| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad2ant2rl | Structured version Visualization version GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantlr 715 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: poseq 8140 omwordri 8539 omxpenlem 9047 infxpabs 10171 domfin4 10271 isf32lem7 10319 ordpipq 10902 muladd 11617 lemul12b 12046 mulge0b 12060 qaddcl 12931 iooshf 13394 elfzomelpfzo 13739 expnegz 14068 swrdccatin1 14697 bitsshft 16452 setscom 17157 lubun 18481 grplmulf1o 18952 grpraddf1o 18953 srhmsubc 20596 lmodfopne 20813 lidl1el 21143 frlmipval 21695 en2top 22879 cnpnei 23158 kgenidm 23441 ufileu 23813 fmfnfmlem4 23851 isngp4 24507 fsumcn 24768 evth 24865 cmslssbn 25279 mbfmulc2lem 25555 itg1addlem4 25607 dgreq0 26178 cxplt3 26616 cxple3 26617 basellem4 27001 sltsolem1 27594 nodenselem7 27609 zmulscld 28292 axcontlem2 28899 umgr2edg 29143 nbumgrvtx 29280 clwwlkf1 29985 umgrhashecclwwlk 30014 frgrncvvdeqlem9 30243 frgrwopreglem5ALT 30258 numclwwlk7lem 30325 grpoidinvlem3 30442 grpoideu 30445 grporcan 30454 3oalem2 31599 hmops 31956 adjadd 32029 mdslmd4i 32269 mdexchi 32271 mdsymlem1 32339 bnj607 34913 cvxsconn 35237 tailfb 36372 lindsadd 37614 poimirlem14 37635 mblfinlem4 37661 ismblfin 37662 ismtyres 37809 ghomco 37892 rngoisocnv 37982 1idl 38027 ps-2 39479 cfsetsnfsetf1 47064 usgrgrtrirex 47953 grlictr 48011 gpgvtx0 48048 srhmsubcALTV 48317 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |