![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvsnun2 | Structured version Visualization version GIF version |
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7173. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-fvsnun.un | ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) |
bj-fvsnun2.ex1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
bj-fvsnun2.ex2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
bj-fvsnun2 | ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-fvsnun.un | . 2 ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩})) | |
2 | dmres 5993 | . . . . 5 ⊢ dom (𝐹 ↾ (𝐶 ∖ {𝐴})) = ((𝐶 ∖ {𝐴}) ∩ dom 𝐹) | |
3 | inss1 4220 | . . . . 5 ⊢ ((𝐶 ∖ {𝐴}) ∩ dom 𝐹) ⊆ (𝐶 ∖ {𝐴}) | |
4 | 2, 3 | eqsstri 4008 | . . . 4 ⊢ dom (𝐹 ↾ (𝐶 ∖ {𝐴})) ⊆ (𝐶 ∖ {𝐴}) |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → dom (𝐹 ↾ (𝐶 ∖ {𝐴})) ⊆ (𝐶 ∖ {𝐴})) |
6 | neldifsnd 4788 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐶 ∖ {𝐴})) | |
7 | 5, 6 | ssneldd 3977 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ dom (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
8 | bj-fvsnun2.ex1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | bj-fvsnun2.ex2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
10 | 1, 7, 8, 9 | bj-fununsn2 36591 | 1 ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∖ cdif 3937 ∪ cun 3938 ∩ cin 3939 ⊆ wss 3940 {csn 4620 ⟨cop 4626 dom cdm 5666 ↾ cres 5668 ‘cfv 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fv 6541 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |