Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad2ant2rl | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrl 712 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
3 | 2 | adantlr 711 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: omwordri 8365 omxpenlem 8813 infxpabs 9899 domfin4 9998 isf32lem7 10046 ordpipq 10629 muladd 11337 lemul12b 11762 mulge0b 11775 qaddcl 12634 iooshf 13087 elfzomelpfzo 13419 expnegz 13745 swrdccatin1 14366 bitsshft 16110 setscom 16809 lubun 18148 grplmulf1o 18564 lmodfopne 20076 lidl1el 20402 frlmipval 20896 en2top 22043 cnpnei 22323 kgenidm 22606 ufileu 22978 fmfnfmlem4 23016 isngp4 23674 fsumcn 23939 evth 24028 cmslssbn 24441 mbfmulc2lem 24716 itg1addlem4 24768 itg1addlem4OLD 24769 dgreq0 25331 cxplt3 25760 cxple3 25761 basellem4 26138 axcontlem2 27236 umgr2edg 27479 nbumgrvtx 27616 clwwlkf1 28314 umgrhashecclwwlk 28343 frgrncvvdeqlem9 28572 frgrwopreglem5ALT 28587 numclwwlk7lem 28654 grpoidinvlem3 28769 grpoideu 28772 grporcan 28781 3oalem2 29926 hmops 30283 adjadd 30356 mdslmd4i 30596 mdexchi 30598 mdsymlem1 30666 bnj607 32796 cvxsconn 33105 poseq 33729 sltsolem1 33805 nodenselem7 33820 tailfb 34493 lindsadd 35697 poimirlem14 35718 mblfinlem4 35744 ismblfin 35745 ismtyres 35893 ghomco 35976 rngoisocnv 36066 1idl 36111 ps-2 37419 cfsetsnfsetf1 44440 srhmsubc 45522 srhmsubcALTV 45540 aacllem 46391 |
Copyright terms: Public domain | W3C validator |