![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad2ant2rl | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrl 714 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
3 | 2 | adantlr 713 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: poseq 8146 omwordri 8574 omxpenlem 9075 infxpabs 10209 domfin4 10308 isf32lem7 10356 ordpipq 10939 muladd 11648 lemul12b 12073 mulge0b 12086 qaddcl 12951 iooshf 13405 elfzomelpfzo 13738 expnegz 14064 swrdccatin1 14677 bitsshft 16418 setscom 17115 lubun 18470 grplmulf1o 18899 lmodfopne 20515 lidl1el 20847 frlmipval 21340 en2top 22495 cnpnei 22775 kgenidm 23058 ufileu 23430 fmfnfmlem4 23468 isngp4 24128 fsumcn 24393 evth 24482 cmslssbn 24896 mbfmulc2lem 25171 itg1addlem4 25223 itg1addlem4OLD 25224 dgreq0 25786 cxplt3 26215 cxple3 26216 basellem4 26595 sltsolem1 27185 nodenselem7 27200 axcontlem2 28261 umgr2edg 28504 nbumgrvtx 28641 clwwlkf1 29340 umgrhashecclwwlk 29369 frgrncvvdeqlem9 29598 frgrwopreglem5ALT 29613 numclwwlk7lem 29680 grpoidinvlem3 29797 grpoideu 29800 grporcan 29809 3oalem2 30954 hmops 31311 adjadd 31384 mdslmd4i 31624 mdexchi 31626 mdsymlem1 31694 bnj607 33996 cvxsconn 34303 tailfb 35348 lindsadd 36567 poimirlem14 36588 mblfinlem4 36614 ismblfin 36615 ismtyres 36762 ghomco 36845 rngoisocnv 36935 1idl 36980 ps-2 38435 cfsetsnfsetf1 45848 srhmsubc 47053 srhmsubcALTV 47071 aacllem 47926 |
Copyright terms: Public domain | W3C validator |