Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fununsn2 | Structured version Visualization version GIF version |
Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-fununsn.un | ⊢ (𝜑 → 𝐹 = (𝐺 ∪ {〈𝐵, 𝐶〉})) |
bj-fununsn2.neldm | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐺) |
bj-fununsn2.ex1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
bj-fununsn2.ex2 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
bj-fununsn2 | ⊢ (𝜑 → (𝐹‘𝐵) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-fununsn.un | . . . 4 ⊢ (𝜑 → 𝐹 = (𝐺 ∪ {〈𝐵, 𝐶〉})) | |
2 | uncom 4087 | . . . 4 ⊢ (𝐺 ∪ {〈𝐵, 𝐶〉}) = ({〈𝐵, 𝐶〉} ∪ 𝐺) | |
3 | 1, 2 | eqtrdi 2794 | . . 3 ⊢ (𝜑 → 𝐹 = ({〈𝐵, 𝐶〉} ∪ 𝐺)) |
4 | bj-fununsn2.neldm | . . 3 ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐺) | |
5 | 3, 4 | bj-funun 35423 | . 2 ⊢ (𝜑 → (𝐹‘𝐵) = ({〈𝐵, 𝐶〉}‘𝐵)) |
6 | bj-fununsn2.ex1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
7 | bj-fununsn2.ex2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
8 | fvsng 7052 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ({〈𝐵, 𝐶〉}‘𝐵) = 𝐶) | |
9 | 6, 7, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → ({〈𝐵, 𝐶〉}‘𝐵) = 𝐶) |
10 | 5, 9 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐹‘𝐵) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 {csn 4561 〈cop 4567 dom cdm 5589 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: bj-fvsnun2 35427 bj-fvmptunsn1 35428 |
Copyright terms: Public domain | W3C validator |