![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fununsn2 | Structured version Visualization version GIF version |
Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-fununsn.un | ⊢ (𝜑 → 𝐹 = (𝐺 ∪ {〈𝐵, 𝐶〉})) |
bj-fununsn2.neldm | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐺) |
bj-fununsn2.ex1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
bj-fununsn2.ex2 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
bj-fununsn2 | ⊢ (𝜑 → (𝐹‘𝐵) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-fununsn.un | . . . 4 ⊢ (𝜑 → 𝐹 = (𝐺 ∪ {〈𝐵, 𝐶〉})) | |
2 | uncom 4181 | . . . 4 ⊢ (𝐺 ∪ {〈𝐵, 𝐶〉}) = ({〈𝐵, 𝐶〉} ∪ 𝐺) | |
3 | 1, 2 | eqtrdi 2796 | . . 3 ⊢ (𝜑 → 𝐹 = ({〈𝐵, 𝐶〉} ∪ 𝐺)) |
4 | bj-fununsn2.neldm | . . 3 ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐺) | |
5 | 3, 4 | bj-funun 37218 | . 2 ⊢ (𝜑 → (𝐹‘𝐵) = ({〈𝐵, 𝐶〉}‘𝐵)) |
6 | bj-fununsn2.ex1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
7 | bj-fununsn2.ex2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
8 | fvsng 7214 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ({〈𝐵, 𝐶〉}‘𝐵) = 𝐶) | |
9 | 6, 7, 8 | syl2anc 583 | . 2 ⊢ (𝜑 → ({〈𝐵, 𝐶〉}‘𝐵) = 𝐶) |
10 | 5, 9 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝐹‘𝐵) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 {csn 4648 〈cop 4654 dom cdm 5700 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: bj-fvsnun2 37222 bj-fvmptunsn1 37223 |
Copyright terms: Public domain | W3C validator |