Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fvsnun2 Structured version   Visualization version   GIF version

Theorem bj-fvsnun2 37251
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7160. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 18-Mar-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-fvsnun.un (𝜑𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
bj-fvsnun2.ex1 (𝜑𝐴𝑉)
bj-fvsnun2.ex2 (𝜑𝐵𝑊)
Assertion
Ref Expression
bj-fvsnun2 (𝜑 → (𝐺𝐴) = 𝐵)

Proof of Theorem bj-fvsnun2
StepHypRef Expression
1 bj-fvsnun.un . 2 (𝜑𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
2 dmres 5986 . . . . 5 dom (𝐹 ↾ (𝐶 ∖ {𝐴})) = ((𝐶 ∖ {𝐴}) ∩ dom 𝐹)
3 inss1 4203 . . . . 5 ((𝐶 ∖ {𝐴}) ∩ dom 𝐹) ⊆ (𝐶 ∖ {𝐴})
42, 3eqsstri 3996 . . . 4 dom (𝐹 ↾ (𝐶 ∖ {𝐴})) ⊆ (𝐶 ∖ {𝐴})
54a1i 11 . . 3 (𝜑 → dom (𝐹 ↾ (𝐶 ∖ {𝐴})) ⊆ (𝐶 ∖ {𝐴}))
6 neldifsnd 4760 . . 3 (𝜑 → ¬ 𝐴 ∈ (𝐶 ∖ {𝐴}))
75, 6ssneldd 3952 . 2 (𝜑 → ¬ 𝐴 ∈ dom (𝐹 ↾ (𝐶 ∖ {𝐴})))
8 bj-fvsnun2.ex1 . 2 (𝜑𝐴𝑉)
9 bj-fvsnun2.ex2 . 2 (𝜑𝐵𝑊)
101, 7, 8, 9bj-fununsn2 37249 1 (𝜑 → (𝐺𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3914  cun 3915  cin 3916  wss 3917  {csn 4592  cop 4598  dom cdm 5641  cres 5643  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator