| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvsnun2 | Structured version Visualization version GIF version | ||
| Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 7180. (Contributed by NM, 23-Sep-2007.) Put in deduction form. (Revised by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-fvsnun.un | ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| bj-fvsnun2.ex1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| bj-fvsnun2.ex2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| bj-fvsnun2 | ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-fvsnun.un | . 2 ⊢ (𝜑 → 𝐺 = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
| 2 | dmres 6004 | . . . . 5 ⊢ dom (𝐹 ↾ (𝐶 ∖ {𝐴})) = ((𝐶 ∖ {𝐴}) ∩ dom 𝐹) | |
| 3 | inss1 4217 | . . . . 5 ⊢ ((𝐶 ∖ {𝐴}) ∩ dom 𝐹) ⊆ (𝐶 ∖ {𝐴}) | |
| 4 | 2, 3 | eqsstri 4010 | . . . 4 ⊢ dom (𝐹 ↾ (𝐶 ∖ {𝐴})) ⊆ (𝐶 ∖ {𝐴}) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → dom (𝐹 ↾ (𝐶 ∖ {𝐴})) ⊆ (𝐶 ∖ {𝐴})) |
| 6 | neldifsnd 4774 | . . 3 ⊢ (𝜑 → ¬ 𝐴 ∈ (𝐶 ∖ {𝐴})) | |
| 7 | 5, 6 | ssneldd 3966 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ dom (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
| 8 | bj-fvsnun2.ex1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 9 | bj-fvsnun2.ex2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 10 | 1, 7, 8, 9 | bj-fununsn2 37277 | 1 ⊢ (𝜑 → (𝐺‘𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∪ cun 3929 ∩ cin 3930 ⊆ wss 3931 {csn 4606 〈cop 4612 dom cdm 5659 ↾ cres 5661 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |