Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr2ex Structured version   Visualization version   GIF version

Theorem bj-pr2ex 37085
Description: Sethood of the second projection. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr2ex (𝐴𝑉 → pr2 𝐴 ∈ V)

Proof of Theorem bj-pr2ex
StepHypRef Expression
1 df-bj-pr2 37080 . 2 pr2 𝐴 = (1o Proj 𝐴)
2 bj-projex 37060 . 2 (𝐴𝑉 → (1o Proj 𝐴) ∈ V)
31, 2eqeltrid 2837 1 (𝐴𝑉 → pr2 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Vcvv 3437  1oc1o 8384   Proj bj-cproj 37055  pr2 bj-cpr2 37079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-bj-proj 37056  df-bj-pr2 37080
This theorem is referenced by:  bj-2uplex  37087
  Copyright terms: Public domain W3C validator