Step | Hyp | Ref
| Expression |
1 | | erlbrd.u |
. . . . 5
⊢ (𝜑 → 𝑈 = 〈𝐸, 𝐺〉) |
2 | | erlbrd.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ 𝐵) |
3 | | erlbrd.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ 𝑆) |
4 | 2, 3 | opelxpd 5713 |
. . . . 5
⊢ (𝜑 → 〈𝐸, 𝐺〉 ∈ (𝐵 × 𝑆)) |
5 | 1, 4 | eqeltrd 2826 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ (𝐵 × 𝑆)) |
6 | | erlbrd.v |
. . . . 5
⊢ (𝜑 → 𝑉 = 〈𝐹, 𝐻〉) |
7 | | erlbrd.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
8 | | erlbrd.h |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ 𝑆) |
9 | 7, 8 | opelxpd 5713 |
. . . . 5
⊢ (𝜑 → 〈𝐹, 𝐻〉 ∈ (𝐵 × 𝑆)) |
10 | 6, 9 | eqeltrd 2826 |
. . . 4
⊢ (𝜑 → 𝑉 ∈ (𝐵 × 𝑆)) |
11 | 5, 10 | jca 510 |
. . 3
⊢ (𝜑 → (𝑈 ∈ (𝐵 × 𝑆) ∧ 𝑉 ∈ (𝐵 × 𝑆))) |
12 | | erlbrd.1 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
13 | | simpr 483 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 = 𝑇) → 𝑡 = 𝑇) |
14 | 13 | oveq1d 7431 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 = 𝑇) → (𝑡 · ((𝐸 · 𝐻) − (𝐹 · 𝐺))) = (𝑇 · ((𝐸 · 𝐻) − (𝐹 · 𝐺)))) |
15 | 14 | eqeq1d 2728 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 = 𝑇) → ((𝑡 · ((𝐸 · 𝐻) − (𝐹 · 𝐺))) = 0 ↔ (𝑇 · ((𝐸 · 𝐻) − (𝐹 · 𝐺))) = 0 )) |
16 | | erlbrd.2 |
. . . 4
⊢ (𝜑 → (𝑇 · ((𝐸 · 𝐻) − (𝐹 · 𝐺))) = 0 ) |
17 | 12, 15, 16 | rspcedvd 3609 |
. . 3
⊢ (𝜑 → ∃𝑡 ∈ 𝑆 (𝑡 · ((𝐸 · 𝐻) − (𝐹 · 𝐺))) = 0 ) |
18 | 11, 17 | jca 510 |
. 2
⊢ (𝜑 → ((𝑈 ∈ (𝐵 × 𝑆) ∧ 𝑉 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡 ∈ 𝑆 (𝑡 · ((𝐸 · 𝐻) − (𝐹 · 𝐺))) = 0 )) |
19 | | erlcl1.e |
. . . 4
⊢ ∼ =
(𝑅 ~RL
𝑆) |
20 | | erlcl1.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
21 | | erldi.1 |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
22 | | erldi.2 |
. . . . 5
⊢ · =
(.r‘𝑅) |
23 | | erldi.3 |
. . . . 5
⊢ − =
(-g‘𝑅) |
24 | | eqid 2726 |
. . . . 5
⊢ (𝐵 × 𝑆) = (𝐵 × 𝑆) |
25 | | eqid 2726 |
. . . . 5
⊢
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡 ∈ 𝑆 (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = 0 )} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡 ∈ 𝑆 (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = 0 )} |
26 | | erlcl1.s |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
27 | 20, 21, 22, 23, 24, 25, 26 | erlval 33118 |
. . . 4
⊢ (𝜑 → (𝑅 ~RL 𝑆) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡 ∈ 𝑆 (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = 0 )}) |
28 | 19, 27 | eqtrid 2778 |
. . 3
⊢ (𝜑 → ∼ = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡 ∈ 𝑆 (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = 0 )}) |
29 | | simprl 769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → 𝑎 = 𝑈) |
30 | 29 | fveq2d 6897 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → (1st ‘𝑎) = (1st ‘𝑈)) |
31 | 1 | fveq2d 6897 |
. . . . . . . . . . 11
⊢ (𝜑 → (1st
‘𝑈) = (1st
‘〈𝐸, 𝐺〉)) |
32 | | op1stg 8007 |
. . . . . . . . . . . 12
⊢ ((𝐸 ∈ 𝐵 ∧ 𝐺 ∈ 𝑆) → (1st ‘〈𝐸, 𝐺〉) = 𝐸) |
33 | 2, 3, 32 | syl2anc 582 |
. . . . . . . . . . 11
⊢ (𝜑 → (1st
‘〈𝐸, 𝐺〉) = 𝐸) |
34 | 31, 33 | eqtrd 2766 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘𝑈) = 𝐸) |
35 | 34 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → (1st ‘𝑈) = 𝐸) |
36 | 30, 35 | eqtrd 2766 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → (1st ‘𝑎) = 𝐸) |
37 | | simprr 771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → 𝑏 = 𝑉) |
38 | 37 | fveq2d 6897 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → (2nd ‘𝑏) = (2nd ‘𝑉)) |
39 | 6 | fveq2d 6897 |
. . . . . . . . . . 11
⊢ (𝜑 → (2nd
‘𝑉) = (2nd
‘〈𝐹, 𝐻〉)) |
40 | | op2ndg 8008 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐻 ∈ 𝑆) → (2nd ‘〈𝐹, 𝐻〉) = 𝐻) |
41 | 7, 8, 40 | syl2anc 582 |
. . . . . . . . . . 11
⊢ (𝜑 → (2nd
‘〈𝐹, 𝐻〉) = 𝐻) |
42 | 39, 41 | eqtrd 2766 |
. . . . . . . . . 10
⊢ (𝜑 → (2nd
‘𝑉) = 𝐻) |
43 | 42 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → (2nd ‘𝑉) = 𝐻) |
44 | 38, 43 | eqtrd 2766 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → (2nd ‘𝑏) = 𝐻) |
45 | 36, 44 | oveq12d 7434 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → ((1st ‘𝑎) · (2nd
‘𝑏)) = (𝐸 · 𝐻)) |
46 | 37 | fveq2d 6897 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → (1st ‘𝑏) = (1st ‘𝑉)) |
47 | 6 | fveq2d 6897 |
. . . . . . . . . . 11
⊢ (𝜑 → (1st
‘𝑉) = (1st
‘〈𝐹, 𝐻〉)) |
48 | | op1stg 8007 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐻 ∈ 𝑆) → (1st ‘〈𝐹, 𝐻〉) = 𝐹) |
49 | 7, 8, 48 | syl2anc 582 |
. . . . . . . . . . 11
⊢ (𝜑 → (1st
‘〈𝐹, 𝐻〉) = 𝐹) |
50 | 47, 49 | eqtrd 2766 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘𝑉) = 𝐹) |
51 | 50 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → (1st ‘𝑉) = 𝐹) |
52 | 46, 51 | eqtrd 2766 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → (1st ‘𝑏) = 𝐹) |
53 | 29 | fveq2d 6897 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → (2nd ‘𝑎) = (2nd ‘𝑈)) |
54 | 1 | fveq2d 6897 |
. . . . . . . . . . 11
⊢ (𝜑 → (2nd
‘𝑈) = (2nd
‘〈𝐸, 𝐺〉)) |
55 | | op2ndg 8008 |
. . . . . . . . . . . 12
⊢ ((𝐸 ∈ 𝐵 ∧ 𝐺 ∈ 𝑆) → (2nd ‘〈𝐸, 𝐺〉) = 𝐺) |
56 | 2, 3, 55 | syl2anc 582 |
. . . . . . . . . . 11
⊢ (𝜑 → (2nd
‘〈𝐸, 𝐺〉) = 𝐺) |
57 | 54, 56 | eqtrd 2766 |
. . . . . . . . . 10
⊢ (𝜑 → (2nd
‘𝑈) = 𝐺) |
58 | 57 | adantr 479 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → (2nd ‘𝑈) = 𝐺) |
59 | 53, 58 | eqtrd 2766 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → (2nd ‘𝑎) = 𝐺) |
60 | 52, 59 | oveq12d 7434 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → ((1st ‘𝑏) · (2nd
‘𝑎)) = (𝐹 · 𝐺)) |
61 | 45, 60 | oveq12d 7434 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → (((1st ‘𝑎) · (2nd
‘𝑏)) −
((1st ‘𝑏)
·
(2nd ‘𝑎)))
= ((𝐸 · 𝐻) − (𝐹 · 𝐺))) |
62 | 61 | oveq2d 7432 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = (𝑡 · ((𝐸 · 𝐻) − (𝐹 · 𝐺)))) |
63 | 62 | eqeq1d 2728 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → ((𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = 0 ↔ (𝑡 · ((𝐸 · 𝐻) − (𝐹 · 𝐺))) = 0 )) |
64 | 63 | rexbidv 3169 |
. . 3
⊢ ((𝜑 ∧ (𝑎 = 𝑈 ∧ 𝑏 = 𝑉)) → (∃𝑡 ∈ 𝑆 (𝑡 · (((1st
‘𝑎) ·
(2nd ‘𝑏))
−
((1st ‘𝑏)
·
(2nd ‘𝑎)))) = 0 ↔ ∃𝑡 ∈ 𝑆 (𝑡 · ((𝐸 · 𝐻) − (𝐹 · 𝐺))) = 0 )) |
65 | 28, 64 | brab2d 32527 |
. 2
⊢ (𝜑 → (𝑈 ∼ 𝑉 ↔ ((𝑈 ∈ (𝐵 × 𝑆) ∧ 𝑉 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡 ∈ 𝑆 (𝑡 · ((𝐸 · 𝐻) − (𝐹 · 𝐺))) = 0 ))) |
66 | 18, 65 | mpbird 256 |
1
⊢ (𝜑 → 𝑈 ∼ 𝑉) |