| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fununsn2 | Structured version Visualization version GIF version | ||
| Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-fununsn.un | ⊢ (𝜑 → 𝐹 = (𝐺 ∪ {〈𝐵, 𝐶〉})) |
| bj-fununsn2.neldm | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐺) |
| bj-fununsn2.ex1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| bj-fununsn2.ex2 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| bj-fununsn2 | ⊢ (𝜑 → (𝐹‘𝐵) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-fununsn.un | . . . 4 ⊢ (𝜑 → 𝐹 = (𝐺 ∪ {〈𝐵, 𝐶〉})) | |
| 2 | uncom 4124 | . . . 4 ⊢ (𝐺 ∪ {〈𝐵, 𝐶〉}) = ({〈𝐵, 𝐶〉} ∪ 𝐺) | |
| 3 | 1, 2 | eqtrdi 2781 | . . 3 ⊢ (𝜑 → 𝐹 = ({〈𝐵, 𝐶〉} ∪ 𝐺)) |
| 4 | bj-fununsn2.neldm | . . 3 ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐺) | |
| 5 | 3, 4 | bj-funun 37247 | . 2 ⊢ (𝜑 → (𝐹‘𝐵) = ({〈𝐵, 𝐶〉}‘𝐵)) |
| 6 | bj-fununsn2.ex1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 7 | bj-fununsn2.ex2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 8 | fvsng 7157 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ({〈𝐵, 𝐶〉}‘𝐵) = 𝐶) | |
| 9 | 6, 7, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → ({〈𝐵, 𝐶〉}‘𝐵) = 𝐶) |
| 10 | 5, 9 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐹‘𝐵) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 {csn 4592 〈cop 4598 dom cdm 5641 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 |
| This theorem is referenced by: bj-fvsnun2 37251 bj-fvmptunsn1 37252 |
| Copyright terms: Public domain | W3C validator |