![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fun2ssres | Structured version Visualization version GIF version |
Description: Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
fun2ssres | ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resabs1 6004 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐺 → ((𝐹 ↾ dom 𝐺) ↾ 𝐴) = (𝐹 ↾ 𝐴)) | |
2 | 1 | eqcomd 2731 | . . 3 ⊢ (𝐴 ⊆ dom 𝐺 → (𝐹 ↾ 𝐴) = ((𝐹 ↾ dom 𝐺) ↾ 𝐴)) |
3 | funssres 6590 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | |
4 | 3 | reseq1d 5976 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → ((𝐹 ↾ dom 𝐺) ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
5 | 2, 4 | sylan9eqr 2787 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
6 | 5 | 3impa 1107 | 1 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ⊆ wss 3939 dom cdm 5670 ↾ cres 5672 Fun wfun 6535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pr 5421 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-br 5142 df-opab 5204 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-res 5682 df-fun 6543 |
This theorem is referenced by: frrlem10 8297 frrlem12 8299 fprresex 8312 wfrlem12OLD 8337 wfrlem14OLD 8339 wfrlem17OLD 8342 tfrlem9 8402 tfrlem9a 8403 tfrlem11 8405 bnj1503 34509 |
Copyright terms: Public domain | W3C validator |