| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1502 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1502.1 | ⊢ (𝜑 → Fun 𝐹) |
| bnj1502.2 | ⊢ (𝜑 → 𝐺 ⊆ 𝐹) |
| bnj1502.3 | ⊢ (𝜑 → 𝐴 ∈ dom 𝐺) |
| Ref | Expression |
|---|---|
| bnj1502 | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1502.1 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | bnj1502.2 | . 2 ⊢ (𝜑 → 𝐺 ⊆ 𝐹) | |
| 3 | bnj1502.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ dom 𝐺) | |
| 4 | funssfv 6843 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ∈ dom 𝐺) → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 dom cdm 5619 Fun wfun 6476 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6438 df-fun 6484 df-fv 6490 |
| This theorem is referenced by: bnj570 34888 bnj929 34919 bnj1450 35033 bnj1501 35050 |
| Copyright terms: Public domain | W3C validator |