MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun2ssres Structured version   Visualization version   GIF version

Theorem fun2ssres 6587
Description: Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
fun2ssres ((Fun 𝐹𝐺𝐹𝐴 ⊆ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem fun2ssres
StepHypRef Expression
1 resabs1 6005 . . . 4 (𝐴 ⊆ dom 𝐺 → ((𝐹 ↾ dom 𝐺) ↾ 𝐴) = (𝐹𝐴))
21eqcomd 2732 . . 3 (𝐴 ⊆ dom 𝐺 → (𝐹𝐴) = ((𝐹 ↾ dom 𝐺) ↾ 𝐴))
3 funssres 6586 . . . 4 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
43reseq1d 5974 . . 3 ((Fun 𝐹𝐺𝐹) → ((𝐹 ↾ dom 𝐺) ↾ 𝐴) = (𝐺𝐴))
52, 4sylan9eqr 2788 . 2 (((Fun 𝐹𝐺𝐹) ∧ 𝐴 ⊆ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
653impa 1107 1 ((Fun 𝐹𝐺𝐹𝐴 ⊆ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wss 3943  dom cdm 5669  cres 5671  Fun wfun 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-res 5681  df-fun 6539
This theorem is referenced by:  frrlem10  8281  frrlem12  8283  fprresex  8296  wfrlem12OLD  8321  wfrlem14OLD  8323  wfrlem17OLD  8326  tfrlem9  8386  tfrlem9a  8387  tfrlem11  8389  bnj1503  34389
  Copyright terms: Public domain W3C validator