Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fununsn2 Structured version   Visualization version   GIF version

Theorem bj-fununsn2 37220
Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-fununsn.un (𝜑𝐹 = (𝐺 ∪ {⟨𝐵, 𝐶⟩}))
bj-fununsn2.neldm (𝜑 → ¬ 𝐵 ∈ dom 𝐺)
bj-fununsn2.ex1 (𝜑𝐵𝑉)
bj-fununsn2.ex2 (𝜑𝐶𝑊)
Assertion
Ref Expression
bj-fununsn2 (𝜑 → (𝐹𝐵) = 𝐶)

Proof of Theorem bj-fununsn2
StepHypRef Expression
1 bj-fununsn.un . . . 4 (𝜑𝐹 = (𝐺 ∪ {⟨𝐵, 𝐶⟩}))
2 uncom 4181 . . . 4 (𝐺 ∪ {⟨𝐵, 𝐶⟩}) = ({⟨𝐵, 𝐶⟩} ∪ 𝐺)
31, 2eqtrdi 2796 . . 3 (𝜑𝐹 = ({⟨𝐵, 𝐶⟩} ∪ 𝐺))
4 bj-fununsn2.neldm . . 3 (𝜑 → ¬ 𝐵 ∈ dom 𝐺)
53, 4bj-funun 37218 . 2 (𝜑 → (𝐹𝐵) = ({⟨𝐵, 𝐶⟩}‘𝐵))
6 bj-fununsn2.ex1 . . 3 (𝜑𝐵𝑉)
7 bj-fununsn2.ex2 . . 3 (𝜑𝐶𝑊)
8 fvsng 7214 . . 3 ((𝐵𝑉𝐶𝑊) → ({⟨𝐵, 𝐶⟩}‘𝐵) = 𝐶)
96, 7, 8syl2anc 583 . 2 (𝜑 → ({⟨𝐵, 𝐶⟩}‘𝐵) = 𝐶)
105, 9eqtrd 2780 1 (𝜑 → (𝐹𝐵) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  cun 3974  {csn 4648  cop 4654  dom cdm 5700  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by:  bj-fvsnun2  37222  bj-fvmptunsn1  37223
  Copyright terms: Public domain W3C validator