𝜑 → Σ𝑐 ∈ (𝐶‘(𝑃 − 1))(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))) = ((((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))))) + Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))))))
14433, 75sselid 3980 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐷𝑗) ∈ ℕ0)
145144faccld 14251 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐷𝑗)) ∈ ℕ)
146145nncnd 12235 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐷𝑗)) ∈ ℂ)
14777fveq2d 6895 . . . . . . . . . 10 (𝑗 = 0 → (!‘(𝐷𝑗)) = (!‘(𝐷‘0)))
14873, 146, 147fprod1p 15919 . . . . . . . . 9 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗)) = ((!‘(𝐷‘0)) · ∏𝑗 ∈ ((0 + 1)...𝑀)(!‘(𝐷𝑗))))
14984fveq2d 6895 . . . . . . . . . 10 (𝜑 → (!‘(𝐷‘0)) = (!‘(𝑃 − 1)))
15086prodeq1i 15869 . . . . . . . . . . . 12 𝑗 ∈ ((0 + 1)...𝑀)(!‘(𝐷𝑗)) = ∏𝑗 ∈ (1...𝑀)(!‘(𝐷𝑗))
151150a1i 11 . . . . . . . . . . 11 (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)(!‘(𝐷𝑗)) = ∏𝑗 ∈ (1...𝑀)(!‘(𝐷𝑗)))
152103fveq2d 6895 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (!‘(𝐷𝑗)) = (!‘0))
153 fac0 14243 . . . . . . . . . . . . 13 (!‘0) = 1
154152, 153eqtrdi 2787 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (!‘(𝐷𝑗)) = 1)
155154prodeq2dv 15874 . . . . . . . . . . 11 (𝜑 → ∏𝑗 ∈ (1...𝑀)(!‘(𝐷𝑗)) = ∏𝑗 ∈ (1...𝑀)1)
156 prod1 15895 . . . . . . . . . . . 12 (((1...𝑀) ⊆ (ℤ𝐴) ∨ (1...𝑀) ∈ Fin) → ∏𝑗 ∈ (1...𝑀)1 = 1)
157106, 156mp1i 13 . . . . . . . . . . 11 (𝜑 → ∏𝑗 ∈ (1...𝑀)1 = 1)
158151, 155, 1573eqtrd 2775 . . . . . . . . . 10 (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)(!‘(𝐷𝑗)) = 1)
159149, 158oveq12d 7430 . . . . . . . . 9 (𝜑 → ((!‘(𝐷‘0)) · ∏𝑗 ∈ ((0 + 1)...𝑀)(!‘(𝐷𝑗))) = ((!‘(𝑃 − 1)) · 1))
16012faccld 14251 . . . . . . . . . . 11 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
161160nncnd 12235 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
162161mulridd 11238 . . . . . . . . 9 (𝜑 → ((!‘(𝑃 − 1)) · 1) = (!‘(𝑃 − 1)))
163148, 159, 1623eqtrd 2775 . . . . . . . 8 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗)) = (!‘(𝑃 − 1)))
164163oveq2d 7428 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) = ((!‘(𝑃 − 1)) / (!‘(𝑃 − 1))))
165160nnne0d 12269 . . . . . . . 8 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
166161, 165dividd 11995 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) / (!‘(𝑃 − 1))) = 1)
167164, 166eqtrd 2771 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) = 1)
16812nn0red 12540 . . . . . . . . . . . . 13 (𝜑 → (𝑃 − 1) ∈ ℝ)
16984, 168eqeltrd 2832 . . . . . . . . . . . 12 (𝜑 → (𝐷‘0) ∈ ℝ)
170169, 168lttri3d 11361 . . . . . . . . . . 11 (𝜑 → ((𝐷‘0) = (𝑃 − 1) ↔ (¬ (𝐷‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐷‘0))))
17184, 170mpbid 231 . . . . . . . . . 10 (𝜑 → (¬ (𝐷‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐷‘0)))
172171simprd 495 . . . . . . . . 9 (𝜑 → ¬ (𝑃 − 1) < (𝐷‘0))
173172iffalsed 4539 . . . . . . . 8 (𝜑 → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0)))))
17484eqcomd 2737 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) = (𝐷‘0))
175113, 174subeq0bd 11647 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 − 1) − (𝐷‘0)) = 0)
176175fveq2d 6895 . . . . . . . . . . . 12 (𝜑 → (!‘((𝑃 − 1) − (𝐷‘0))) = (!‘0))
177176, 153eqtrdi 2787 . . . . . . . . . . 11 (𝜑 → (!‘((𝑃 − 1) − (𝐷‘0))) = 1)
178177oveq2d 7428 . . . . . . . . . 10 (𝜑 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) = ((!‘(𝑃 − 1)) / 1))
179161div1d 11989 . . . . . . . . . 10 (𝜑 → ((!‘(𝑃 − 1)) / 1) = (!‘(𝑃 − 1)))
180178, 179eqtrd 2771 . . . . . . . . 9 (𝜑 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) = (!‘(𝑃 − 1)))
181175oveq2d 7428 . . . . . . . . . 10 (𝜑 → (0↑((𝑃 − 1) − (𝐷‘0))) = (0↑0))
182 0cnd 11214 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
183182exp0d 14112 . . . . . . . . . 10 (𝜑 → (0↑0) = 1)
184181, 183eqtrd 2771 . . . . . . . . 9 (𝜑 → (0↑((𝑃 − 1) − (𝐷‘0))) = 1)
185180, 184oveq12d 7430 . . . . . . . 8 (𝜑 → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0)))) = ((!‘(𝑃 − 1)) · 1))
186173, 185, 1623eqtrd 2775 . . . . . . 7 (𝜑 → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) = (!‘(𝑃 − 1)))
187 fzssre 44486 . . . . . . . . . . . 12 (0...(𝑃 − 1)) ⊆ ℝ
18868adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐷:(0...𝑀)⟶(0...(𝑃 − 1)))
18951adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
190188, 189ffvelcdmd 7087 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐷𝑗) ∈ (0...(𝑃 − 1)))
191187, 190sselid 3980 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐷𝑗) ∈ ℝ)
1928nnred 12234 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℝ)
193192adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℝ)
1948nngt0d 12268 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑃)
19515, 192, 194ltled 11369 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 𝑃)
196195adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → 0 ≤ 𝑃)
197103, 196eqbrtrd 5170 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐷𝑗) ≤ 𝑃)
198191, 193, 197lensymd 11372 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → ¬ 𝑃 < (𝐷𝑗))
199198iffalsed 4539 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))) = (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗)))))
200103oveq2d 7428 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → (𝑃 − (𝐷𝑗)) = (𝑃 − 0))
201111adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℂ)
202201subid1d 11567 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → (𝑃 − 0) = 𝑃)
203200, 202eqtrd 2771 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (𝑃 − (𝐷𝑗)) = 𝑃)
204203fveq2d 6895 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (!‘(𝑃 − (𝐷𝑗))) = (!‘𝑃))
205204oveq2d 7428 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) = ((!‘𝑃) / (!‘𝑃)))
2068nnnn0d 12539 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℕ0)
207206faccld 14251 . . . . . . . . . . . . . 14 (𝜑 → (!‘𝑃) ∈ ℕ)
208207nncnd 12235 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑃) ∈ ℂ)
209207nnne0d 12269 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑃) ≠ 0)
210208, 209dividd 11995 . . . . . . . . . . . 12 (𝜑 → ((!‘𝑃) / (!‘𝑃)) = 1)
211210adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((!‘𝑃) / (!‘𝑃)) = 1)
212205, 211eqtrd 2771 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → ((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) = 1)
213 df-neg 11454 . . . . . . . . . . . . 13 -𝑗 = (0 − 𝑗)
214213eqcomi 2740 . . . . . . . . . . . 12 (0 − 𝑗) = -𝑗
215214a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (0 − 𝑗) = -𝑗)
216215, 203oveq12d 7430 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))) = (-𝑗𝑃))
217212, 216oveq12d 7430 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗)))) = (1 · (-𝑗𝑃)))
21893znegcld 12675 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → -𝑗 ∈ ℤ)
219218zcnd 12674 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → -𝑗 ∈ ℂ)
220219adantl 481 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → -𝑗 ∈ ℂ)
221206adantr 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ0)
222220, 221expcld 14118 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (-𝑗𝑃) ∈ ℂ)
223222mullidd 11239 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (1 · (-𝑗𝑃)) = (-𝑗𝑃))
224199, 217, 2233eqtrd 2775 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))) = (-𝑗𝑃))
225224prodeq2dv 15874 . . . . . . 7 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))) = ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃))
226186, 225oveq12d 7430 . . . . . 6 (𝜑 → (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗)))))) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃)))
227167, 226oveq12d 7430 . . . . 5 (𝜑 → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))))) = (1 · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃))))
228 fzfid 13945 . . . . . . . . 9 (𝜑 → (1...𝑀) ∈ Fin)
229 zexpcl 14049 . . . . . . . . . 10 ((-𝑗 ∈ ℤ ∧ 𝑃 ∈ ℕ0) → (-𝑗𝑃) ∈ ℤ)
230218, 206, 229syl2anr 596 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (-𝑗𝑃) ∈ ℤ)
231228, 230fprodzcl 15905 . . . . . . . 8 (𝜑 → ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃) ∈ ℤ)
232231zcnd 12674 . . . . . . 7 (𝜑 → ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃) ∈ ℂ)
233161, 232mulcld 11241 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃)) ∈ ℂ)
234233mullidd 11239 . . . . 5 (𝜑 → (1 · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃))) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃)))
235227, 234eqtrd 2771 . . . 4 (𝜑 → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))))) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃)))
236 eldifi 4126 . . . . . . . . . . . . . . 15 (𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) → 𝑐 ∈ (𝐶‘(𝑃 − 1)))
23783adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 0 ∈ (0...𝑀))
23844, 237ffvelcdmd 7087 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (𝑐‘0) ∈ (0...(𝑃 − 1)))
239236, 238sylan2 592 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑐‘0) ∈ (0...(𝑃 − 1)))
240187, 239sselid 3980 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑐‘0) ∈ ℝ)
241168adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑃 − 1) ∈ ℝ)
242 elfzle2 13512 . . . . . . . . . . . . . 14 ((𝑐‘0) ∈ (0...(𝑃 − 1)) → (𝑐‘0) ≤ (𝑃 − 1))
243239, 242syl 17 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑐‘0) ≤ (𝑃 − 1))
244240, 241, 243lensymd 11372 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ¬ (𝑃 − 1) < (𝑐‘0))
245244iffalsed 4539 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0)))))
24612nn0zd 12591 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃 − 1) ∈ ℤ)
247246adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑃 − 1) ∈ ℤ)
248239elfzelzd 13509 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑐‘0) ∈ ℤ)
249247, 248zsubcld 12678 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((𝑃 − 1) − (𝑐‘0)) ∈ ℤ)
25044ffnd 6718 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐 Fn (0...𝑀))
251250adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) → 𝑐 Fn (0...𝑀))
25268ffnd 6718 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐷 Fn (0...𝑀))
253252ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) → 𝐷 Fn (0...𝑀))
254 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 0 → (𝑐𝑗) = (𝑐‘0))
255254adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 = 0) → (𝑐𝑗) = (𝑐‘0))
256 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 − 1) = (𝑐‘0) → (𝑃 − 1) = (𝑐‘0))
257256eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 − 1) = (𝑐‘0) → (𝑐‘0) = (𝑃 − 1))
258257ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 = 0) → (𝑐‘0) = (𝑃 − 1))
25977adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 = 0) → (𝐷𝑗) = (𝐷‘0))
26084adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 = 0) → (𝐷‘0) = (𝑃 − 1))
261259, 260eqtr2d 2772 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 = 0) → (𝑃 − 1) = (𝐷𝑗))
262261adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 = 0) → (𝑃 − 1) = (𝐷𝑗))
263255, 258, 2623eqtrd 2775 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 = 0) → (𝑐𝑗) = (𝐷𝑗))
264263adantllr 716 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 = 0) → (𝑐𝑗) = (𝐷𝑗))
265264adantlr 712 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 = 0) → (𝑐𝑗) = (𝐷𝑗))
26626ad4antr 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1))
267168ad5antr 731 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑃 − 1) ∈ ℝ)
268168ad4antr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑃 − 1) ∈ ℝ)
26944adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (1...𝑀)) → 𝑐:(0...𝑀)⟶(0...(𝑃 − 1)))
27050sseli 3978 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ (0...𝑀))
271270adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ (0...𝑀))
272269, 271ffvelcdmd 7087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (1...𝑀)) → (𝑐𝑘) ∈ (0...(𝑃 − 1)))
27333, 272sselid 3980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (1...𝑀)) → (𝑐𝑘) ∈ ℕ0)
27447, 273fsumnn0cl 15689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → Σ𝑘 ∈ (1...𝑀)(𝑐𝑘) ∈ ℕ0)
275274nn0red 12540 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → Σ𝑘 ∈ (1...𝑀)(𝑐𝑘) ∈ ℝ)
276275ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → Σ𝑘 ∈ (1...𝑀)(𝑐𝑘) ∈ ℝ)
277 0red 11224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → 0 ∈ ℝ)
27844ffvelcdmda 7086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...(𝑃 − 1)))
279187, 278sselid 3980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℝ)
280279ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑐𝑗) ∈ ℝ)
281 nfv 1916 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑘((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0)
282 nfcv 2902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑘(𝑐𝑗)
283 fzfid 13945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (1...𝑀) ∈ Fin)
284 simp-4l 780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) ∧ 𝑘 ∈ (1...𝑀)) → (𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))))
28574, 272sselid 3980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (1...𝑀)) → (𝑐𝑘) ∈ ℂ)
286284, 285sylancom 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) ∧ 𝑘 ∈ (1...𝑀)) → (𝑐𝑘) ∈ ℂ)
287 1zzd 12600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 1 ∈ ℤ)
288 elfzel2 13506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
289288adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑀 ∈ ℤ)
290 elfzelz 13508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
291290adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗 ∈ ℤ)
292 elfznn0 13601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
293292adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗 ∈ ℕ0)
294 neqne 2947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 𝑗 = 0 → 𝑗 ≠ 0)
295294adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗 ≠ 0)
296 elnnne0 12493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑗 ∈ ℕ ↔ (𝑗 ∈ ℕ0𝑗 ≠ 0))
297293, 295, 296sylanbrc 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗 ∈ ℕ)
298297nnge1d 12267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 1 ≤ 𝑗)
299 elfzle2 13512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
300299adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗𝑀)
301287, 289, 291, 298, 300elfzd 13499 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗 ∈ (1...𝑀))
302301adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → 𝑗 ∈ (1...𝑀))
303302adantlll 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → 𝑗 ∈ (1...𝑀))
304 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑘 = 𝑗 → (𝑐𝑘) = (𝑐𝑗))
305281, 282, 283, 286, 303, 304fsumsplit1 15698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → Σ𝑘 ∈ (1...𝑀)(𝑐𝑘) = ((𝑐𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘)))
306305eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → ((𝑐𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘)) = Σ𝑘 ∈ (1...𝑀)(𝑐𝑘))
307306, 276eqeltrd 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → ((𝑐𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘)) ∈ ℝ)
308 elfzle1 13511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐𝑗) ∈ (0...(𝑃 − 1)) → 0 ≤ (𝑐𝑗))
309278, 308syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → 0 ≤ (𝑐𝑗))
310309ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → 0 ≤ (𝑐𝑗))
311 neqne 2947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (¬ (𝑐𝑗) = 0 → (𝑐𝑗) ≠ 0)
312311adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑐𝑗) ≠ 0)
313277, 280, 310, 312leneltd 11375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → 0 < (𝑐𝑗))
314 diffi 9185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((1...𝑀) ∈ Fin → ((1...𝑀) ∖ {𝑗}) ∈ Fin)
315105, 314mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → ((1...𝑀) ∖ {𝑗}) ∈ Fin)
316 eldifi 4126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑘 ∈ ((1...𝑀) ∖ {𝑗}) → 𝑘 ∈ (1...𝑀))
317316adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ ((1...𝑀) ∖ {𝑗})) → 𝑘 ∈ (1...𝑀))
31850, 317sselid 3980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ ((1...𝑀) ∖ {𝑗})) → 𝑘 ∈ (0...𝑀))
31944ffvelcdmda 7086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ (0...(𝑃 − 1)))
320187, 319sselid 3980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℝ)
321318, 320syldan 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ ((1...𝑀) ∖ {𝑗})) → (𝑐𝑘) ∈ ℝ)
322 elfzle1 13511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑐𝑘) ∈ (0...(𝑃 − 1)) → 0 ≤ (𝑐𝑘))
323319, 322syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (0...𝑀)) → 0 ≤ (𝑐𝑘))
324318, 323syldan 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ ((1...𝑀) ∖ {𝑗})) → 0 ≤ (𝑐𝑘))
325315, 321, 324fsumge0 15748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 0 ≤ Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘))
326325adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → 0 ≤ Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘))
327315, 321fsumrecl 15687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘) ∈ ℝ)
328327adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘) ∈ ℝ)
329279, 328addge01d 11809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → (0 ≤ Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘) ↔ (𝑐𝑗) ≤ ((𝑐𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘))))
330326, 329mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ≤ ((𝑐𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘)))
331330ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑐𝑗) ≤ ((𝑐𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘)))
332277, 280, 307, 313, 331ltletrd 11381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → 0 < ((𝑐𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘)))
333332, 306breqtrd 5174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → 0 < Σ𝑘 ∈ (1...𝑀)(𝑐𝑘))
334276, 333elrpd 13020 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → Σ𝑘 ∈ (1...𝑀)(𝑐𝑘) ∈ ℝ+)
335268, 334ltaddrpd 13056 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑃 − 1) < ((𝑃 − 1) + Σ𝑘 ∈ (1...𝑀)(𝑐𝑘)))
336335adantl3r 747 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑃 − 1) < ((𝑃 − 1) + Σ𝑘 ∈ (1...𝑀)(𝑐𝑘)))
337 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = 𝑘 → (𝑐𝑗) = (𝑐𝑘))
338337cbvsumv 15649 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘)
339338a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘))
34073ad5antr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → 𝑀 ∈ (ℤ‘0))
341 simp-5l 782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) ∧ 𝑘 ∈ (0...𝑀)) → (𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))))
34274, 319sselid 3980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℂ)
343341, 342sylancom 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℂ)
344 fveq2 6891 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 = 0 → (𝑐𝑘) = (𝑐‘0))
345340, 343, 344fsum1p 15706 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = ((𝑐‘0) + Σ𝑘 ∈ ((0 + 1)...𝑀)(𝑐𝑘)))
346257ad4antlr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑐‘0) = (𝑃 − 1))
34786sumeq1i 15651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Σ𝑘 ∈ ((0 + 1)...𝑀)(𝑐𝑘) = Σ𝑘 ∈ (1...𝑀)(𝑐𝑘)
348347a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → Σ𝑘 ∈ ((0 + 1)...𝑀)(𝑐𝑘) = Σ𝑘 ∈ (1...𝑀)(𝑐𝑘))
349346, 348oveq12d 7430 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → ((𝑐‘0) + Σ𝑘 ∈ ((0 + 1)...𝑀)(𝑐𝑘)) = ((𝑃 − 1) + Σ𝑘 ∈ (1...𝑀)(𝑐𝑘)))
350339, 345, 3493eqtrrd 2776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → ((𝑃 − 1) + Σ𝑘 ∈ (1...𝑀)(𝑐𝑘)) = Σ𝑗 ∈ (0...𝑀)(𝑐𝑗))
351336, 350breqtrd 5174 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑃 − 1) < Σ𝑗 ∈ (0...𝑀)(𝑐𝑗))
352267, 351gtned 11356 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) ≠ (𝑃 − 1))
353352neneqd 2944 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → ¬ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1))
354266, 353condan 815 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → (𝑐𝑗) = 0)
355 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
35633, 66sselid 3980 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 0) ∈ ℕ0)
35767fvmpt2 7009 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ if(𝑗 = 0, (𝑃 − 1), 0) ∈ ℕ0) → (𝐷𝑗) = if(𝑗 = 0, (𝑃 − 1), 0))
358355, 356, 357syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐷𝑗) = if(𝑗 = 0, (𝑃 − 1), 0))
359358adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → (𝐷𝑗) = if(𝑗 = 0, (𝑃 − 1), 0))
360 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → ¬ 𝑗 = 0)
361360iffalsed 4539 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → if(𝑗 = 0, (𝑃 − 1), 0) = 0)
362359, 361eqtr2d 2772 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → 0 = (𝐷𝑗))
363362adantllr 716 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → 0 = (𝐷𝑗))
364363adantllr 716 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → 0 = (𝐷𝑗))
365354, 364eqtrd 2771 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → (𝑐𝑗) = (𝐷𝑗))
366265, 365pm2.61dan 810 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) = (𝐷𝑗))
367251, 253, 366eqfnfvd 7035 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) → 𝑐 = 𝐷)
368236, 367sylanl2 678 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) ∧ (𝑃 − 1) = (𝑐‘0)) → 𝑐 = 𝐷)
369 eldifsni 4793 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) → 𝑐𝐷)
370369neneqd 2944 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) → ¬ 𝑐 = 𝐷)
371370ad2antlr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) ∧ (𝑃 − 1) = (𝑐‘0)) → ¬ 𝑐 = 𝐷)
372368, 371pm2.65da 814 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ¬ (𝑃 − 1) = (𝑐‘0))
373372neqned 2946 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑃 − 1) ≠ (𝑐‘0))
374240, 241, 243, 373leneltd 11375 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑐‘0) < (𝑃 − 1))
375240, 241posdifd 11808 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((𝑐‘0) < (𝑃 − 1) ↔ 0 < ((𝑃 − 1) − (𝑐‘0))))
376374, 375mpbid 231 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → 0 < ((𝑃 − 1) − (𝑐‘0)))
377 elnnz 12575 . . . . . . . . . . . . . 14 (((𝑃 − 1) − (𝑐‘0)) ∈ ℕ ↔ (((𝑃 − 1) − (𝑐‘0)) ∈ ℤ ∧ 0 < ((𝑃 − 1) − (𝑐‘0))))
378249, 376, 377sylanbrc 582 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((𝑃 − 1) − (𝑐‘0)) ∈ ℕ)
3793780expd 14111 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (0↑((𝑃 − 1) − (𝑐‘0))) = 0)
380379oveq2d 7428 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · 0))
381161adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (!‘(𝑃 − 1)) ∈ ℂ)
382378nnnn0d 12539 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((𝑃 − 1) − (𝑐‘0)) ∈ ℕ0)
383382faccld 14251 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (!‘((𝑃 − 1) − (𝑐‘0))) ∈ ℕ)
384383nncnd 12235 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (!‘((𝑃 − 1) − (𝑐‘0))) ∈ ℂ)
385383nnne0d 12269 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (!‘((𝑃 − 1) − (𝑐‘0))) ≠ 0)
386381, 384, 385divcld 11997 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) ∈ ℂ)
387386mul01d 11420 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · 0) = 0)
388245, 380, 3873eqtrd 2775 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) = 0)
389388oveq1d 7427 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))) = (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))))
390236, 55sylan2 592 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℤ)
391390zcnd 12674 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℂ)
392391mul02d 11419 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))) = 0)
393389, 392eqtrd 2771 . . . . . . . 8 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))) = 0)
394393oveq2d 7428 . . . . . . 7 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))) = (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · 0))
395 fzfid 13945 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (0...𝑀) ∈ Fin)
39633, 278sselid 3980 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℕ0)
397236, 396sylanl2 678 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℕ0)
398397faccld 14251 . . . . . . . . . . 11 (((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℕ)
399395, 398fprodnncl 15906 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ∈ ℕ)
400399nncnd 12235 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ∈ ℂ)
401399nnne0d 12269 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ≠ 0)
402381, 400, 401divcld 11997 . . . . . . . 8 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℂ)
403402mul01d 11420 . . . . . . 7 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · 0) = 0)
404394, 403eqtrd 2771 . . . . . 6 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))) = 0)
405404sumeq2dv 15656 . . . . 5 (𝜑 → Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))) = Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})0)
406 diffi 9185 . . . . . . . 8 ((𝐶‘(𝑃 − 1)) ∈ Fin → ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ∈ Fin)
40719, 406syl 17 . . . . . . 7 (𝜑 → ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ∈ Fin)
408407olcd 871 . . . . . 6 (𝜑 → (((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ⊆ (ℤ‘0) ∨ ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ∈ Fin))
409 sumz 15675 . . . . . 6 ((((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ⊆ (ℤ‘0) ∨ ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ∈ Fin) → Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})0 = 0)
410408, 409syl 17 . . . . 5 (𝜑 → Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})0 = 0)
411405, 410eqtrd 2771 . . . 4 (𝜑 → Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))) = 0)
412235, 411oveq12d 7430 . . 3 (𝜑 → ((((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))))) + Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))))) = (((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃)) + 0))
413233addridd 11421 . . 3 (𝜑 → (((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃)) + 0) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃)))
414 nfv 1916 . . . . 5 𝑗𝜑
415414, 206, 228, 220fprodexp 44772 . . . 4 (𝜑 → ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃) = (∏𝑗 ∈ (1...𝑀)-𝑗𝑃))
416415oveq2d 7428 . . 3 (𝜑 → ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃)) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
417412, 413, 4163eqtrd 2775 . 2 (𝜑 → ((((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))))) + Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))))) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
41816, 143, 4173eqtrd 2775 1 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844   = wceq 1540  wcel 2105  wne 2939  {crab 3431  Vcvv 3473  cdif 3945  wss 3948  ifcif 4528  {csn 4628  {cpr 4630   class class class wbr 5148  cmpt 5231  ran crn 5677   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7412  m cmap 8826  Fincfn 8945  cc 11114  cr 11115  0cc0 11116  1c1 11117   + caddc 11119   · cmul 11121   < clt 11255  cle 11256  cmin 11451  -cneg 11452   / cdiv 11878  cn 12219  0cn0 12479  cz 12565  cuz 12829  (,)cioo 13331  ...cfz 13491  cexp 14034  !cfa 14240  Σcsu 15639  cprod 15856  t crest 17373  TopOpenctopn 17374  topGenctg 17390  fldccnfld 21234   D𝑛 cdvn 25714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-seq 13974  df-exp 14035  df-fac 14241  df-bc 14270  df-hash 14298  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-clim 15439  df-sum 15640  df-prod 15857  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-rest 17375  df-topn 17376  df-0g 17394  df-gsum 17395  df-topgen 17396  df-pt 17397  df-prds 17400  df-xrs 17455  df-qtop 17460  df-imas 17461  df-xps 17463  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-mulg 18994  df-cntz 19229  df-cmn 19698  df-psmet 21226  df-xmet 21227  df-met 21228  df-bl 21229  df-mopn 21230  df-fbas 21231  df-fg 21232  df-cnfld 21235  df-top 22717  df-topon 22734  df-topsp 22756  df-bases 22770  df-cld 22844  df-ntr 22845  df-cls 22846  df-nei 22923  df-lp 22961  df-perf 22962  df-cn 23052  df-cnp 23053  df-haus 23140  df-tx 23387  df-hmeo 23580  df-fil 23671  df-fm 23763  df-flim 23764  df-flf 23765  df-xms 24147  df-ms 24148  df-tms 24149  df-cncf 24719  df-limc 25716  df-dv 25717  df-dvn 25718
This theorem is referenced by:  etransclem41  45453
  Copyright terms: Public domain W3C validator