Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfres | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
nfres.1 | ⊢ Ⅎ𝑥𝐴 |
nfres.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfres | ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5592 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | nfres.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfres.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑥V | |
5 | 3, 4 | nfxp 5613 | . . 3 ⊢ Ⅎ𝑥(𝐵 × V) |
6 | 2, 5 | nfin 4147 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (𝐵 × V)) |
7 | 1, 6 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2886 Vcvv 3422 ∩ cin 3882 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-in 3890 df-opab 5133 df-xp 5586 df-res 5592 |
This theorem is referenced by: nfima 5966 nffrecs 8070 nfwrecsOLD 8104 frsucmpt 8239 frsucmptn 8240 nfoi 9203 trpredlem1 9405 trpredrec 9415 prdsdsf 23428 prdsxmet 23430 limciun 24963 2ndresdju 30887 gsumpart 31217 bnj1446 32925 bnj1447 32926 bnj1448 32927 bnj1466 32933 bnj1467 32934 bnj1519 32945 bnj1520 32946 bnj1529 32950 nosupbnd2 33846 noinfbnd2 33861 feqresmptf 42661 limcperiod 43059 xlimconst2 43266 cncfiooicclem1 43324 stoweidlem28 43459 nfdfat 44506 setrec2lem2 46286 setrec2 46287 |
Copyright terms: Public domain | W3C validator |