Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erlcl1 Structured version   Visualization version   GIF version

Theorem erlcl1 33218
Description: Closure for the ring localization equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
erlcl1.b 𝐵 = (Base‘𝑅)
erlcl1.e = (𝑅 ~RL 𝑆)
erlcl1.s (𝜑𝑆𝐵)
erlcl1.1 (𝜑𝑈 𝑉)
Assertion
Ref Expression
erlcl1 (𝜑𝑈 ∈ (𝐵 × 𝑆))

Proof of Theorem erlcl1
Dummy variables 𝑎 𝑏 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erlcl1.1 . . 3 (𝜑𝑈 𝑉)
2 erlcl1.e . . . . 5 = (𝑅 ~RL 𝑆)
3 erlcl1.b . . . . . 6 𝐵 = (Base‘𝑅)
4 eqid 2730 . . . . . 6 (0g𝑅) = (0g𝑅)
5 eqid 2730 . . . . . 6 (.r𝑅) = (.r𝑅)
6 eqid 2730 . . . . . 6 (-g𝑅) = (-g𝑅)
7 eqid 2730 . . . . . 6 (𝐵 × 𝑆) = (𝐵 × 𝑆)
8 eqid 2730 . . . . . 6 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡𝑆 (𝑡(.r𝑅)(((1st𝑎)(.r𝑅)(2nd𝑏))(-g𝑅)((1st𝑏)(.r𝑅)(2nd𝑎)))) = (0g𝑅))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡𝑆 (𝑡(.r𝑅)(((1st𝑎)(.r𝑅)(2nd𝑏))(-g𝑅)((1st𝑏)(.r𝑅)(2nd𝑎)))) = (0g𝑅))}
9 erlcl1.s . . . . . 6 (𝜑𝑆𝐵)
103, 4, 5, 6, 7, 8, 9erlval 33216 . . . . 5 (𝜑 → (𝑅 ~RL 𝑆) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡𝑆 (𝑡(.r𝑅)(((1st𝑎)(.r𝑅)(2nd𝑏))(-g𝑅)((1st𝑏)(.r𝑅)(2nd𝑎)))) = (0g𝑅))})
112, 10eqtrid 2777 . . . 4 (𝜑 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡𝑆 (𝑡(.r𝑅)(((1st𝑎)(.r𝑅)(2nd𝑏))(-g𝑅)((1st𝑏)(.r𝑅)(2nd𝑎)))) = (0g𝑅))})
12 simpl 482 . . . . . . . . . . 11 ((𝑎 = 𝑈𝑏 = 𝑉) → 𝑎 = 𝑈)
1312fveq2d 6865 . . . . . . . . . 10 ((𝑎 = 𝑈𝑏 = 𝑉) → (1st𝑎) = (1st𝑈))
14 simpr 484 . . . . . . . . . . 11 ((𝑎 = 𝑈𝑏 = 𝑉) → 𝑏 = 𝑉)
1514fveq2d 6865 . . . . . . . . . 10 ((𝑎 = 𝑈𝑏 = 𝑉) → (2nd𝑏) = (2nd𝑉))
1613, 15oveq12d 7408 . . . . . . . . 9 ((𝑎 = 𝑈𝑏 = 𝑉) → ((1st𝑎)(.r𝑅)(2nd𝑏)) = ((1st𝑈)(.r𝑅)(2nd𝑉)))
1714fveq2d 6865 . . . . . . . . . 10 ((𝑎 = 𝑈𝑏 = 𝑉) → (1st𝑏) = (1st𝑉))
1812fveq2d 6865 . . . . . . . . . 10 ((𝑎 = 𝑈𝑏 = 𝑉) → (2nd𝑎) = (2nd𝑈))
1917, 18oveq12d 7408 . . . . . . . . 9 ((𝑎 = 𝑈𝑏 = 𝑉) → ((1st𝑏)(.r𝑅)(2nd𝑎)) = ((1st𝑉)(.r𝑅)(2nd𝑈)))
2016, 19oveq12d 7408 . . . . . . . 8 ((𝑎 = 𝑈𝑏 = 𝑉) → (((1st𝑎)(.r𝑅)(2nd𝑏))(-g𝑅)((1st𝑏)(.r𝑅)(2nd𝑎))) = (((1st𝑈)(.r𝑅)(2nd𝑉))(-g𝑅)((1st𝑉)(.r𝑅)(2nd𝑈))))
2120oveq2d 7406 . . . . . . 7 ((𝑎 = 𝑈𝑏 = 𝑉) → (𝑡(.r𝑅)(((1st𝑎)(.r𝑅)(2nd𝑏))(-g𝑅)((1st𝑏)(.r𝑅)(2nd𝑎)))) = (𝑡(.r𝑅)(((1st𝑈)(.r𝑅)(2nd𝑉))(-g𝑅)((1st𝑉)(.r𝑅)(2nd𝑈)))))
2221eqeq1d 2732 . . . . . 6 ((𝑎 = 𝑈𝑏 = 𝑉) → ((𝑡(.r𝑅)(((1st𝑎)(.r𝑅)(2nd𝑏))(-g𝑅)((1st𝑏)(.r𝑅)(2nd𝑎)))) = (0g𝑅) ↔ (𝑡(.r𝑅)(((1st𝑈)(.r𝑅)(2nd𝑉))(-g𝑅)((1st𝑉)(.r𝑅)(2nd𝑈)))) = (0g𝑅)))
2322rexbidv 3158 . . . . 5 ((𝑎 = 𝑈𝑏 = 𝑉) → (∃𝑡𝑆 (𝑡(.r𝑅)(((1st𝑎)(.r𝑅)(2nd𝑏))(-g𝑅)((1st𝑏)(.r𝑅)(2nd𝑎)))) = (0g𝑅) ↔ ∃𝑡𝑆 (𝑡(.r𝑅)(((1st𝑈)(.r𝑅)(2nd𝑉))(-g𝑅)((1st𝑉)(.r𝑅)(2nd𝑈)))) = (0g𝑅)))
2423adantl 481 . . . 4 ((𝜑 ∧ (𝑎 = 𝑈𝑏 = 𝑉)) → (∃𝑡𝑆 (𝑡(.r𝑅)(((1st𝑎)(.r𝑅)(2nd𝑏))(-g𝑅)((1st𝑏)(.r𝑅)(2nd𝑎)))) = (0g𝑅) ↔ ∃𝑡𝑆 (𝑡(.r𝑅)(((1st𝑈)(.r𝑅)(2nd𝑉))(-g𝑅)((1st𝑉)(.r𝑅)(2nd𝑈)))) = (0g𝑅)))
2511, 24brab2d 32542 . . 3 (𝜑 → (𝑈 𝑉 ↔ ((𝑈 ∈ (𝐵 × 𝑆) ∧ 𝑉 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡𝑆 (𝑡(.r𝑅)(((1st𝑈)(.r𝑅)(2nd𝑉))(-g𝑅)((1st𝑉)(.r𝑅)(2nd𝑈)))) = (0g𝑅))))
261, 25mpbid 232 . 2 (𝜑 → ((𝑈 ∈ (𝐵 × 𝑆) ∧ 𝑉 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡𝑆 (𝑡(.r𝑅)(((1st𝑈)(.r𝑅)(2nd𝑉))(-g𝑅)((1st𝑉)(.r𝑅)(2nd𝑈)))) = (0g𝑅)))
2726simplld 767 1 (𝜑𝑈 ∈ (𝐵 × 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  wss 3917   class class class wbr 5110  {copab 5172   × cxp 5639  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  .rcmulr 17228  0gc0g 17409  -gcsg 18874   ~RL cerl 33211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-erl 33213
This theorem is referenced by:  rlocaddval  33226  rlocmulval  33227
  Copyright terms: Public domain W3C validator