![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad2ant2rl | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrl 715 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
3 | 2 | adantlr 714 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: poseq 8199 omwordri 8628 omxpenlem 9139 infxpabs 10280 domfin4 10380 isf32lem7 10428 ordpipq 11011 muladd 11722 lemul12b 12151 mulge0b 12165 qaddcl 13030 iooshf 13486 elfzomelpfzo 13821 expnegz 14147 swrdccatin1 14773 bitsshft 16521 setscom 17227 lubun 18585 grplmulf1o 19053 grpraddf1o 19054 srhmsubc 20702 lmodfopne 20920 lidl1el 21259 frlmipval 21822 en2top 23013 cnpnei 23293 kgenidm 23576 ufileu 23948 fmfnfmlem4 23986 isngp4 24646 fsumcn 24913 evth 25010 cmslssbn 25425 mbfmulc2lem 25701 itg1addlem4 25753 itg1addlem4OLD 25754 dgreq0 26325 cxplt3 26760 cxple3 26761 basellem4 27145 sltsolem1 27738 nodenselem7 27753 zmulscld 28401 axcontlem2 28998 umgr2edg 29244 nbumgrvtx 29381 clwwlkf1 30081 umgrhashecclwwlk 30110 frgrncvvdeqlem9 30339 frgrwopreglem5ALT 30354 numclwwlk7lem 30421 grpoidinvlem3 30538 grpoideu 30541 grporcan 30550 3oalem2 31695 hmops 32052 adjadd 32125 mdslmd4i 32365 mdexchi 32367 mdsymlem1 32435 bnj607 34892 cvxsconn 35211 tailfb 36343 lindsadd 37573 poimirlem14 37594 mblfinlem4 37620 ismblfin 37621 ismtyres 37768 ghomco 37851 rngoisocnv 37941 1idl 37986 ps-2 39435 cfsetsnfsetf1 46974 usgrgrtrirex 47799 grlictr 47832 srhmsubcALTV 48048 aacllem 48895 |
Copyright terms: Public domain | W3C validator |