Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfres | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
nfres.1 | ⊢ Ⅎ𝑥𝐴 |
nfres.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfres | ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5601 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | nfres.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfres.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑥V | |
5 | 3, 4 | nfxp 5622 | . . 3 ⊢ Ⅎ𝑥(𝐵 × V) |
6 | 2, 5 | nfin 4150 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (𝐵 × V)) |
7 | 1, 6 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2887 Vcvv 3432 ∩ cin 3886 × cxp 5587 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-in 3894 df-opab 5137 df-xp 5595 df-res 5601 |
This theorem is referenced by: nfima 5977 nffrecs 8099 nfwrecsOLD 8133 frsucmpt 8269 frsucmptn 8270 nfoi 9273 prdsdsf 23520 prdsxmet 23522 limciun 25058 2ndresdju 30986 gsumpart 31315 bnj1446 33025 bnj1447 33026 bnj1448 33027 bnj1466 33033 bnj1467 33034 bnj1519 33045 bnj1520 33046 bnj1529 33050 nosupbnd2 33919 noinfbnd2 33934 feqresmptf 42772 limcperiod 43169 xlimconst2 43376 cncfiooicclem1 43434 stoweidlem28 43569 nfdfat 44619 setrec2lem2 46400 setrec2 46401 |
Copyright terms: Public domain | W3C validator |