MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfres Structured version   Visualization version   GIF version

Theorem nfres 5952
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
nfres.1 𝑥𝐴
nfres.2 𝑥𝐵
Assertion
Ref Expression
nfres 𝑥(𝐴𝐵)

Proof of Theorem nfres
StepHypRef Expression
1 df-res 5650 . 2 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 nfres.1 . . 3 𝑥𝐴
3 nfres.2 . . . 4 𝑥𝐵
4 nfcv 2891 . . . 4 𝑥V
53, 4nfxp 5671 . . 3 𝑥(𝐵 × V)
62, 5nfin 4187 . 2 𝑥(𝐴 ∩ (𝐵 × V))
71, 6nfcxfr 2889 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2876  Vcvv 3447  cin 3913   × cxp 5636  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-v 3449  df-in 3921  df-opab 5170  df-xp 5644  df-res 5650
This theorem is referenced by:  nfima  6039  nffrecs  8262  frsucmpt  8406  frsucmptn  8407  nfoi  9467  prdsdsf  24255  prdsxmet  24257  limciun  25795  nosupbnd2  27628  noinfbnd2  27643  2ndresdju  32573  gsumpart  32997  bnj1446  35035  bnj1447  35036  bnj1448  35037  bnj1466  35043  bnj1467  35044  bnj1519  35055  bnj1520  35056  bnj1529  35060  feqresmptf  45225  limcperiod  45626  xlimconst2  45833  cncfiooicclem1  45891  stoweidlem28  46026  nfdfat  47128  setrec2lem2  49683  setrec2  49684
  Copyright terms: Public domain W3C validator