Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvsnun2 | Structured version Visualization version GIF version |
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7037. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-fvsnun.un | ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
bj-fvsnun2.ex1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
bj-fvsnun2.ex2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
bj-fvsnun2 | ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-fvsnun.un | . 2 ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
2 | dmres 5902 | . . . . 5 ⊢ dom (𝐹 ↾ (𝐶 ∖ {𝐴})) = ((𝐶 ∖ {𝐴}) ∩ dom 𝐹) | |
3 | inss1 4159 | . . . . 5 ⊢ ((𝐶 ∖ {𝐴}) ∩ dom 𝐹) ⊆ (𝐶 ∖ {𝐴}) | |
4 | 2, 3 | eqsstri 3951 | . . . 4 ⊢ dom (𝐹 ↾ (𝐶 ∖ {𝐴})) ⊆ (𝐶 ∖ {𝐴}) |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → dom (𝐹 ↾ (𝐶 ∖ {𝐴})) ⊆ (𝐶 ∖ {𝐴})) |
6 | neldifsnd 4723 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐶 ∖ {𝐴})) | |
7 | 5, 6 | ssneldd 3920 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ dom (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
8 | bj-fvsnun2.ex1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | bj-fvsnun2.ex2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
10 | 1, 7, 8, 9 | bj-fununsn2 35352 | 1 ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 {csn 4558 〈cop 4564 dom cdm 5580 ↾ cres 5582 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |