Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1502 Structured version   Visualization version   GIF version

Theorem bnj1502 32128
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1502.1 (𝜑 → Fun 𝐹)
bnj1502.2 (𝜑𝐺𝐹)
bnj1502.3 (𝜑𝐴 ∈ dom 𝐺)
Assertion
Ref Expression
bnj1502 (𝜑 → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bnj1502
StepHypRef Expression
1 bnj1502.1 . 2 (𝜑 → Fun 𝐹)
2 bnj1502.2 . 2 (𝜑𝐺𝐹)
3 bnj1502.3 . 2 (𝜑𝐴 ∈ dom 𝐺)
4 funssfv 6667 . 2 ((Fun 𝐹𝐺𝐹𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
51, 2, 3, 4syl3anc 1367 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wss 3913  dom cdm 5531  Fun wfun 6325  cfv 6331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pr 5306
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-res 5543  df-iota 6290  df-fun 6333  df-fv 6339
This theorem is referenced by:  bnj570  32185  bnj929  32216  bnj1450  32330  bnj1501  32347
  Copyright terms: Public domain W3C validator