MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfres Structured version   Visualization version   GIF version

Theorem nfres 6011
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
nfres.1 𝑥𝐴
nfres.2 𝑥𝐵
Assertion
Ref Expression
nfres 𝑥(𝐴𝐵)

Proof of Theorem nfres
StepHypRef Expression
1 df-res 5712 . 2 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 nfres.1 . . 3 𝑥𝐴
3 nfres.2 . . . 4 𝑥𝐵
4 nfcv 2908 . . . 4 𝑥V
53, 4nfxp 5733 . . 3 𝑥(𝐵 × V)
62, 5nfin 4245 . 2 𝑥(𝐴 ∩ (𝐵 × V))
71, 6nfcxfr 2906 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2893  Vcvv 3488  cin 3975   × cxp 5698  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490  df-in 3983  df-opab 5229  df-xp 5706  df-res 5712
This theorem is referenced by:  nfima  6097  nffrecs  8324  nfwrecsOLD  8358  frsucmpt  8494  frsucmptn  8495  nfoi  9583  prdsdsf  24398  prdsxmet  24400  limciun  25949  nosupbnd2  27779  noinfbnd2  27794  2ndresdju  32667  gsumpart  33038  bnj1446  35021  bnj1447  35022  bnj1448  35023  bnj1466  35029  bnj1467  35030  bnj1519  35041  bnj1520  35042  bnj1529  35046  feqresmptf  45138  limcperiod  45549  xlimconst2  45756  cncfiooicclem1  45814  stoweidlem28  45949  nfdfat  47042  setrec2lem2  48786  setrec2  48787
  Copyright terms: Public domain W3C validator