Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1502 Structured version   Visualization version   GIF version

Theorem bnj1502 34388
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1502.1 (𝜑 → Fun 𝐹)
bnj1502.2 (𝜑𝐺𝐹)
bnj1502.3 (𝜑𝐴 ∈ dom 𝐺)
Assertion
Ref Expression
bnj1502 (𝜑 → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bnj1502
StepHypRef Expression
1 bnj1502.1 . 2 (𝜑 → Fun 𝐹)
2 bnj1502.2 . 2 (𝜑𝐺𝐹)
3 bnj1502.3 . 2 (𝜑𝐴 ∈ dom 𝐺)
4 funssfv 6905 . 2 ((Fun 𝐹𝐺𝐹𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
51, 2, 3, 4syl3anc 1368 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wss 3943  dom cdm 5669  Fun wfun 6530  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-res 5681  df-iota 6488  df-fun 6538  df-fv 6544
This theorem is referenced by:  bnj570  34445  bnj929  34476  bnj1450  34590  bnj1501  34607
  Copyright terms: Public domain W3C validator