| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr2ex | Structured version Visualization version GIF version | ||
| Description: Sethood of the second projection. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-pr2ex | ⊢ (𝐴 ∈ 𝑉 → pr2 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-pr2 37080 | . 2 ⊢ pr2 𝐴 = (1o Proj 𝐴) | |
| 2 | bj-projex 37060 | . 2 ⊢ (𝐴 ∈ 𝑉 → (1o Proj 𝐴) ∈ V) | |
| 3 | 1, 2 | eqeltrid 2837 | 1 ⊢ (𝐴 ∈ 𝑉 → pr2 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 1oc1o 8384 Proj bj-cproj 37055 pr2 bj-cpr2 37079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-bj-proj 37056 df-bj-pr2 37080 |
| This theorem is referenced by: bj-2uplex 37087 |
| Copyright terms: Public domain | W3C validator |