Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1502 Structured version   Visualization version   GIF version

Theorem bnj1502 34845
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1502.1 (𝜑 → Fun 𝐹)
bnj1502.2 (𝜑𝐺𝐹)
bnj1502.3 (𝜑𝐴 ∈ dom 𝐺)
Assertion
Ref Expression
bnj1502 (𝜑 → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bnj1502
StepHypRef Expression
1 bnj1502.1 . 2 (𝜑 → Fun 𝐹)
2 bnj1502.2 . 2 (𝜑𝐺𝐹)
3 bnj1502.3 . 2 (𝜑𝐴 ∈ dom 𝐺)
4 funssfv 6882 . 2 ((Fun 𝐹𝐺𝐹𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
51, 2, 3, 4syl3anc 1373 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3917  dom cdm 5641  Fun wfun 6508  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522
This theorem is referenced by:  bnj570  34902  bnj929  34933  bnj1450  35047  bnj1501  35064
  Copyright terms: Public domain W3C validator