![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr2ex | Structured version Visualization version GIF version |
Description: Sethood of the second projection. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-pr2ex | ⊢ (𝐴 ∈ 𝑉 → pr2 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-pr2 36981 | . 2 ⊢ pr2 𝐴 = (1o Proj 𝐴) | |
2 | bj-projex 36961 | . 2 ⊢ (𝐴 ∈ 𝑉 → (1o Proj 𝐴) ∈ V) | |
3 | 1, 2 | eqeltrid 2848 | 1 ⊢ (𝐴 ∈ 𝑉 → pr2 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 1oc1o 8515 Proj bj-cproj 36956 pr2 bj-cpr2 36980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-bj-proj 36957 df-bj-pr2 36981 |
This theorem is referenced by: bj-2uplex 36988 |
Copyright terms: Public domain | W3C validator |