| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad2ant2rl | Structured version Visualization version GIF version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantrl 716 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| 3 | 2 | adantlr 715 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: poseq 8091 omwordri 8490 omxpenlem 8995 infxpabs 10105 domfin4 10205 isf32lem7 10253 ordpipq 10836 muladd 11552 lemul12b 11981 mulge0b 11995 qaddcl 12866 iooshf 13329 elfzomelpfzo 13674 expnegz 14003 swrdccatin1 14631 bitsshft 16386 setscom 17091 lubun 18421 grplmulf1o 18892 grpraddf1o 18893 srhmsubc 20565 lmodfopne 20803 lidl1el 21133 frlmipval 21686 en2top 22870 cnpnei 23149 kgenidm 23432 ufileu 23804 fmfnfmlem4 23842 isngp4 24498 fsumcn 24759 evth 24856 cmslssbn 25270 mbfmulc2lem 25546 itg1addlem4 25598 dgreq0 26169 cxplt3 26607 cxple3 26608 basellem4 26992 sltsolem1 27585 nodenselem7 27600 zmulscld 28290 axcontlem2 28910 umgr2edg 29154 nbumgrvtx 29291 clwwlkf1 29993 umgrhashecclwwlk 30022 frgrncvvdeqlem9 30251 frgrwopreglem5ALT 30266 numclwwlk7lem 30333 grpoidinvlem3 30450 grpoideu 30453 grporcan 30462 3oalem2 31607 hmops 31964 adjadd 32037 mdslmd4i 32277 mdexchi 32279 mdsymlem1 32347 bnj607 34883 cvxsconn 35220 tailfb 36355 lindsadd 37597 poimirlem14 37618 mblfinlem4 37644 ismblfin 37645 ismtyres 37792 ghomco 37875 rngoisocnv 37965 1idl 38010 ps-2 39461 cfsetsnfsetf1 47047 usgrgrtrirex 47938 grlictr 48003 gpgvtx0 48041 srhmsubcALTV 48313 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |