Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfres | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
nfres.1 | ⊢ Ⅎ𝑥𝐴 |
nfres.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfres | ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5536 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | nfres.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfres.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | nfcv 2919 | . . . 4 ⊢ Ⅎ𝑥V | |
5 | 3, 4 | nfxp 5557 | . . 3 ⊢ Ⅎ𝑥(𝐵 × V) |
6 | 2, 5 | nfin 4121 | . 2 ⊢ Ⅎ𝑥(𝐴 ∩ (𝐵 × V)) |
7 | 1, 6 | nfcxfr 2917 | 1 ⊢ Ⅎ𝑥(𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2899 Vcvv 3409 ∩ cin 3857 × cxp 5522 ↾ cres 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-rab 3079 df-in 3865 df-opab 5095 df-xp 5530 df-res 5536 |
This theorem is referenced by: nfima 5909 nfwrecs 7959 frsucmpt 8083 frsucmptn 8084 nfoi 9011 prdsdsf 23069 prdsxmet 23071 limciun 24593 2ndresdju 30509 gsumpart 30841 bnj1446 32545 bnj1447 32546 bnj1448 32547 bnj1466 32553 bnj1467 32554 bnj1519 32565 bnj1520 32566 bnj1529 32570 trpredlem1 33313 trpredrec 33324 nffrecs 33381 nosupbnd2 33484 noinfbnd2 33499 feqresmptf 42233 limcperiod 42636 xlimconst2 42843 cncfiooicclem1 42901 stoweidlem28 43036 nfdfat 44051 setrec2lem2 45615 setrec2 45616 |
Copyright terms: Public domain | W3C validator |