![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad2ant2rl | Structured version Visualization version GIF version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 24-Nov-2007.) |
Ref | Expression |
---|---|
ad2ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad2ant2rl | ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantrl 715 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
3 | 2 | adantlr 714 | 1 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: poseq 8144 omwordri 8572 omxpenlem 9073 infxpabs 10207 domfin4 10306 isf32lem7 10354 ordpipq 10937 muladd 11646 lemul12b 12071 mulge0b 12084 qaddcl 12949 iooshf 13403 elfzomelpfzo 13736 expnegz 14062 swrdccatin1 14675 bitsshft 16416 setscom 17113 lubun 18468 grplmulf1o 18897 lmodfopne 20510 lidl1el 20841 frlmipval 21334 en2top 22488 cnpnei 22768 kgenidm 23051 ufileu 23423 fmfnfmlem4 23461 isngp4 24121 fsumcn 24386 evth 24475 cmslssbn 24889 mbfmulc2lem 25164 itg1addlem4 25216 itg1addlem4OLD 25217 dgreq0 25779 cxplt3 26208 cxple3 26209 basellem4 26588 sltsolem1 27178 nodenselem7 27193 axcontlem2 28223 umgr2edg 28466 nbumgrvtx 28603 clwwlkf1 29302 umgrhashecclwwlk 29331 frgrncvvdeqlem9 29560 frgrwopreglem5ALT 29575 numclwwlk7lem 29642 grpoidinvlem3 29759 grpoideu 29762 grporcan 29771 3oalem2 30916 hmops 31273 adjadd 31346 mdslmd4i 31586 mdexchi 31588 mdsymlem1 31656 bnj607 33927 cvxsconn 34234 tailfb 35262 lindsadd 36481 poimirlem14 36502 mblfinlem4 36528 ismblfin 36529 ismtyres 36676 ghomco 36759 rngoisocnv 36849 1idl 36894 ps-2 38349 cfsetsnfsetf1 45769 srhmsubc 46974 srhmsubcALTV 46992 aacllem 47848 |
Copyright terms: Public domain | W3C validator |