![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fununsn2 | Structured version Visualization version GIF version |
Description: Value of a function expressed as a union of a function and a singleton on a couple (with disjoint domain) at the first component of that couple. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-fununsn.un | ⊢ (𝜑 → 𝐹 = (𝐺 ∪ {⟨𝐵, 𝐶⟩})) |
bj-fununsn2.neldm | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐺) |
bj-fununsn2.ex1 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
bj-fununsn2.ex2 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
bj-fununsn2 | ⊢ (𝜑 → (𝐹‘𝐵) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-fununsn.un | . . . 4 ⊢ (𝜑 → 𝐹 = (𝐺 ∪ {⟨𝐵, 𝐶⟩})) | |
2 | uncom 4146 | . . . 4 ⊢ (𝐺 ∪ {⟨𝐵, 𝐶⟩}) = ({⟨𝐵, 𝐶⟩} ∪ 𝐺) | |
3 | 1, 2 | eqtrdi 2781 | . . 3 ⊢ (𝜑 → 𝐹 = ({⟨𝐵, 𝐶⟩} ∪ 𝐺)) |
4 | bj-fununsn2.neldm | . . 3 ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐺) | |
5 | 3, 4 | bj-funun 36787 | . 2 ⊢ (𝜑 → (𝐹‘𝐵) = ({⟨𝐵, 𝐶⟩}‘𝐵)) |
6 | bj-fununsn2.ex1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
7 | bj-fununsn2.ex2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
8 | fvsng 7184 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ({⟨𝐵, 𝐶⟩}‘𝐵) = 𝐶) | |
9 | 6, 7, 8 | syl2anc 582 | . 2 ⊢ (𝜑 → ({⟨𝐵, 𝐶⟩}‘𝐵) = 𝐶) |
10 | 5, 9 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐹‘𝐵) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ∈ wcel 2098 ∪ cun 3938 {csn 4624 ⟨cop 4630 dom cdm 5672 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fv 6550 |
This theorem is referenced by: bj-fvsnun2 36791 bj-fvmptunsn1 36792 |
Copyright terms: Public domain | W3C validator |