| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfres | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| nfres.1 | ⊢ Ⅎ𝑥𝐴 |
| nfres.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfres | ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5633 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | nfres.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfres.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | nfcv 2895 | . . . 4 ⊢ Ⅎ𝑥V | |
| 5 | 3, 4 | nfxp 5654 | . . 3 ⊢ Ⅎ𝑥(𝐵 × V) |
| 6 | 2, 5 | nfin 4173 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (𝐵 × V)) |
| 7 | 1, 6 | nfcxfr 2893 | 1 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2880 Vcvv 3437 ∩ cin 3897 × cxp 5619 ↾ cres 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-v 3439 df-in 3905 df-opab 5158 df-xp 5627 df-res 5633 |
| This theorem is referenced by: nfima 6024 nffrecs 8222 frsucmpt 8366 frsucmptn 8367 nfoi 9411 prdsdsf 24302 prdsxmet 24304 limciun 25842 nosupbnd2 27675 noinfbnd2 27690 2ndresdju 32653 gsumpart 33074 bnj1446 35129 bnj1447 35130 bnj1448 35131 bnj1466 35137 bnj1467 35138 bnj1519 35149 bnj1520 35150 bnj1529 35154 feqresmptf 45391 limcperiod 45790 xlimconst2 45995 cncfiooicclem1 46053 stoweidlem28 46188 nfdfat 47289 setrec2lem2 49855 setrec2 49856 |
| Copyright terms: Public domain | W3C validator |