| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad2ant2rl | Structured version Visualization version GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantlr 715 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: poseq 8137 omwordri 8536 omxpenlem 9042 infxpabs 10164 domfin4 10264 isf32lem7 10312 ordpipq 10895 muladd 11610 lemul12b 12039 mulge0b 12053 qaddcl 12924 iooshf 13387 elfzomelpfzo 13732 expnegz 14061 swrdccatin1 14690 bitsshft 16445 setscom 17150 lubun 18474 grplmulf1o 18945 grpraddf1o 18946 srhmsubc 20589 lmodfopne 20806 lidl1el 21136 frlmipval 21688 en2top 22872 cnpnei 23151 kgenidm 23434 ufileu 23806 fmfnfmlem4 23844 isngp4 24500 fsumcn 24761 evth 24858 cmslssbn 25272 mbfmulc2lem 25548 itg1addlem4 25600 dgreq0 26171 cxplt3 26609 cxple3 26610 basellem4 26994 sltsolem1 27587 nodenselem7 27602 zmulscld 28285 axcontlem2 28892 umgr2edg 29136 nbumgrvtx 29273 clwwlkf1 29978 umgrhashecclwwlk 30007 frgrncvvdeqlem9 30236 frgrwopreglem5ALT 30251 numclwwlk7lem 30318 grpoidinvlem3 30435 grpoideu 30438 grporcan 30447 3oalem2 31592 hmops 31949 adjadd 32022 mdslmd4i 32262 mdexchi 32264 mdsymlem1 32332 bnj607 34906 cvxsconn 35230 tailfb 36365 lindsadd 37607 poimirlem14 37628 mblfinlem4 37654 ismblfin 37655 ismtyres 37802 ghomco 37885 rngoisocnv 37975 1idl 38020 ps-2 39472 cfsetsnfsetf1 47060 usgrgrtrirex 47949 grlictr 48007 gpgvtx0 48044 srhmsubcALTV 48313 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |