MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfres Structured version   Visualization version   GIF version

Theorem nfres 5936
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
nfres.1 𝑥𝐴
nfres.2 𝑥𝐵
Assertion
Ref Expression
nfres 𝑥(𝐴𝐵)

Proof of Theorem nfres
StepHypRef Expression
1 df-res 5635 . 2 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 nfres.1 . . 3 𝑥𝐴
3 nfres.2 . . . 4 𝑥𝐵
4 nfcv 2891 . . . 4 𝑥V
53, 4nfxp 5656 . . 3 𝑥(𝐵 × V)
62, 5nfin 4177 . 2 𝑥(𝐴 ∩ (𝐵 × V))
71, 6nfcxfr 2889 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2876  Vcvv 3438  cin 3904   × cxp 5621  cres 5625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-v 3440  df-in 3912  df-opab 5158  df-xp 5629  df-res 5635
This theorem is referenced by:  nfima  6023  nffrecs  8223  frsucmpt  8367  frsucmptn  8368  nfoi  9425  prdsdsf  24271  prdsxmet  24273  limciun  25811  nosupbnd2  27644  noinfbnd2  27659  2ndresdju  32606  gsumpart  33023  bnj1446  35014  bnj1447  35015  bnj1448  35016  bnj1466  35022  bnj1467  35023  bnj1519  35034  bnj1520  35035  bnj1529  35039  feqresmptf  45212  limcperiod  45613  xlimconst2  45820  cncfiooicclem1  45878  stoweidlem28  46013  nfdfat  47115  setrec2lem2  49683  setrec2  49684
  Copyright terms: Public domain W3C validator