MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfres Structured version   Visualization version   GIF version

Theorem nfres 5941
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
nfres.1 𝑥𝐴
nfres.2 𝑥𝐵
Assertion
Ref Expression
nfres 𝑥(𝐴𝐵)

Proof of Theorem nfres
StepHypRef Expression
1 df-res 5643 . 2 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 nfres.1 . . 3 𝑥𝐴
3 nfres.2 . . . 4 𝑥𝐵
4 nfcv 2891 . . . 4 𝑥V
53, 4nfxp 5664 . . 3 𝑥(𝐵 × V)
62, 5nfin 4183 . 2 𝑥(𝐴 ∩ (𝐵 × V))
71, 6nfcxfr 2889 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2876  Vcvv 3444  cin 3910   × cxp 5629  cres 5633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-v 3446  df-in 3918  df-opab 5165  df-xp 5637  df-res 5643
This theorem is referenced by:  nfima  6028  nffrecs  8239  frsucmpt  8383  frsucmptn  8384  nfoi  9443  prdsdsf  24231  prdsxmet  24233  limciun  25771  nosupbnd2  27604  noinfbnd2  27619  2ndresdju  32546  gsumpart  32970  bnj1446  35008  bnj1447  35009  bnj1448  35010  bnj1466  35016  bnj1467  35017  bnj1519  35028  bnj1520  35029  bnj1529  35033  feqresmptf  45198  limcperiod  45599  xlimconst2  45806  cncfiooicclem1  45864  stoweidlem28  45999  nfdfat  47101  setrec2lem2  49656  setrec2  49657
  Copyright terms: Public domain W3C validator