| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfres | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| nfres.1 | ⊢ Ⅎ𝑥𝐴 |
| nfres.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfres | ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5650 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | nfres.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfres.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥V | |
| 5 | 3, 4 | nfxp 5671 | . . 3 ⊢ Ⅎ𝑥(𝐵 × V) |
| 6 | 2, 5 | nfin 4187 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (𝐵 × V)) |
| 7 | 1, 6 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 Vcvv 3447 ∩ cin 3913 × cxp 5636 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3449 df-in 3921 df-opab 5170 df-xp 5644 df-res 5650 |
| This theorem is referenced by: nfima 6039 nffrecs 8262 frsucmpt 8406 frsucmptn 8407 nfoi 9467 prdsdsf 24255 prdsxmet 24257 limciun 25795 nosupbnd2 27628 noinfbnd2 27643 2ndresdju 32573 gsumpart 32997 bnj1446 35035 bnj1447 35036 bnj1448 35037 bnj1466 35043 bnj1467 35044 bnj1519 35055 bnj1520 35056 bnj1529 35060 feqresmptf 45225 limcperiod 45626 xlimconst2 45833 cncfiooicclem1 45891 stoweidlem28 46026 nfdfat 47128 setrec2lem2 49683 setrec2 49684 |
| Copyright terms: Public domain | W3C validator |