| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad2ant2rl | Structured version Visualization version GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantlr 715 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: poseq 8114 omwordri 8513 omxpenlem 9019 infxpabs 10140 domfin4 10240 isf32lem7 10288 ordpipq 10871 muladd 11586 lemul12b 12015 mulge0b 12029 qaddcl 12900 iooshf 13363 elfzomelpfzo 13708 expnegz 14037 swrdccatin1 14666 bitsshft 16421 setscom 17126 lubun 18456 grplmulf1o 18927 grpraddf1o 18928 srhmsubc 20600 lmodfopne 20838 lidl1el 21168 frlmipval 21721 en2top 22905 cnpnei 23184 kgenidm 23467 ufileu 23839 fmfnfmlem4 23877 isngp4 24533 fsumcn 24794 evth 24891 cmslssbn 25305 mbfmulc2lem 25581 itg1addlem4 25633 dgreq0 26204 cxplt3 26642 cxple3 26643 basellem4 27027 sltsolem1 27620 nodenselem7 27635 zmulscld 28325 axcontlem2 28945 umgr2edg 29189 nbumgrvtx 29326 clwwlkf1 30028 umgrhashecclwwlk 30057 frgrncvvdeqlem9 30286 frgrwopreglem5ALT 30301 numclwwlk7lem 30368 grpoidinvlem3 30485 grpoideu 30488 grporcan 30497 3oalem2 31642 hmops 31999 adjadd 32072 mdslmd4i 32312 mdexchi 32314 mdsymlem1 32382 bnj607 34899 cvxsconn 35223 tailfb 36358 lindsadd 37600 poimirlem14 37621 mblfinlem4 37647 ismblfin 37648 ismtyres 37795 ghomco 37878 rngoisocnv 37968 1idl 38013 ps-2 39465 cfsetsnfsetf1 47053 usgrgrtrirex 47942 grlictr 48000 gpgvtx0 48037 srhmsubcALTV 48306 aacllem 49783 |
| Copyright terms: Public domain | W3C validator |