Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-pr2ex Structured version   Visualization version   GIF version

Theorem bj-pr2ex 33956
 Description: Sethood of the second projection. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-pr2ex (𝐴𝑉 → pr2 𝐴 ∈ V)

Proof of Theorem bj-pr2ex
StepHypRef Expression
1 df-bj-pr2 33951 . 2 pr2 𝐴 = (1o Proj 𝐴)
2 bj-projex 33931 . 2 (𝐴𝑉 → (1o Proj 𝐴) ∈ V)
31, 2syl5eqel 2887 1 (𝐴𝑉 → pr2 𝐴 ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2081  Vcvv 3437  1oc1o 7946   Proj bj-cproj 33926  pr2 bj-cpr2 33950 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pr 5221  ax-un 7319 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-xp 5449  df-cnv 5451  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-bj-proj 33927  df-bj-pr2 33951 This theorem is referenced by:  bj-2uplex  33958
 Copyright terms: Public domain W3C validator