| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfres | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| nfres.1 | ⊢ Ⅎ𝑥𝐴 |
| nfres.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfres | ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5666 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | nfres.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfres.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑥V | |
| 5 | 3, 4 | nfxp 5687 | . . 3 ⊢ Ⅎ𝑥(𝐵 × V) |
| 6 | 2, 5 | nfin 4199 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (𝐵 × V)) |
| 7 | 1, 6 | nfcxfr 2896 | 1 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2883 Vcvv 3459 ∩ cin 3925 × cxp 5652 ↾ cres 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-v 3461 df-in 3933 df-opab 5182 df-xp 5660 df-res 5666 |
| This theorem is referenced by: nfima 6055 nffrecs 8282 nfwrecsOLD 8316 frsucmpt 8452 frsucmptn 8453 nfoi 9528 prdsdsf 24306 prdsxmet 24308 limciun 25847 nosupbnd2 27680 noinfbnd2 27695 2ndresdju 32627 gsumpart 33051 bnj1446 35076 bnj1447 35077 bnj1448 35078 bnj1466 35084 bnj1467 35085 bnj1519 35096 bnj1520 35097 bnj1529 35101 feqresmptf 45255 limcperiod 45657 xlimconst2 45864 cncfiooicclem1 45922 stoweidlem28 46057 nfdfat 47156 setrec2lem2 49558 setrec2 49559 |
| Copyright terms: Public domain | W3C validator |