Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1502 Structured version   Visualization version   GIF version

Theorem bnj1502 34831
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1502.1 (𝜑 → Fun 𝐹)
bnj1502.2 (𝜑𝐺𝐹)
bnj1502.3 (𝜑𝐴 ∈ dom 𝐺)
Assertion
Ref Expression
bnj1502 (𝜑 → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bnj1502
StepHypRef Expression
1 bnj1502.1 . 2 (𝜑 → Fun 𝐹)
2 bnj1502.2 . 2 (𝜑𝐺𝐹)
3 bnj1502.3 . 2 (𝜑𝐴 ∈ dom 𝐺)
4 funssfv 6843 . 2 ((Fun 𝐹𝐺𝐹𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
51, 2, 3, 4syl3anc 1373 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3903  dom cdm 5619  Fun wfun 6476  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490
This theorem is referenced by:  bnj570  34888  bnj929  34919  bnj1450  35033  bnj1501  35050
  Copyright terms: Public domain W3C validator