MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fun2ssres Structured version   Visualization version   GIF version

Theorem fun2ssres 6425
Description: Equality of restrictions of a function and a subclass. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
fun2ssres ((Fun 𝐹𝐺𝐹𝐴 ⊆ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem fun2ssres
StepHypRef Expression
1 resabs1 5881 . . . 4 (𝐴 ⊆ dom 𝐺 → ((𝐹 ↾ dom 𝐺) ↾ 𝐴) = (𝐹𝐴))
21eqcomd 2743 . . 3 (𝐴 ⊆ dom 𝐺 → (𝐹𝐴) = ((𝐹 ↾ dom 𝐺) ↾ 𝐴))
3 funssres 6424 . . . 4 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
43reseq1d 5850 . . 3 ((Fun 𝐹𝐺𝐹) → ((𝐹 ↾ dom 𝐺) ↾ 𝐴) = (𝐺𝐴))
52, 4sylan9eqr 2800 . 2 (((Fun 𝐹𝐺𝐹) ∧ 𝐴 ⊆ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
653impa 1112 1 ((Fun 𝐹𝐺𝐹𝐴 ⊆ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wss 3866  dom cdm 5551  cres 5553  Fun wfun 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-res 5563  df-fun 6382
This theorem is referenced by:  frrlem10  8036  frrlem12  8038  wfrlem12  8066  wfrlem14  8068  wfrlem17  8071  tfrlem9  8121  tfrlem9a  8122  tfrlem11  8124  bnj1503  32542
  Copyright terms: Public domain W3C validator