MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfres Structured version   Visualization version   GIF version

Theorem nfres 5968
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
nfres.1 𝑥𝐴
nfres.2 𝑥𝐵
Assertion
Ref Expression
nfres 𝑥(𝐴𝐵)

Proof of Theorem nfres
StepHypRef Expression
1 df-res 5666 . 2 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 nfres.1 . . 3 𝑥𝐴
3 nfres.2 . . . 4 𝑥𝐵
4 nfcv 2898 . . . 4 𝑥V
53, 4nfxp 5687 . . 3 𝑥(𝐵 × V)
62, 5nfin 4199 . 2 𝑥(𝐴 ∩ (𝐵 × V))
71, 6nfcxfr 2896 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2883  Vcvv 3459  cin 3925   × cxp 5652  cres 5656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-v 3461  df-in 3933  df-opab 5182  df-xp 5660  df-res 5666
This theorem is referenced by:  nfima  6055  nffrecs  8282  nfwrecsOLD  8316  frsucmpt  8452  frsucmptn  8453  nfoi  9528  prdsdsf  24306  prdsxmet  24308  limciun  25847  nosupbnd2  27680  noinfbnd2  27695  2ndresdju  32627  gsumpart  33051  bnj1446  35076  bnj1447  35077  bnj1448  35078  bnj1466  35084  bnj1467  35085  bnj1519  35096  bnj1520  35097  bnj1529  35101  feqresmptf  45255  limcperiod  45657  xlimconst2  45864  cncfiooicclem1  45922  stoweidlem28  46057  nfdfat  47156  setrec2lem2  49558  setrec2  49559
  Copyright terms: Public domain W3C validator