![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfres | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
nfres.1 | ⊢ Ⅎ𝑥𝐴 |
nfres.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfres | ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5689 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | nfres.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfres.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥V | |
5 | 3, 4 | nfxp 5710 | . . 3 ⊢ Ⅎ𝑥(𝐵 × V) |
6 | 2, 5 | nfin 4217 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (𝐵 × V)) |
7 | 1, 6 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2884 Vcvv 3475 ∩ cin 3948 × cxp 5675 ↾ cres 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 df-in 3956 df-opab 5212 df-xp 5683 df-res 5689 |
This theorem is referenced by: nfima 6068 nffrecs 8268 nfwrecsOLD 8302 frsucmpt 8438 frsucmptn 8439 nfoi 9509 prdsdsf 23873 prdsxmet 23875 limciun 25411 nosupbnd2 27219 noinfbnd2 27234 2ndresdju 31874 gsumpart 32207 bnj1446 34056 bnj1447 34057 bnj1448 34058 bnj1466 34064 bnj1467 34065 bnj1519 34076 bnj1520 34077 bnj1529 34081 feqresmptf 43931 limcperiod 44344 xlimconst2 44551 cncfiooicclem1 44609 stoweidlem28 44744 nfdfat 45835 setrec2lem2 47739 setrec2 47740 |
Copyright terms: Public domain | W3C validator |