![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fun2ssres | Structured version Visualization version GIF version |
Description: Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
fun2ssres | ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resabs1 6036 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐺 → ((𝐹 ↾ dom 𝐺) ↾ 𝐴) = (𝐹 ↾ 𝐴)) | |
2 | 1 | eqcomd 2746 | . . 3 ⊢ (𝐴 ⊆ dom 𝐺 → (𝐹 ↾ 𝐴) = ((𝐹 ↾ dom 𝐺) ↾ 𝐴)) |
3 | funssres 6622 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | |
4 | 3 | reseq1d 6008 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → ((𝐹 ↾ dom 𝐺) ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
5 | 2, 4 | sylan9eqr 2802 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
6 | 5 | 3impa 1110 | 1 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ⊆ wss 3976 dom cdm 5700 ↾ cres 5702 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-fun 6575 |
This theorem is referenced by: frrlem10 8336 frrlem12 8338 fprresex 8351 wfrlem12OLD 8376 wfrlem14OLD 8378 wfrlem17OLD 8381 tfrlem9 8441 tfrlem9a 8442 tfrlem11 8444 bnj1503 34825 |
Copyright terms: Public domain | W3C validator |