Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr1ex Structured version   Visualization version   GIF version

Theorem bj-pr1ex 36972
Description: Sethood of the first projection. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr1ex (𝐴𝑉 → pr1 𝐴 ∈ V)

Proof of Theorem bj-pr1ex
StepHypRef Expression
1 df-bj-pr1 36967 . 2 pr1 𝐴 = (∅ Proj 𝐴)
2 bj-projex 36961 . 2 (𝐴𝑉 → (∅ Proj 𝐴) ∈ V)
31, 2eqeltrid 2848 1 (𝐴𝑉 → pr1 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3488  c0 4352   Proj bj-cproj 36956  pr1 bj-cpr1 36966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-bj-proj 36957  df-bj-pr1 36967
This theorem is referenced by:  bj-1uplex  36974  bj-2uplex  36988
  Copyright terms: Public domain W3C validator