Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fun2ssres | Structured version Visualization version GIF version |
Description: Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
fun2ssres | ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resabs1 5918 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐺 → ((𝐹 ↾ dom 𝐺) ↾ 𝐴) = (𝐹 ↾ 𝐴)) | |
2 | 1 | eqcomd 2745 | . . 3 ⊢ (𝐴 ⊆ dom 𝐺 → (𝐹 ↾ 𝐴) = ((𝐹 ↾ dom 𝐺) ↾ 𝐴)) |
3 | funssres 6474 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | |
4 | 3 | reseq1d 5887 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → ((𝐹 ↾ dom 𝐺) ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
5 | 2, 4 | sylan9eqr 2801 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
6 | 5 | 3impa 1108 | 1 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ⊆ wss 3891 dom cdm 5588 ↾ cres 5590 Fun wfun 6424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-res 5600 df-fun 6432 |
This theorem is referenced by: frrlem10 8095 frrlem12 8097 fprresex 8110 wfrlem12OLD 8135 wfrlem14OLD 8137 wfrlem17OLD 8140 tfrlem9 8200 tfrlem9a 8201 tfrlem11 8203 bnj1503 32808 |
Copyright terms: Public domain | W3C validator |