MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfres Structured version   Visualization version   GIF version

Theorem nfres 5937
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
nfres.1 𝑥𝐴
nfres.2 𝑥𝐵
Assertion
Ref Expression
nfres 𝑥(𝐴𝐵)

Proof of Theorem nfres
StepHypRef Expression
1 df-res 5633 . 2 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 nfres.1 . . 3 𝑥𝐴
3 nfres.2 . . . 4 𝑥𝐵
4 nfcv 2895 . . . 4 𝑥V
53, 4nfxp 5654 . . 3 𝑥(𝐵 × V)
62, 5nfin 4173 . 2 𝑥(𝐴 ∩ (𝐵 × V))
71, 6nfcxfr 2893 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2880  Vcvv 3437  cin 3897   × cxp 5619  cres 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-v 3439  df-in 3905  df-opab 5158  df-xp 5627  df-res 5633
This theorem is referenced by:  nfima  6024  nffrecs  8222  frsucmpt  8366  frsucmptn  8367  nfoi  9411  prdsdsf  24302  prdsxmet  24304  limciun  25842  nosupbnd2  27675  noinfbnd2  27690  2ndresdju  32653  gsumpart  33074  bnj1446  35129  bnj1447  35130  bnj1448  35131  bnj1466  35137  bnj1467  35138  bnj1519  35149  bnj1520  35150  bnj1529  35154  feqresmptf  45391  limcperiod  45790  xlimconst2  45995  cncfiooicclem1  46053  stoweidlem28  46188  nfdfat  47289  setrec2lem2  49855  setrec2  49856
  Copyright terms: Public domain W3C validator