![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1502 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1502.1 | ⊢ (𝜑 → Fun 𝐹) |
bnj1502.2 | ⊢ (𝜑 → 𝐺 ⊆ 𝐹) |
bnj1502.3 | ⊢ (𝜑 → 𝐴 ∈ dom 𝐺) |
Ref | Expression |
---|---|
bnj1502 | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1502.1 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
2 | bnj1502.2 | . 2 ⊢ (𝜑 → 𝐺 ⊆ 𝐹) | |
3 | bnj1502.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ dom 𝐺) | |
4 | funssfv 6935 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ∈ dom 𝐺) → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
5 | 1, 2, 3, 4 | syl3anc 1372 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3966 dom cdm 5693 Fun wfun 6563 ‘cfv 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-res 5705 df-iota 6522 df-fun 6571 df-fv 6577 |
This theorem is referenced by: bnj570 34912 bnj929 34943 bnj1450 35057 bnj1501 35074 |
Copyright terms: Public domain | W3C validator |