| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fun2ssres | Structured version Visualization version GIF version | ||
| Description: Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.) |
| Ref | Expression |
|---|---|
| fun2ssres | ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resabs1 6006 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐺 → ((𝐹 ↾ dom 𝐺) ↾ 𝐴) = (𝐹 ↾ 𝐴)) | |
| 2 | 1 | eqcomd 2740 | . . 3 ⊢ (𝐴 ⊆ dom 𝐺 → (𝐹 ↾ 𝐴) = ((𝐹 ↾ dom 𝐺) ↾ 𝐴)) |
| 3 | funssres 6591 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | |
| 4 | 3 | reseq1d 5978 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → ((𝐹 ↾ dom 𝐺) ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
| 5 | 2, 4 | sylan9eqr 2791 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
| 6 | 5 | 3impa 1109 | 1 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ⊆ dom 𝐺) → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ⊆ wss 3933 dom cdm 5667 ↾ cres 5669 Fun wfun 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-res 5679 df-fun 6544 |
| This theorem is referenced by: frrlem10 8303 frrlem12 8305 fprresex 8318 wfrlem12OLD 8343 wfrlem14OLD 8345 wfrlem17OLD 8348 tfrlem9 8408 tfrlem9a 8409 tfrlem11 8411 bnj1503 34804 |
| Copyright terms: Public domain | W3C validator |