Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr1ex | Structured version Visualization version GIF version |
Description: Sethood of the first projection. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-pr1ex | ⊢ (𝐴 ∈ 𝑉 → pr1 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-pr1 34754 | . 2 ⊢ pr1 𝐴 = (∅ Proj 𝐴) | |
2 | bj-projex 34748 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∅ Proj 𝐴) ∈ V) | |
3 | 1, 2 | eqeltrid 2857 | 1 ⊢ (𝐴 ∈ 𝑉 → pr1 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 Vcvv 3410 ∅c0 4228 Proj bj-cproj 34743 pr1 bj-cpr1 34753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pr 5303 ax-un 7466 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-xp 5535 df-cnv 5537 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-bj-proj 34744 df-bj-pr1 34754 |
This theorem is referenced by: bj-1uplex 34761 bj-2uplex 34775 |
Copyright terms: Public domain | W3C validator |