| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad2ant2rl | Structured version Visualization version GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantlr 715 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: poseq 8088 omwordri 8487 omxpenlem 8991 infxpabs 10102 domfin4 10202 isf32lem7 10250 ordpipq 10833 muladd 11549 lemul12b 11978 mulge0b 11992 qaddcl 12863 iooshf 13326 elfzomelpfzo 13672 expnegz 14003 swrdccatin1 14632 bitsshft 16386 setscom 17091 lubun 18421 grplmulf1o 18926 grpraddf1o 18927 srhmsubc 20595 lmodfopne 20833 lidl1el 21163 frlmipval 21716 en2top 22900 cnpnei 23179 kgenidm 23462 ufileu 23834 fmfnfmlem4 23872 isngp4 24527 fsumcn 24788 evth 24885 cmslssbn 25299 mbfmulc2lem 25575 itg1addlem4 25627 dgreq0 26198 cxplt3 26636 cxple3 26637 basellem4 27021 sltsolem1 27614 nodenselem7 27629 zmulscld 28321 axcontlem2 28943 umgr2edg 29187 nbumgrvtx 29324 clwwlkf1 30029 umgrhashecclwwlk 30058 frgrncvvdeqlem9 30287 frgrwopreglem5ALT 30302 numclwwlk7lem 30369 grpoidinvlem3 30486 grpoideu 30489 grporcan 30498 3oalem2 31643 hmops 32000 adjadd 32073 mdslmd4i 32313 mdexchi 32315 mdsymlem1 32383 bnj607 34928 cvxsconn 35287 tailfb 36421 lindsadd 37663 poimirlem14 37684 mblfinlem4 37710 ismblfin 37711 ismtyres 37858 ghomco 37941 rngoisocnv 38031 1idl 38076 ps-2 39587 cfsetsnfsetf1 47169 usgrgrtrirex 48060 grlictr 48125 gpgvtx0 48163 srhmsubcALTV 48435 aacllem 49912 |
| Copyright terms: Public domain | W3C validator |