![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfres | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
nfres.1 | ⊢ Ⅎ𝑥𝐴 |
nfres.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfres | ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5712 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | nfres.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfres.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥V | |
5 | 3, 4 | nfxp 5733 | . . 3 ⊢ Ⅎ𝑥(𝐵 × V) |
6 | 2, 5 | nfin 4245 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (𝐵 × V)) |
7 | 1, 6 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2893 Vcvv 3488 ∩ cin 3975 × cxp 5698 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-v 3490 df-in 3983 df-opab 5229 df-xp 5706 df-res 5712 |
This theorem is referenced by: nfima 6097 nffrecs 8324 nfwrecsOLD 8358 frsucmpt 8494 frsucmptn 8495 nfoi 9583 prdsdsf 24398 prdsxmet 24400 limciun 25949 nosupbnd2 27779 noinfbnd2 27794 2ndresdju 32667 gsumpart 33038 bnj1446 35021 bnj1447 35022 bnj1448 35023 bnj1466 35029 bnj1467 35030 bnj1519 35041 bnj1520 35042 bnj1529 35046 feqresmptf 45138 limcperiod 45549 xlimconst2 45756 cncfiooicclem1 45814 stoweidlem28 45949 nfdfat 47042 setrec2lem2 48786 setrec2 48787 |
Copyright terms: Public domain | W3C validator |