![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad2ant2rl | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrl 714 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
3 | 2 | adantlr 713 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: poseq 8140 omwordri 8568 omxpenlem 9069 infxpabs 10203 domfin4 10302 isf32lem7 10350 ordpipq 10933 muladd 11642 lemul12b 12067 mulge0b 12080 qaddcl 12945 iooshf 13399 elfzomelpfzo 13732 expnegz 14058 swrdccatin1 14671 bitsshft 16412 setscom 17109 lubun 18464 grplmulf1o 18893 lmodfopne 20502 lidl1el 20833 frlmipval 21325 en2top 22479 cnpnei 22759 kgenidm 23042 ufileu 23414 fmfnfmlem4 23452 isngp4 24112 fsumcn 24377 evth 24466 cmslssbn 24880 mbfmulc2lem 25155 itg1addlem4 25207 itg1addlem4OLD 25208 dgreq0 25770 cxplt3 26199 cxple3 26200 basellem4 26577 sltsolem1 27167 nodenselem7 27182 axcontlem2 28212 umgr2edg 28455 nbumgrvtx 28592 clwwlkf1 29291 umgrhashecclwwlk 29320 frgrncvvdeqlem9 29549 frgrwopreglem5ALT 29564 numclwwlk7lem 29631 grpoidinvlem3 29746 grpoideu 29749 grporcan 29758 3oalem2 30903 hmops 31260 adjadd 31333 mdslmd4i 31573 mdexchi 31575 mdsymlem1 31643 bnj607 33915 cvxsconn 34222 tailfb 35250 lindsadd 36469 poimirlem14 36490 mblfinlem4 36516 ismblfin 36517 ismtyres 36664 ghomco 36747 rngoisocnv 36837 1idl 36882 ps-2 38337 cfsetsnfsetf1 45755 srhmsubc 46927 srhmsubcALTV 46945 aacllem 47801 |
Copyright terms: Public domain | W3C validator |