| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfres | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| nfres.1 | ⊢ Ⅎ𝑥𝐴 |
| nfres.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfres | ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5643 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | nfres.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfres.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥V | |
| 5 | 3, 4 | nfxp 5664 | . . 3 ⊢ Ⅎ𝑥(𝐵 × V) |
| 6 | 2, 5 | nfin 4183 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (𝐵 × V)) |
| 7 | 1, 6 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 Vcvv 3444 ∩ cin 3910 × cxp 5629 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3446 df-in 3918 df-opab 5165 df-xp 5637 df-res 5643 |
| This theorem is referenced by: nfima 6028 nffrecs 8239 frsucmpt 8383 frsucmptn 8384 nfoi 9443 prdsdsf 24231 prdsxmet 24233 limciun 25771 nosupbnd2 27604 noinfbnd2 27619 2ndresdju 32546 gsumpart 32970 bnj1446 35008 bnj1447 35009 bnj1448 35010 bnj1466 35016 bnj1467 35017 bnj1519 35028 bnj1520 35029 bnj1529 35033 feqresmptf 45198 limcperiod 45599 xlimconst2 45806 cncfiooicclem1 45864 stoweidlem28 45999 nfdfat 47101 setrec2lem2 49656 setrec2 49657 |
| Copyright terms: Public domain | W3C validator |