Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1502 Structured version   Visualization version   GIF version

Theorem bnj1502 34821
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1502.1 (𝜑 → Fun 𝐹)
bnj1502.2 (𝜑𝐺𝐹)
bnj1502.3 (𝜑𝐴 ∈ dom 𝐺)
Assertion
Ref Expression
bnj1502 (𝜑 → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bnj1502
StepHypRef Expression
1 bnj1502.1 . 2 (𝜑 → Fun 𝐹)
2 bnj1502.2 . 2 (𝜑𝐺𝐹)
3 bnj1502.3 . 2 (𝜑𝐴 ∈ dom 𝐺)
4 funssfv 6907 . 2 ((Fun 𝐹𝐺𝐹𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
51, 2, 3, 4syl3anc 1372 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wss 3931  dom cdm 5665  Fun wfun 6535  cfv 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-res 5677  df-iota 6494  df-fun 6543  df-fv 6549
This theorem is referenced by:  bnj570  34878  bnj929  34909  bnj1450  35023  bnj1501  35040
  Copyright terms: Public domain W3C validator