MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfres Structured version   Visualization version   GIF version

Theorem nfres 5984
Description: Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
nfres.1 𝑥𝐴
nfres.2 𝑥𝐵
Assertion
Ref Expression
nfres 𝑥(𝐴𝐵)

Proof of Theorem nfres
StepHypRef Expression
1 df-res 5689 . 2 (𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
2 nfres.1 . . 3 𝑥𝐴
3 nfres.2 . . . 4 𝑥𝐵
4 nfcv 2904 . . . 4 𝑥V
53, 4nfxp 5710 . . 3 𝑥(𝐵 × V)
62, 5nfin 4217 . 2 𝑥(𝐴 ∩ (𝐵 × V))
71, 6nfcxfr 2902 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2884  Vcvv 3475  cin 3948   × cxp 5675  cres 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-rab 3434  df-in 3956  df-opab 5212  df-xp 5683  df-res 5689
This theorem is referenced by:  nfima  6068  nffrecs  8268  nfwrecsOLD  8302  frsucmpt  8438  frsucmptn  8439  nfoi  9509  prdsdsf  23873  prdsxmet  23875  limciun  25411  nosupbnd2  27219  noinfbnd2  27234  2ndresdju  31874  gsumpart  32207  bnj1446  34056  bnj1447  34057  bnj1448  34058  bnj1466  34064  bnj1467  34065  bnj1519  34076  bnj1520  34077  bnj1529  34081  feqresmptf  43931  limcperiod  44344  xlimconst2  44551  cncfiooicclem1  44609  stoweidlem28  44744  nfdfat  45835  setrec2lem2  47739  setrec2  47740
  Copyright terms: Public domain W3C validator