Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem35 Structured version   Visualization version   GIF version

Theorem etransclem35 42574
Description: 𝑃 does not divide the P-1 -th derivative of 𝐹 applied to 0. This is case 2 of the proof in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem35.p (𝜑𝑃 ∈ ℕ)
etransclem35.m (𝜑𝑀 ∈ ℕ0)
etransclem35.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem35.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem35.d 𝐷 = (𝑗 ∈ (0...𝑀) ↦ if(𝑗 = 0, (𝑃 − 1), 0))
Assertion
Ref Expression
etransclem35 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑥   𝐷,𝑐,𝑗   𝑀,𝑐,𝑗,𝑛,𝑥   𝑃,𝑐,𝑗,𝑛,𝑥   𝜑,𝑐,𝑗,𝑛,𝑥
Allowed substitution hints:   𝐶(𝑛)   𝐷(𝑥,𝑛)   𝐹(𝑥,𝑗,𝑛,𝑐)

Proof of Theorem etransclem35
Dummy variables 𝐴 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reelprrecn 10629 . . . 4 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
3 reopn 41575 . . . . 5 ℝ ∈ (topGen‘ran (,))
4 eqid 2821 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
54tgioo2 23411 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
63, 5eleqtri 2911 . . . 4 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
76a1i 11 . . 3 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
8 etransclem35.p . . 3 (𝜑𝑃 ∈ ℕ)
9 etransclem35.m . . 3 (𝜑𝑀 ∈ ℕ0)
10 etransclem35.f . . 3 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
11 nnm1nn0 11939 . . . 4 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
128, 11syl 17 . . 3 (𝜑 → (𝑃 − 1) ∈ ℕ0)
13 etransclem5 42544 . . 3 (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
14 etransclem35.c . . 3 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
15 0red 10644 . . 3 (𝜑 → 0 ∈ ℝ)
162, 7, 8, 9, 10, 12, 13, 14, 15etransclem31 42570 . 2 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) = Σ𝑐 ∈ (𝐶‘(𝑃 − 1))(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))))
17 nfv 1915 . . 3 𝑐𝜑
18 nfcv 2977 . . 3 𝑐(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗)))))))
1914, 12etransclem16 42555 . . 3 (𝜑 → (𝐶‘(𝑃 − 1)) ∈ Fin)
20 simpr 487 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐 ∈ (𝐶‘(𝑃 − 1)))
2114, 12etransclem12 42551 . . . . . . . . . . . . . 14 (𝜑 → (𝐶‘(𝑃 − 1)) = {𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1)})
2221adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (𝐶‘(𝑃 − 1)) = {𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1)})
2320, 22eleqtrd 2915 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐 ∈ {𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1)})
24 rabid 3378 . . . . . . . . . . . 12 (𝑐 ∈ {𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1)} ↔ (𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1)))
2523, 24sylib 220 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1)))
2625simprd 498 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1))
2726eqcomd 2827 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (𝑃 − 1) = Σ𝑗 ∈ (0...𝑀)(𝑐𝑗))
2827fveq2d 6674 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (!‘(𝑃 − 1)) = (!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)))
2928oveq1d 7171 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))))
30 nfcv 2977 . . . . . . . 8 𝑗𝑐
31 fzfid 13342 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (0...𝑀) ∈ Fin)
32 nn0ex 11904 . . . . . . . . . 10 0 ∈ V
33 fzssnn0 41605 . . . . . . . . . 10 (0...(𝑃 − 1)) ⊆ ℕ0
34 mapss 8453 . . . . . . . . . 10 ((ℕ0 ∈ V ∧ (0...(𝑃 − 1)) ⊆ ℕ0) → ((0...(𝑃 − 1)) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀)))
3532, 33, 34mp2an 690 . . . . . . . . 9 ((0...(𝑃 − 1)) ↑m (0...𝑀)) ⊆ (ℕ0m (0...𝑀))
3625simpld 497 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)))
3735, 36sseldi 3965 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐 ∈ (ℕ0m (0...𝑀)))
3830, 31, 37mccl 41899 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℕ)
3929, 38eqeltrd 2913 . . . . . 6 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℕ)
4039nnzd 12087 . . . . 5 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℤ)
418adantr 483 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑃 ∈ ℕ)
429adantr 483 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑀 ∈ ℕ0)
43 elmapi 8428 . . . . . . . 8 (𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...(𝑃 − 1)))
4436, 43syl 17 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐:(0...𝑀)⟶(0...(𝑃 − 1)))
45 0zd 11994 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 0 ∈ ℤ)
4641, 42, 44, 45etransclem10 42549 . . . . . 6 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ∈ ℤ)
47 fzfid 13342 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (1...𝑀) ∈ Fin)
488ad2antrr 724 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ)
4944adantr 483 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (1...𝑀)) → 𝑐:(0...𝑀)⟶(0...(𝑃 − 1)))
50 fz1ssfz0 13004 . . . . . . . . . 10 (1...𝑀) ⊆ (0...𝑀)
5150sseli 3963 . . . . . . . . 9 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
5251adantl 484 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
53 0zd 11994 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (1...𝑀)) → 0 ∈ ℤ)
5448, 49, 52, 53etransclem3 42542 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℤ)
5547, 54fprodzcl 15308 . . . . . 6 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℤ)
5646, 55zmulcld 12094 . . . . 5 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))) ∈ ℤ)
5740, 56zmulcld 12094 . . . 4 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ)
5857zcnd 12089 . . 3 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℂ)
59 nn0uz 12281 . . . . . . . . . . 11 0 = (ℤ‘0)
6012, 59eleqtrdi 2923 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ (ℤ‘0))
61 eluzfz2 12916 . . . . . . . . . 10 ((𝑃 − 1) ∈ (ℤ‘0) → (𝑃 − 1) ∈ (0...(𝑃 − 1)))
6260, 61syl 17 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ (0...(𝑃 − 1)))
63 eluzfz1 12915 . . . . . . . . . 10 ((𝑃 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑃 − 1)))
6460, 63syl 17 . . . . . . . . 9 (𝜑 → 0 ∈ (0...(𝑃 − 1)))
6562, 64ifcld 4512 . . . . . . . 8 (𝜑 → if(𝑗 = 0, (𝑃 − 1), 0) ∈ (0...(𝑃 − 1)))
6665adantr 483 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 0) ∈ (0...(𝑃 − 1)))
67 etransclem35.d . . . . . . 7 𝐷 = (𝑗 ∈ (0...𝑀) ↦ if(𝑗 = 0, (𝑃 − 1), 0))
6866, 67fmptd 6878 . . . . . 6 (𝜑𝐷:(0...𝑀)⟶(0...(𝑃 − 1)))
69 ovex 7189 . . . . . . 7 (0...(𝑃 − 1)) ∈ V
70 ovex 7189 . . . . . . 7 (0...𝑀) ∈ V
7169, 70elmap 8435 . . . . . 6 (𝐷 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ↔ 𝐷:(0...𝑀)⟶(0...(𝑃 − 1)))
7268, 71sylibr 236 . . . . 5 (𝜑𝐷 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)))
739, 59eleqtrdi 2923 . . . . . . 7 (𝜑𝑀 ∈ (ℤ‘0))
74 fzsscn 41598 . . . . . . . 8 (0...(𝑃 − 1)) ⊆ ℂ
7568ffvelrnda 6851 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐷𝑗) ∈ (0...(𝑃 − 1)))
7674, 75sseldi 3965 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐷𝑗) ∈ ℂ)
77 fveq2 6670 . . . . . . 7 (𝑗 = 0 → (𝐷𝑗) = (𝐷‘0))
7873, 76, 77fsum1p 15108 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = ((𝐷‘0) + Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷𝑗)))
7967a1i 11 . . . . . . . 8 (𝜑𝐷 = (𝑗 ∈ (0...𝑀) ↦ if(𝑗 = 0, (𝑃 − 1), 0)))
80 simpr 487 . . . . . . . . 9 ((𝜑𝑗 = 0) → 𝑗 = 0)
8180iftrued 4475 . . . . . . . 8 ((𝜑𝑗 = 0) → if(𝑗 = 0, (𝑃 − 1), 0) = (𝑃 − 1))
82 eluzfz1 12915 . . . . . . . . 9 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
8373, 82syl 17 . . . . . . . 8 (𝜑 → 0 ∈ (0...𝑀))
8479, 81, 83, 12fvmptd 6775 . . . . . . 7 (𝜑 → (𝐷‘0) = (𝑃 − 1))
85 0p1e1 11760 . . . . . . . . . . 11 (0 + 1) = 1
8685oveq1i 7166 . . . . . . . . . 10 ((0 + 1)...𝑀) = (1...𝑀)
8786sumeq1i 15055 . . . . . . . . 9 Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷𝑗) = Σ𝑗 ∈ (1...𝑀)(𝐷𝑗)
8887a1i 11 . . . . . . . 8 (𝜑 → Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷𝑗) = Σ𝑗 ∈ (1...𝑀)(𝐷𝑗))
8967fvmpt2 6779 . . . . . . . . . . 11 ((𝑗 ∈ (0...𝑀) ∧ if(𝑗 = 0, (𝑃 − 1), 0) ∈ (0...(𝑃 − 1))) → (𝐷𝑗) = if(𝑗 = 0, (𝑃 − 1), 0))
9051, 65, 89syl2anr 598 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐷𝑗) = if(𝑗 = 0, (𝑃 − 1), 0))
91 0red 10644 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ)
92 1red 10642 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ)
93 elfzelz 12909 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
9493zred 12088 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ)
95 0lt1 11162 . . . . . . . . . . . . . . . 16 0 < 1
9695a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → 0 < 1)
97 elfzle1 12911 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗)
9891, 92, 94, 96, 97ltletrd 10800 . . . . . . . . . . . . . 14 (𝑗 ∈ (1...𝑀) → 0 < 𝑗)
9991, 98gtned 10775 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → 𝑗 ≠ 0)
10099neneqd 3021 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → ¬ 𝑗 = 0)
101100iffalsed 4478 . . . . . . . . . . 11 (𝑗 ∈ (1...𝑀) → if(𝑗 = 0, (𝑃 − 1), 0) = 0)
102101adantl 484 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 0) = 0)
10390, 102eqtrd 2856 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐷𝑗) = 0)
104103sumeq2dv 15060 . . . . . . . 8 (𝜑 → Σ𝑗 ∈ (1...𝑀)(𝐷𝑗) = Σ𝑗 ∈ (1...𝑀)0)
105 fzfi 13341 . . . . . . . . . 10 (1...𝑀) ∈ Fin
106105olci 862 . . . . . . . . 9 ((1...𝑀) ⊆ (ℤ𝐴) ∨ (1...𝑀) ∈ Fin)
107 sumz 15079 . . . . . . . . 9 (((1...𝑀) ⊆ (ℤ𝐴) ∨ (1...𝑀) ∈ Fin) → Σ𝑗 ∈ (1...𝑀)0 = 0)
108106, 107mp1i 13 . . . . . . . 8 (𝜑 → Σ𝑗 ∈ (1...𝑀)0 = 0)
10988, 104, 1083eqtrd 2860 . . . . . . 7 (𝜑 → Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷𝑗) = 0)
11084, 109oveq12d 7174 . . . . . 6 (𝜑 → ((𝐷‘0) + Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷𝑗)) = ((𝑃 − 1) + 0))
1118nncnd 11654 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
112 1cnd 10636 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
113111, 112subcld 10997 . . . . . . 7 (𝜑 → (𝑃 − 1) ∈ ℂ)
114113addid1d 10840 . . . . . 6 (𝜑 → ((𝑃 − 1) + 0) = (𝑃 − 1))
11578, 110, 1143eqtrd 2860 . . . . 5 (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = (𝑃 − 1))
116 fveq1 6669 . . . . . . . 8 (𝑐 = 𝐷 → (𝑐𝑗) = (𝐷𝑗))
117116sumeq2sdv 15061 . . . . . . 7 (𝑐 = 𝐷 → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
118117eqeq1d 2823 . . . . . 6 (𝑐 = 𝐷 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1) ↔ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = (𝑃 − 1)))
119118elrab 3680 . . . . 5 (𝐷 ∈ {𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1)} ↔ (𝐷 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = (𝑃 − 1)))
12072, 115, 119sylanbrc 585 . . . 4 (𝜑𝐷 ∈ {𝑐 ∈ ((0...(𝑃 − 1)) ↑m (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1)})
121120, 21eleqtrrd 2916 . . 3 (𝜑𝐷 ∈ (𝐶‘(𝑃 − 1)))
122116fveq2d 6674 . . . . . 6 (𝑐 = 𝐷 → (!‘(𝑐𝑗)) = (!‘(𝐷𝑗)))
123122prodeq2ad 41893 . . . . 5 (𝑐 = 𝐷 → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) = ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗)))
124123oveq2d 7172 . . . 4 (𝑐 = 𝐷 → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) = ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))))
125 fveq1 6669 . . . . . . 7 (𝑐 = 𝐷 → (𝑐‘0) = (𝐷‘0))
126125breq2d 5078 . . . . . 6 (𝑐 = 𝐷 → ((𝑃 − 1) < (𝑐‘0) ↔ (𝑃 − 1) < (𝐷‘0)))
127125oveq2d 7172 . . . . . . . . 9 (𝑐 = 𝐷 → ((𝑃 − 1) − (𝑐‘0)) = ((𝑃 − 1) − (𝐷‘0)))
128127fveq2d 6674 . . . . . . . 8 (𝑐 = 𝐷 → (!‘((𝑃 − 1) − (𝑐‘0))) = (!‘((𝑃 − 1) − (𝐷‘0))))
129128oveq2d 7172 . . . . . . 7 (𝑐 = 𝐷 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) = ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))))
130127oveq2d 7172 . . . . . . 7 (𝑐 = 𝐷 → (0↑((𝑃 − 1) − (𝑐‘0))) = (0↑((𝑃 − 1) − (𝐷‘0))))
131129, 130oveq12d 7174 . . . . . 6 (𝑐 = 𝐷 → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0)))))
132126, 131ifbieq2d 4492 . . . . 5 (𝑐 = 𝐷 → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) = if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))))
133116breq2d 5078 . . . . . . 7 (𝑐 = 𝐷 → (𝑃 < (𝑐𝑗) ↔ 𝑃 < (𝐷𝑗)))
134116oveq2d 7172 . . . . . . . . . 10 (𝑐 = 𝐷 → (𝑃 − (𝑐𝑗)) = (𝑃 − (𝐷𝑗)))
135134fveq2d 6674 . . . . . . . . 9 (𝑐 = 𝐷 → (!‘(𝑃 − (𝑐𝑗))) = (!‘(𝑃 − (𝐷𝑗))))
136135oveq2d 7172 . . . . . . . 8 (𝑐 = 𝐷 → ((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))))
137134oveq2d 7172 . . . . . . . 8 (𝑐 = 𝐷 → ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))) = ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))
138136, 137oveq12d 7174 . . . . . . 7 (𝑐 = 𝐷 → (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗)))))
139133, 138ifbieq2d 4492 . . . . . 6 (𝑐 = 𝐷 → if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))) = if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))))
140139prodeq2ad 41893 . . . . 5 (𝑐 = 𝐷 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))))
141132, 140oveq12d 7174 . . . 4 (𝑐 = 𝐷 → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))) = (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗)))))))
142124, 141oveq12d 7174 . . 3 (𝑐 = 𝐷 → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))) = (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))))))
14317, 18, 19, 58, 121, 142fsumsplit1 41873 . 2 (𝜑 → Σ𝑐 ∈ (𝐶‘(𝑃 − 1))(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))) = ((((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))))) + Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))))))
14433, 75sseldi 3965 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐷𝑗) ∈ ℕ0)
145144faccld 13645 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐷𝑗)) ∈ ℕ)
146145nncnd 11654 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (!‘(𝐷𝑗)) ∈ ℂ)
14777fveq2d 6674 . . . . . . . . . 10 (𝑗 = 0 → (!‘(𝐷𝑗)) = (!‘(𝐷‘0)))
14873, 146, 147fprod1p 15322 . . . . . . . . 9 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗)) = ((!‘(𝐷‘0)) · ∏𝑗 ∈ ((0 + 1)...𝑀)(!‘(𝐷𝑗))))
14984fveq2d 6674 . . . . . . . . . 10 (𝜑 → (!‘(𝐷‘0)) = (!‘(𝑃 − 1)))
15086prodeq1i 15272 . . . . . . . . . . . 12 𝑗 ∈ ((0 + 1)...𝑀)(!‘(𝐷𝑗)) = ∏𝑗 ∈ (1...𝑀)(!‘(𝐷𝑗))
151150a1i 11 . . . . . . . . . . 11 (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)(!‘(𝐷𝑗)) = ∏𝑗 ∈ (1...𝑀)(!‘(𝐷𝑗)))
152103fveq2d 6674 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (!‘(𝐷𝑗)) = (!‘0))
153 fac0 13637 . . . . . . . . . . . . 13 (!‘0) = 1
154152, 153syl6eq 2872 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (!‘(𝐷𝑗)) = 1)
155154prodeq2dv 15277 . . . . . . . . . . 11 (𝜑 → ∏𝑗 ∈ (1...𝑀)(!‘(𝐷𝑗)) = ∏𝑗 ∈ (1...𝑀)1)
156 prod1 15298 . . . . . . . . . . . 12 (((1...𝑀) ⊆ (ℤ𝐴) ∨ (1...𝑀) ∈ Fin) → ∏𝑗 ∈ (1...𝑀)1 = 1)
157106, 156mp1i 13 . . . . . . . . . . 11 (𝜑 → ∏𝑗 ∈ (1...𝑀)1 = 1)
158151, 155, 1573eqtrd 2860 . . . . . . . . . 10 (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)(!‘(𝐷𝑗)) = 1)
159149, 158oveq12d 7174 . . . . . . . . 9 (𝜑 → ((!‘(𝐷‘0)) · ∏𝑗 ∈ ((0 + 1)...𝑀)(!‘(𝐷𝑗))) = ((!‘(𝑃 − 1)) · 1))
16012faccld 13645 . . . . . . . . . . 11 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
161160nncnd 11654 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
162161mulid1d 10658 . . . . . . . . 9 (𝜑 → ((!‘(𝑃 − 1)) · 1) = (!‘(𝑃 − 1)))
163148, 159, 1623eqtrd 2860 . . . . . . . 8 (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗)) = (!‘(𝑃 − 1)))
164163oveq2d 7172 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) = ((!‘(𝑃 − 1)) / (!‘(𝑃 − 1))))
165160nnne0d 11688 . . . . . . . 8 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
166161, 165dividd 11414 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) / (!‘(𝑃 − 1))) = 1)
167164, 166eqtrd 2856 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) = 1)
16812nn0red 11957 . . . . . . . . . . . . 13 (𝜑 → (𝑃 − 1) ∈ ℝ)
16984, 168eqeltrd 2913 . . . . . . . . . . . 12 (𝜑 → (𝐷‘0) ∈ ℝ)
170169, 168lttri3d 10780 . . . . . . . . . . 11 (𝜑 → ((𝐷‘0) = (𝑃 − 1) ↔ (¬ (𝐷‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐷‘0))))
17184, 170mpbid 234 . . . . . . . . . 10 (𝜑 → (¬ (𝐷‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐷‘0)))
172171simprd 498 . . . . . . . . 9 (𝜑 → ¬ (𝑃 − 1) < (𝐷‘0))
173172iffalsed 4478 . . . . . . . 8 (𝜑 → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0)))))
17484eqcomd 2827 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) = (𝐷‘0))
175113, 174subeq0bd 11066 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 − 1) − (𝐷‘0)) = 0)
176175fveq2d 6674 . . . . . . . . . . . 12 (𝜑 → (!‘((𝑃 − 1) − (𝐷‘0))) = (!‘0))
177176, 153syl6eq 2872 . . . . . . . . . . 11 (𝜑 → (!‘((𝑃 − 1) − (𝐷‘0))) = 1)
178177oveq2d 7172 . . . . . . . . . 10 (𝜑 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) = ((!‘(𝑃 − 1)) / 1))
179161div1d 11408 . . . . . . . . . 10 (𝜑 → ((!‘(𝑃 − 1)) / 1) = (!‘(𝑃 − 1)))
180178, 179eqtrd 2856 . . . . . . . . 9 (𝜑 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) = (!‘(𝑃 − 1)))
181175oveq2d 7172 . . . . . . . . . 10 (𝜑 → (0↑((𝑃 − 1) − (𝐷‘0))) = (0↑0))
182 0cnd 10634 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℂ)
183182exp0d 13505 . . . . . . . . . 10 (𝜑 → (0↑0) = 1)
184181, 183eqtrd 2856 . . . . . . . . 9 (𝜑 → (0↑((𝑃 − 1) − (𝐷‘0))) = 1)
185180, 184oveq12d 7174 . . . . . . . 8 (𝜑 → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0)))) = ((!‘(𝑃 − 1)) · 1))
186173, 185, 1623eqtrd 2860 . . . . . . 7 (𝜑 → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) = (!‘(𝑃 − 1)))
187 fzssre 41601 . . . . . . . . . . . 12 (0...(𝑃 − 1)) ⊆ ℝ
18868adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐷:(0...𝑀)⟶(0...(𝑃 − 1)))
18951adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
190188, 189ffvelrnd 6852 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐷𝑗) ∈ (0...(𝑃 − 1)))
191187, 190sseldi 3965 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐷𝑗) ∈ ℝ)
1928nnred 11653 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℝ)
193192adantr 483 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℝ)
1948nngt0d 11687 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑃)
19515, 192, 194ltled 10788 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ 𝑃)
196195adantr 483 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → 0 ≤ 𝑃)
197103, 196eqbrtrd 5088 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (𝐷𝑗) ≤ 𝑃)
198191, 193, 197lensymd 10791 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → ¬ 𝑃 < (𝐷𝑗))
199198iffalsed 4478 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))) = (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗)))))
200103oveq2d 7172 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → (𝑃 − (𝐷𝑗)) = (𝑃 − 0))
201111adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℂ)
202201subid1d 10986 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (1...𝑀)) → (𝑃 − 0) = 𝑃)
203200, 202eqtrd 2856 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (1...𝑀)) → (𝑃 − (𝐷𝑗)) = 𝑃)
204203fveq2d 6674 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (1...𝑀)) → (!‘(𝑃 − (𝐷𝑗))) = (!‘𝑃))
205204oveq2d 7172 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) = ((!‘𝑃) / (!‘𝑃)))
2068nnnn0d 11956 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℕ0)
207206faccld 13645 . . . . . . . . . . . . . 14 (𝜑 → (!‘𝑃) ∈ ℕ)
208207nncnd 11654 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑃) ∈ ℂ)
209207nnne0d 11688 . . . . . . . . . . . . 13 (𝜑 → (!‘𝑃) ≠ 0)
210208, 209dividd 11414 . . . . . . . . . . . 12 (𝜑 → ((!‘𝑃) / (!‘𝑃)) = 1)
211210adantr 483 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → ((!‘𝑃) / (!‘𝑃)) = 1)
212205, 211eqtrd 2856 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → ((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) = 1)
213 df-neg 10873 . . . . . . . . . . . . 13 -𝑗 = (0 − 𝑗)
214213eqcomi 2830 . . . . . . . . . . . 12 (0 − 𝑗) = -𝑗
215214a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → (0 − 𝑗) = -𝑗)
216215, 203oveq12d 7174 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))) = (-𝑗𝑃))
217212, 216oveq12d 7174 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗)))) = (1 · (-𝑗𝑃)))
21893znegcld 12090 . . . . . . . . . . . . 13 (𝑗 ∈ (1...𝑀) → -𝑗 ∈ ℤ)
219218zcnd 12089 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝑀) → -𝑗 ∈ ℂ)
220219adantl 484 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → -𝑗 ∈ ℂ)
221206adantr 483 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ0)
222220, 221expcld 13511 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑀)) → (-𝑗𝑃) ∈ ℂ)
223222mulid2d 10659 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (1 · (-𝑗𝑃)) = (-𝑗𝑃))
224199, 217, 2233eqtrd 2860 . . . . . . . 8 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))) = (-𝑗𝑃))
225224prodeq2dv 15277 . . . . . . 7 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))) = ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃))
226186, 225oveq12d 7174 . . . . . 6 (𝜑 → (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗)))))) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃)))
227167, 226oveq12d 7174 . . . . 5 (𝜑 → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))))) = (1 · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃))))
228 fzfid 13342 . . . . . . . . 9 (𝜑 → (1...𝑀) ∈ Fin)
229 zexpcl 13445 . . . . . . . . . 10 ((-𝑗 ∈ ℤ ∧ 𝑃 ∈ ℕ0) → (-𝑗𝑃) ∈ ℤ)
230218, 206, 229syl2anr 598 . . . . . . . . 9 ((𝜑𝑗 ∈ (1...𝑀)) → (-𝑗𝑃) ∈ ℤ)
231228, 230fprodzcl 15308 . . . . . . . 8 (𝜑 → ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃) ∈ ℤ)
232231zcnd 12089 . . . . . . 7 (𝜑 → ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃) ∈ ℂ)
233161, 232mulcld 10661 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃)) ∈ ℂ)
234233mulid2d 10659 . . . . 5 (𝜑 → (1 · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃))) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃)))
235227, 234eqtrd 2856 . . . 4 (𝜑 → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))))) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃)))
236 eldifi 4103 . . . . . . . . . . . . . . 15 (𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) → 𝑐 ∈ (𝐶‘(𝑃 − 1)))
23783adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 0 ∈ (0...𝑀))
23844, 237ffvelrnd 6852 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → (𝑐‘0) ∈ (0...(𝑃 − 1)))
239236, 238sylan2 594 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑐‘0) ∈ (0...(𝑃 − 1)))
240187, 239sseldi 3965 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑐‘0) ∈ ℝ)
241168adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑃 − 1) ∈ ℝ)
242 elfzle2 12912 . . . . . . . . . . . . . 14 ((𝑐‘0) ∈ (0...(𝑃 − 1)) → (𝑐‘0) ≤ (𝑃 − 1))
243239, 242syl 17 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑐‘0) ≤ (𝑃 − 1))
244240, 241, 243lensymd 10791 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ¬ (𝑃 − 1) < (𝑐‘0))
245244iffalsed 4478 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0)))))
24612nn0zd 12086 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃 − 1) ∈ ℤ)
247246adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑃 − 1) ∈ ℤ)
248239elfzelzd 41602 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑐‘0) ∈ ℤ)
249247, 248zsubcld 12093 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((𝑃 − 1) − (𝑐‘0)) ∈ ℤ)
25044ffnd 6515 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐 Fn (0...𝑀))
251250adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) → 𝑐 Fn (0...𝑀))
25268ffnd 6515 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐷 Fn (0...𝑀))
253252ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) → 𝐷 Fn (0...𝑀))
254 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = 0 → (𝑐𝑗) = (𝑐‘0))
255254adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 = 0) → (𝑐𝑗) = (𝑐‘0))
256 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 − 1) = (𝑐‘0) → (𝑃 − 1) = (𝑐‘0))
257256eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 − 1) = (𝑐‘0) → (𝑐‘0) = (𝑃 − 1))
258257ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 = 0) → (𝑐‘0) = (𝑃 − 1))
25977adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 = 0) → (𝐷𝑗) = (𝐷‘0))
26084adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 = 0) → (𝐷‘0) = (𝑃 − 1))
261259, 260eqtr2d 2857 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑗 = 0) → (𝑃 − 1) = (𝐷𝑗))
262261adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 = 0) → (𝑃 − 1) = (𝐷𝑗))
263255, 258, 2623eqtrd 2860 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 = 0) → (𝑐𝑗) = (𝐷𝑗))
264263adantllr 717 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 = 0) → (𝑐𝑗) = (𝐷𝑗))
265264adantlr 713 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 = 0) → (𝑐𝑗) = (𝐷𝑗))
26626ad4antr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1))
267168ad5antr 732 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑃 − 1) ∈ ℝ)
268168ad4antr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑃 − 1) ∈ ℝ)
26944adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (1...𝑀)) → 𝑐:(0...𝑀)⟶(0...(𝑃 − 1)))
27050sseli 3963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ (0...𝑀))
271270adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ (0...𝑀))
272269, 271ffvelrnd 6852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (1...𝑀)) → (𝑐𝑘) ∈ (0...(𝑃 − 1)))
27333, 272sseldi 3965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (1...𝑀)) → (𝑐𝑘) ∈ ℕ0)
27447, 273fsumnn0cl 15093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → Σ𝑘 ∈ (1...𝑀)(𝑐𝑘) ∈ ℕ0)
275274nn0red 11957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → Σ𝑘 ∈ (1...𝑀)(𝑐𝑘) ∈ ℝ)
276275ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → Σ𝑘 ∈ (1...𝑀)(𝑐𝑘) ∈ ℝ)
277 0red 10644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → 0 ∈ ℝ)
27844ffvelrnda 6851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ (0...(𝑃 − 1)))
279187, 278sseldi 3965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℝ)
280279ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑐𝑗) ∈ ℝ)
281 nfv 1915 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑘((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0)
282 nfcv 2977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑘(𝑐𝑗)
283 fzfid 13342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (1...𝑀) ∈ Fin)
284 simp-4l 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) ∧ 𝑘 ∈ (1...𝑀)) → (𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))))
28574, 272sseldi 3965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (1...𝑀)) → (𝑐𝑘) ∈ ℂ)
286284, 285sylancom 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) ∧ 𝑘 ∈ (1...𝑀)) → (𝑐𝑘) ∈ ℂ)
287 1zzd 12014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 1 ∈ ℤ)
288 elfzel2 12907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
289288adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑀 ∈ ℤ)
290 elfzelz 12909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
291290adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗 ∈ ℤ)
292287, 289, 2913jca 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ))
293 elfznn0 13001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
294293adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗 ∈ ℕ0)
295 neqne 3024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 𝑗 = 0 → 𝑗 ≠ 0)
296295adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗 ≠ 0)
297 elnnne0 11912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑗 ∈ ℕ ↔ (𝑗 ∈ ℕ0𝑗 ≠ 0))
298294, 296, 297sylanbrc 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗 ∈ ℕ)
299298nnge1d 11686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 1 ≤ 𝑗)
300 elfzle2 12912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
301300adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗𝑀)
302292, 299, 301jca32 518 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (1 ≤ 𝑗𝑗𝑀)))
303 elfz2 12900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑗 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (1 ≤ 𝑗𝑗𝑀)))
304302, 303sylibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗 ∈ (1...𝑀))
305304adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → 𝑗 ∈ (1...𝑀))
306305adantlll 716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → 𝑗 ∈ (1...𝑀))
307 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑘 = 𝑗 → (𝑐𝑘) = (𝑐𝑗))
308281, 282, 283, 286, 306, 307fsumsplit1 41873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → Σ𝑘 ∈ (1...𝑀)(𝑐𝑘) = ((𝑐𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘)))
309308eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → ((𝑐𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘)) = Σ𝑘 ∈ (1...𝑀)(𝑐𝑘))
310309, 276eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → ((𝑐𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘)) ∈ ℝ)
311 elfzle1 12911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑐𝑗) ∈ (0...(𝑃 − 1)) → 0 ≤ (𝑐𝑗))
312278, 311syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → 0 ≤ (𝑐𝑗))
313312ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → 0 ≤ (𝑐𝑗))
314 neqne 3024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (¬ (𝑐𝑗) = 0 → (𝑐𝑗) ≠ 0)
315314adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑐𝑗) ≠ 0)
316277, 280, 313, 315leneltd 10794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → 0 < (𝑐𝑗))
317 diffi 8750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((1...𝑀) ∈ Fin → ((1...𝑀) ∖ {𝑗}) ∈ Fin)
318105, 317mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → ((1...𝑀) ∖ {𝑗}) ∈ Fin)
319 eldifi 4103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑘 ∈ ((1...𝑀) ∖ {𝑗}) → 𝑘 ∈ (1...𝑀))
320319adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ ((1...𝑀) ∖ {𝑗})) → 𝑘 ∈ (1...𝑀))
32150, 320sseldi 3965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ ((1...𝑀) ∖ {𝑗})) → 𝑘 ∈ (0...𝑀))
32244ffvelrnda 6851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ (0...(𝑃 − 1)))
323187, 322sseldi 3965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℝ)
324321, 323syldan 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ ((1...𝑀) ∖ {𝑗})) → (𝑐𝑘) ∈ ℝ)
325 elfzle1 12911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑐𝑘) ∈ (0...(𝑃 − 1)) → 0 ≤ (𝑐𝑘))
326322, 325syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (0...𝑀)) → 0 ≤ (𝑐𝑘))
327321, 326syldan 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ ((1...𝑀) ∖ {𝑗})) → 0 ≤ (𝑐𝑘))
328318, 324, 327fsumge0 15150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → 0 ≤ Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘))
329328adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → 0 ≤ Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘))
330318, 324fsumrecl 15091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) → Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘) ∈ ℝ)
331330adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘) ∈ ℝ)
332279, 331addge01d 11228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → (0 ≤ Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘) ↔ (𝑐𝑗) ≤ ((𝑐𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘))))
333329, 332mpbid 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ≤ ((𝑐𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘)))
334333ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑐𝑗) ≤ ((𝑐𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘)))
335277, 280, 310, 316, 334ltletrd 10800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → 0 < ((𝑐𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐𝑘)))
336335, 309breqtrd 5092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → 0 < Σ𝑘 ∈ (1...𝑀)(𝑐𝑘))
337276, 336elrpd 12429 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → Σ𝑘 ∈ (1...𝑀)(𝑐𝑘) ∈ ℝ+)
338268, 337ltaddrpd 12465 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑃 − 1) < ((𝑃 − 1) + Σ𝑘 ∈ (1...𝑀)(𝑐𝑘)))
339338adantl3r 748 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑃 − 1) < ((𝑃 − 1) + Σ𝑘 ∈ (1...𝑀)(𝑐𝑘)))
340 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 = 𝑘 → (𝑐𝑗) = (𝑐𝑘))
341340cbvsumv 15053 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘)
342341a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘))
34373ad5antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → 𝑀 ∈ (ℤ‘0))
344 simp-5l 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) ∧ 𝑘 ∈ (0...𝑀)) → (𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))))
34574, 322sseldi 3965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℂ)
346344, 345sylancom 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℂ)
347 fveq2 6670 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 = 0 → (𝑐𝑘) = (𝑐‘0))
348343, 346, 347fsum1p 15108 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = ((𝑐‘0) + Σ𝑘 ∈ ((0 + 1)...𝑀)(𝑐𝑘)))
349257ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑐‘0) = (𝑃 − 1))
35086sumeq1i 15055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Σ𝑘 ∈ ((0 + 1)...𝑀)(𝑐𝑘) = Σ𝑘 ∈ (1...𝑀)(𝑐𝑘)
351350a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → Σ𝑘 ∈ ((0 + 1)...𝑀)(𝑐𝑘) = Σ𝑘 ∈ (1...𝑀)(𝑐𝑘))
352349, 351oveq12d 7174 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → ((𝑐‘0) + Σ𝑘 ∈ ((0 + 1)...𝑀)(𝑐𝑘)) = ((𝑃 − 1) + Σ𝑘 ∈ (1...𝑀)(𝑐𝑘)))
353342, 348, 3523eqtrrd 2861 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → ((𝑃 − 1) + Σ𝑘 ∈ (1...𝑀)(𝑐𝑘)) = Σ𝑗 ∈ (0...𝑀)(𝑐𝑗))
354339, 353breqtrd 5092 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → (𝑃 − 1) < Σ𝑗 ∈ (0...𝑀)(𝑐𝑗))
355267, 354gtned 10775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) ≠ (𝑃 − 1))
356355neneqd 3021 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐𝑗) = 0) → ¬ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = (𝑃 − 1))
357266, 356condan 816 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → (𝑐𝑗) = 0)
358 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀))
35933, 66sseldi 3965 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 0) ∈ ℕ0)
36067fvmpt2 6779 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ if(𝑗 = 0, (𝑃 − 1), 0) ∈ ℕ0) → (𝐷𝑗) = if(𝑗 = 0, (𝑃 − 1), 0))
361358, 359, 360syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐷𝑗) = if(𝑗 = 0, (𝑃 − 1), 0))
362361adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → (𝐷𝑗) = if(𝑗 = 0, (𝑃 − 1), 0))
363 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → ¬ 𝑗 = 0)
364363iffalsed 4478 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → if(𝑗 = 0, (𝑃 − 1), 0) = 0)
365362, 364eqtr2d 2857 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → 0 = (𝐷𝑗))
366365adantllr 717 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → 0 = (𝐷𝑗))
367366adantllr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → 0 = (𝐷𝑗))
368357, 367eqtrd 2856 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → (𝑐𝑗) = (𝐷𝑗))
369265, 368pm2.61dan 811 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) = (𝐷𝑗))
370251, 253, 369eqfnfvd 6805 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) → 𝑐 = 𝐷)
371236, 370sylanl2 679 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) ∧ (𝑃 − 1) = (𝑐‘0)) → 𝑐 = 𝐷)
372 eldifsni 4722 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) → 𝑐𝐷)
373372neneqd 3021 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) → ¬ 𝑐 = 𝐷)
374373ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) ∧ (𝑃 − 1) = (𝑐‘0)) → ¬ 𝑐 = 𝐷)
375371, 374pm2.65da 815 . . . . . . . . . . . . . . . . 17 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ¬ (𝑃 − 1) = (𝑐‘0))
376375neqned 3023 . . . . . . . . . . . . . . . 16 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑃 − 1) ≠ (𝑐‘0))
377240, 241, 243, 376leneltd 10794 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑐‘0) < (𝑃 − 1))
378240, 241posdifd 11227 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((𝑐‘0) < (𝑃 − 1) ↔ 0 < ((𝑃 − 1) − (𝑐‘0))))
379377, 378mpbid 234 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → 0 < ((𝑃 − 1) − (𝑐‘0)))
380 elnnz 11992 . . . . . . . . . . . . . 14 (((𝑃 − 1) − (𝑐‘0)) ∈ ℕ ↔ (((𝑃 − 1) − (𝑐‘0)) ∈ ℤ ∧ 0 < ((𝑃 − 1) − (𝑐‘0))))
381249, 379, 380sylanbrc 585 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((𝑃 − 1) − (𝑐‘0)) ∈ ℕ)
3823810expd 13504 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (0↑((𝑃 − 1) − (𝑐‘0))) = 0)
383382oveq2d 7172 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · 0))
384161adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (!‘(𝑃 − 1)) ∈ ℂ)
385381nnnn0d 11956 . . . . . . . . . . . . . . 15 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((𝑃 − 1) − (𝑐‘0)) ∈ ℕ0)
386385faccld 13645 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (!‘((𝑃 − 1) − (𝑐‘0))) ∈ ℕ)
387386nncnd 11654 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (!‘((𝑃 − 1) − (𝑐‘0))) ∈ ℂ)
388386nnne0d 11688 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (!‘((𝑃 − 1) − (𝑐‘0))) ≠ 0)
389384, 387, 388divcld 11416 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) ∈ ℂ)
390389mul01d 10839 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · 0) = 0)
391245, 383, 3903eqtrd 2860 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) = 0)
392391oveq1d 7171 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))) = (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))))
393236, 55sylan2 594 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℤ)
394393zcnd 12089 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℂ)
395394mul02d 10838 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))) = 0)
396392, 395eqtrd 2856 . . . . . . . 8 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))) = 0)
397396oveq2d 7172 . . . . . . 7 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))) = (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · 0))
398 fzfid 13342 . . . . . . . . . . 11 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (0...𝑀) ∈ Fin)
39933, 278sseldi 3965 . . . . . . . . . . . . 13 (((𝜑𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℕ0)
400236, 399sylanl2 679 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐𝑗) ∈ ℕ0)
401400faccld 13645 . . . . . . . . . . 11 (((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐𝑗)) ∈ ℕ)
402398, 401fprodnncl 15309 . . . . . . . . . 10 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ∈ ℕ)
403402nncnd 11654 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ∈ ℂ)
404402nnne0d 11688 . . . . . . . . 9 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) ≠ 0)
405384, 403, 404divcld 11416 . . . . . . . 8 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℂ)
406405mul01d 10839 . . . . . . 7 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · 0) = 0)
407397, 406eqtrd 2856 . . . . . 6 ((𝜑𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))) = 0)
408407sumeq2dv 15060 . . . . 5 (𝜑 → Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))) = Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})0)
409 diffi 8750 . . . . . . . 8 ((𝐶‘(𝑃 − 1)) ∈ Fin → ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ∈ Fin)
41019, 409syl 17 . . . . . . 7 (𝜑 → ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ∈ Fin)
411410olcd 870 . . . . . 6 (𝜑 → (((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ⊆ (ℤ‘0) ∨ ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ∈ Fin))
412 sumz 15079 . . . . . 6 ((((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ⊆ (ℤ‘0) ∨ ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ∈ Fin) → Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})0 = 0)
413411, 412syl 17 . . . . 5 (𝜑 → Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})0 = 0)
414408, 413eqtrd 2856 . . . 4 (𝜑 → Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗))))))) = 0)
415235, 414oveq12d 7174 . . 3 (𝜑 → ((((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))))) + Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))))) = (((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃)) + 0))
416233addid1d 10840 . . 3 (𝜑 → (((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃)) + 0) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃)))
417 nfv 1915 . . . . 5 𝑗𝜑
418417, 206, 228, 220fprodexp 41895 . . . 4 (𝜑 → ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃) = (∏𝑗 ∈ (1...𝑀)-𝑗𝑃))
419418oveq2d 7172 . . 3 (𝜑 → ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗𝑃)) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
420415, 416, 4193eqtrd 2860 . 2 (𝜑 → ((((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷𝑗))))))) + Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐𝑗)))))))) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
42116, 143, 4203eqtrd 2860 1 (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  {crab 3142  Vcvv 3494  cdif 3933  wss 3936  ifcif 4467  {csn 4567  {cpr 4569   class class class wbr 5066  cmpt 5146  ran crn 5556   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  Fincfn 8509  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870  -cneg 10871   / cdiv 11297  cn 11638  0cn0 11898  cz 11982  cuz 12244  (,)cioo 12739  ...cfz 12893  cexp 13430  !cfa 13634  Σcsu 15042  cprod 15259  t crest 16694  TopOpenctopn 16695  topGenctg 16711  fldccnfld 20545   D𝑛 cdvn 24462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-prod 15260  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-dvn 24466
This theorem is referenced by:  etransclem41  42580
  Copyright terms: Public domain W3C validator