| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfres | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| nfres.1 | ⊢ Ⅎ𝑥𝐴 |
| nfres.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfres | ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5653 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | nfres.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfres.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥V | |
| 5 | 3, 4 | nfxp 5674 | . . 3 ⊢ Ⅎ𝑥(𝐵 × V) |
| 6 | 2, 5 | nfin 4190 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (𝐵 × V)) |
| 7 | 1, 6 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2877 Vcvv 3450 ∩ cin 3916 × cxp 5639 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-v 3452 df-in 3924 df-opab 5173 df-xp 5647 df-res 5653 |
| This theorem is referenced by: nfima 6042 nffrecs 8265 frsucmpt 8409 frsucmptn 8410 nfoi 9474 prdsdsf 24262 prdsxmet 24264 limciun 25802 nosupbnd2 27635 noinfbnd2 27650 2ndresdju 32580 gsumpart 33004 bnj1446 35042 bnj1447 35043 bnj1448 35044 bnj1466 35050 bnj1467 35051 bnj1519 35062 bnj1520 35063 bnj1529 35067 feqresmptf 45232 limcperiod 45633 xlimconst2 45840 cncfiooicclem1 45898 stoweidlem28 46033 nfdfat 47132 setrec2lem2 49687 setrec2 49688 |
| Copyright terms: Public domain | W3C validator |