Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fununsn2 Structured version   Visualization version   GIF version

Theorem bj-fununsn2 36642
Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-fununsn.un (𝜑𝐹 = (𝐺 ∪ {⟨𝐵, 𝐶⟩}))
bj-fununsn2.neldm (𝜑 → ¬ 𝐵 ∈ dom 𝐺)
bj-fununsn2.ex1 (𝜑𝐵𝑉)
bj-fununsn2.ex2 (𝜑𝐶𝑊)
Assertion
Ref Expression
bj-fununsn2 (𝜑 → (𝐹𝐵) = 𝐶)

Proof of Theorem bj-fununsn2
StepHypRef Expression
1 bj-fununsn.un . . . 4 (𝜑𝐹 = (𝐺 ∪ {⟨𝐵, 𝐶⟩}))
2 uncom 4148 . . . 4 (𝐺 ∪ {⟨𝐵, 𝐶⟩}) = ({⟨𝐵, 𝐶⟩} ∪ 𝐺)
31, 2eqtrdi 2782 . . 3 (𝜑𝐹 = ({⟨𝐵, 𝐶⟩} ∪ 𝐺))
4 bj-fununsn2.neldm . . 3 (𝜑 → ¬ 𝐵 ∈ dom 𝐺)
53, 4bj-funun 36640 . 2 (𝜑 → (𝐹𝐵) = ({⟨𝐵, 𝐶⟩}‘𝐵))
6 bj-fununsn2.ex1 . . 3 (𝜑𝐵𝑉)
7 bj-fununsn2.ex2 . . 3 (𝜑𝐶𝑊)
8 fvsng 7174 . . 3 ((𝐵𝑉𝐶𝑊) → ({⟨𝐵, 𝐶⟩}‘𝐵) = 𝐶)
96, 7, 8syl2anc 583 . 2 (𝜑 → ({⟨𝐵, 𝐶⟩}‘𝐵) = 𝐶)
105, 9eqtrd 2766 1 (𝜑 → (𝐹𝐵) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2098  cun 3941  {csn 4623  cop 4629  dom cdm 5669  cfv 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fv 6545
This theorem is referenced by:  bj-fvsnun2  36644  bj-fvmptunsn1  36645
  Copyright terms: Public domain W3C validator