| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad2ant2rl | Structured version Visualization version GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantlr 715 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: poseq 8157 omwordri 8584 omxpenlem 9087 infxpabs 10225 domfin4 10325 isf32lem7 10373 ordpipq 10956 muladd 11669 lemul12b 12098 mulge0b 12112 qaddcl 12981 iooshf 13443 elfzomelpfzo 13787 expnegz 14114 swrdccatin1 14743 bitsshft 16494 setscom 17199 lubun 18525 grplmulf1o 18996 grpraddf1o 18997 srhmsubc 20640 lmodfopne 20857 lidl1el 21187 frlmipval 21739 en2top 22923 cnpnei 23202 kgenidm 23485 ufileu 23857 fmfnfmlem4 23895 isngp4 24551 fsumcn 24812 evth 24909 cmslssbn 25324 mbfmulc2lem 25600 itg1addlem4 25652 dgreq0 26223 cxplt3 26661 cxple3 26662 basellem4 27046 sltsolem1 27639 nodenselem7 27654 zmulscld 28337 axcontlem2 28944 umgr2edg 29188 nbumgrvtx 29325 clwwlkf1 30030 umgrhashecclwwlk 30059 frgrncvvdeqlem9 30288 frgrwopreglem5ALT 30303 numclwwlk7lem 30370 grpoidinvlem3 30487 grpoideu 30490 grporcan 30499 3oalem2 31644 hmops 32001 adjadd 32074 mdslmd4i 32314 mdexchi 32316 mdsymlem1 32384 bnj607 34947 cvxsconn 35265 tailfb 36395 lindsadd 37637 poimirlem14 37658 mblfinlem4 37684 ismblfin 37685 ismtyres 37832 ghomco 37915 rngoisocnv 38005 1idl 38050 ps-2 39497 cfsetsnfsetf1 47088 usgrgrtrirex 47962 grlictr 48020 gpgvtx0 48057 srhmsubcALTV 48300 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |