Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvsnun2 | Structured version Visualization version GIF version |
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7052. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-fvsnun.un | ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
bj-fvsnun2.ex1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
bj-fvsnun2.ex2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
bj-fvsnun2 | ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-fvsnun.un | . 2 ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
2 | dmres 5912 | . . . . 5 ⊢ dom (𝐹 ↾ (𝐶 ∖ {𝐴})) = ((𝐶 ∖ {𝐴}) ∩ dom 𝐹) | |
3 | inss1 4168 | . . . . 5 ⊢ ((𝐶 ∖ {𝐴}) ∩ dom 𝐹) ⊆ (𝐶 ∖ {𝐴}) | |
4 | 2, 3 | eqsstri 3960 | . . . 4 ⊢ dom (𝐹 ↾ (𝐶 ∖ {𝐴})) ⊆ (𝐶 ∖ {𝐴}) |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → dom (𝐹 ↾ (𝐶 ∖ {𝐴})) ⊆ (𝐶 ∖ {𝐴})) |
6 | neldifsnd 4732 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐶 ∖ {𝐴})) | |
7 | 5, 6 | ssneldd 3929 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ dom (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
8 | bj-fvsnun2.ex1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | bj-fvsnun2.ex2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
10 | 1, 7, 8, 9 | bj-fununsn2 35421 | 1 ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ∖ cdif 3889 ∪ cun 3890 ∩ cin 3891 ⊆ wss 3892 {csn 4567 〈cop 4573 dom cdm 5590 ↾ cres 5592 ‘cfv 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fv 6440 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |