Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fvsnun2 Structured version   Visualization version   GIF version

Theorem bj-fvsnun2 35423
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7052. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 18-Mar-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-fvsnun.un (𝜑𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
bj-fvsnun2.ex1 (𝜑𝐴𝑉)
bj-fvsnun2.ex2 (𝜑𝐵𝑊)
Assertion
Ref Expression
bj-fvsnun2 (𝜑 → (𝐺𝐴) = 𝐵)

Proof of Theorem bj-fvsnun2
StepHypRef Expression
1 bj-fvsnun.un . 2 (𝜑𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
2 dmres 5912 . . . . 5 dom (𝐹 ↾ (𝐶 ∖ {𝐴})) = ((𝐶 ∖ {𝐴}) ∩ dom 𝐹)
3 inss1 4168 . . . . 5 ((𝐶 ∖ {𝐴}) ∩ dom 𝐹) ⊆ (𝐶 ∖ {𝐴})
42, 3eqsstri 3960 . . . 4 dom (𝐹 ↾ (𝐶 ∖ {𝐴})) ⊆ (𝐶 ∖ {𝐴})
54a1i 11 . . 3 (𝜑 → dom (𝐹 ↾ (𝐶 ∖ {𝐴})) ⊆ (𝐶 ∖ {𝐴}))
6 neldifsnd 4732 . . 3 (𝜑 → ¬ 𝐴 ∈ (𝐶 ∖ {𝐴}))
75, 6ssneldd 3929 . 2 (𝜑 → ¬ 𝐴 ∈ dom (𝐹 ↾ (𝐶 ∖ {𝐴})))
8 bj-fvsnun2.ex1 . 2 (𝜑𝐴𝑉)
9 bj-fvsnun2.ex2 . 2 (𝜑𝐵𝑊)
101, 7, 8, 9bj-fununsn2 35421 1 (𝜑 → (𝐺𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  cdif 3889  cun 3890  cin 3891  wss 3892  {csn 4567  cop 4573  dom cdm 5590  cres 5592  cfv 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fv 6440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator