Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad2ant2rl | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrl 713 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
3 | 2 | adantlr 712 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: omwordri 8403 omxpenlem 8860 infxpabs 9968 domfin4 10067 isf32lem7 10115 ordpipq 10698 muladd 11407 lemul12b 11832 mulge0b 11845 qaddcl 12705 iooshf 13158 elfzomelpfzo 13491 expnegz 13817 swrdccatin1 14438 bitsshft 16182 setscom 16881 lubun 18233 grplmulf1o 18649 lmodfopne 20161 lidl1el 20489 frlmipval 20986 en2top 22135 cnpnei 22415 kgenidm 22698 ufileu 23070 fmfnfmlem4 23108 isngp4 23768 fsumcn 24033 evth 24122 cmslssbn 24536 mbfmulc2lem 24811 itg1addlem4 24863 itg1addlem4OLD 24864 dgreq0 25426 cxplt3 25855 cxple3 25856 basellem4 26233 axcontlem2 27333 umgr2edg 27576 nbumgrvtx 27713 clwwlkf1 28413 umgrhashecclwwlk 28442 frgrncvvdeqlem9 28671 frgrwopreglem5ALT 28686 numclwwlk7lem 28753 grpoidinvlem3 28868 grpoideu 28871 grporcan 28880 3oalem2 30025 hmops 30382 adjadd 30455 mdslmd4i 30695 mdexchi 30697 mdsymlem1 30765 bnj607 32896 cvxsconn 33205 poseq 33802 sltsolem1 33878 nodenselem7 33893 tailfb 34566 lindsadd 35770 poimirlem14 35791 mblfinlem4 35817 ismblfin 35818 ismtyres 35966 ghomco 36049 rngoisocnv 36139 1idl 36184 ps-2 37492 cfsetsnfsetf1 44553 srhmsubc 45634 srhmsubcALTV 45652 aacllem 46505 |
Copyright terms: Public domain | W3C validator |