Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr1ex Structured version   Visualization version   GIF version

Theorem bj-pr1ex 37029
Description: Sethood of the first projection. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr1ex (𝐴𝑉 → pr1 𝐴 ∈ V)

Proof of Theorem bj-pr1ex
StepHypRef Expression
1 df-bj-pr1 37024 . 2 pr1 𝐴 = (∅ Proj 𝐴)
2 bj-projex 37018 . 2 (𝐴𝑉 → (∅ Proj 𝐴) ∈ V)
31, 2eqeltrid 2839 1 (𝐴𝑉 → pr1 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3464  c0 4313   Proj bj-cproj 37013  pr1 bj-cpr1 37023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-bj-proj 37014  df-bj-pr1 37024
This theorem is referenced by:  bj-1uplex  37031  bj-2uplex  37045
  Copyright terms: Public domain W3C validator