Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erldi Structured version   Visualization version   GIF version

Theorem erldi 33202
Description: Main property of the ring localization equivalence relation. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
erlcl1.b 𝐵 = (Base‘𝑅)
erlcl1.e = (𝑅 ~RL 𝑆)
erlcl1.s (𝜑𝑆𝐵)
erldi.1 0 = (0g𝑅)
erldi.2 · = (.r𝑅)
erldi.3 = (-g𝑅)
erldi.4 (𝜑𝑈 𝑉)
Assertion
Ref Expression
erldi (𝜑 → ∃𝑡𝑆 (𝑡 · (((1st𝑈) · (2nd𝑉)) ((1st𝑉) · (2nd𝑈)))) = 0 )
Distinct variable groups:   𝑡, ·   𝑡,𝐵   𝑡,𝑅   𝑡,𝑆   𝑡,𝑈   𝑡,𝑉
Allowed substitution hints:   𝜑(𝑡)   (𝑡)   (𝑡)   0 (𝑡)

Proof of Theorem erldi
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erldi.4 . . 3 (𝜑𝑈 𝑉)
2 erlcl1.e . . . . 5 = (𝑅 ~RL 𝑆)
3 erlcl1.b . . . . . 6 𝐵 = (Base‘𝑅)
4 erldi.1 . . . . . 6 0 = (0g𝑅)
5 erldi.2 . . . . . 6 · = (.r𝑅)
6 erldi.3 . . . . . 6 = (-g𝑅)
7 eqid 2729 . . . . . 6 (𝐵 × 𝑆) = (𝐵 × 𝑆)
8 eqid 2729 . . . . . 6 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡𝑆 (𝑡 · (((1st𝑎) · (2nd𝑏)) ((1st𝑏) · (2nd𝑎)))) = 0 )} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡𝑆 (𝑡 · (((1st𝑎) · (2nd𝑏)) ((1st𝑏) · (2nd𝑎)))) = 0 )}
9 erlcl1.s . . . . . 6 (𝜑𝑆𝐵)
103, 4, 5, 6, 7, 8, 9erlval 33198 . . . . 5 (𝜑 → (𝑅 ~RL 𝑆) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡𝑆 (𝑡 · (((1st𝑎) · (2nd𝑏)) ((1st𝑏) · (2nd𝑎)))) = 0 )})
112, 10eqtrid 2776 . . . 4 (𝜑 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡𝑆 (𝑡 · (((1st𝑎) · (2nd𝑏)) ((1st𝑏) · (2nd𝑎)))) = 0 )})
12 simpl 482 . . . . . . . . . . 11 ((𝑎 = 𝑈𝑏 = 𝑉) → 𝑎 = 𝑈)
1312fveq2d 6826 . . . . . . . . . 10 ((𝑎 = 𝑈𝑏 = 𝑉) → (1st𝑎) = (1st𝑈))
14 simpr 484 . . . . . . . . . . 11 ((𝑎 = 𝑈𝑏 = 𝑉) → 𝑏 = 𝑉)
1514fveq2d 6826 . . . . . . . . . 10 ((𝑎 = 𝑈𝑏 = 𝑉) → (2nd𝑏) = (2nd𝑉))
1613, 15oveq12d 7367 . . . . . . . . 9 ((𝑎 = 𝑈𝑏 = 𝑉) → ((1st𝑎) · (2nd𝑏)) = ((1st𝑈) · (2nd𝑉)))
1714fveq2d 6826 . . . . . . . . . 10 ((𝑎 = 𝑈𝑏 = 𝑉) → (1st𝑏) = (1st𝑉))
1812fveq2d 6826 . . . . . . . . . 10 ((𝑎 = 𝑈𝑏 = 𝑉) → (2nd𝑎) = (2nd𝑈))
1917, 18oveq12d 7367 . . . . . . . . 9 ((𝑎 = 𝑈𝑏 = 𝑉) → ((1st𝑏) · (2nd𝑎)) = ((1st𝑉) · (2nd𝑈)))
2016, 19oveq12d 7367 . . . . . . . 8 ((𝑎 = 𝑈𝑏 = 𝑉) → (((1st𝑎) · (2nd𝑏)) ((1st𝑏) · (2nd𝑎))) = (((1st𝑈) · (2nd𝑉)) ((1st𝑉) · (2nd𝑈))))
2120oveq2d 7365 . . . . . . 7 ((𝑎 = 𝑈𝑏 = 𝑉) → (𝑡 · (((1st𝑎) · (2nd𝑏)) ((1st𝑏) · (2nd𝑎)))) = (𝑡 · (((1st𝑈) · (2nd𝑉)) ((1st𝑉) · (2nd𝑈)))))
2221eqeq1d 2731 . . . . . 6 ((𝑎 = 𝑈𝑏 = 𝑉) → ((𝑡 · (((1st𝑎) · (2nd𝑏)) ((1st𝑏) · (2nd𝑎)))) = 0 ↔ (𝑡 · (((1st𝑈) · (2nd𝑉)) ((1st𝑉) · (2nd𝑈)))) = 0 ))
2322rexbidv 3153 . . . . 5 ((𝑎 = 𝑈𝑏 = 𝑉) → (∃𝑡𝑆 (𝑡 · (((1st𝑎) · (2nd𝑏)) ((1st𝑏) · (2nd𝑎)))) = 0 ↔ ∃𝑡𝑆 (𝑡 · (((1st𝑈) · (2nd𝑉)) ((1st𝑉) · (2nd𝑈)))) = 0 ))
2423adantl 481 . . . 4 ((𝜑 ∧ (𝑎 = 𝑈𝑏 = 𝑉)) → (∃𝑡𝑆 (𝑡 · (((1st𝑎) · (2nd𝑏)) ((1st𝑏) · (2nd𝑎)))) = 0 ↔ ∃𝑡𝑆 (𝑡 · (((1st𝑈) · (2nd𝑉)) ((1st𝑉) · (2nd𝑈)))) = 0 ))
2511, 24brab2d 32552 . . 3 (𝜑 → (𝑈 𝑉 ↔ ((𝑈 ∈ (𝐵 × 𝑆) ∧ 𝑉 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡𝑆 (𝑡 · (((1st𝑈) · (2nd𝑉)) ((1st𝑉) · (2nd𝑈)))) = 0 )))
261, 25mpbid 232 . 2 (𝜑 → ((𝑈 ∈ (𝐵 × 𝑆) ∧ 𝑉 ∈ (𝐵 × 𝑆)) ∧ ∃𝑡𝑆 (𝑡 · (((1st𝑈) · (2nd𝑉)) ((1st𝑉) · (2nd𝑈)))) = 0 ))
2726simprd 495 1 (𝜑 → ∃𝑡𝑆 (𝑡 · (((1st𝑈) · (2nd𝑉)) ((1st𝑉) · (2nd𝑈)))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3903   class class class wbr 5092  {copab 5154   × cxp 5617  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  Basecbs 17120  .rcmulr 17162  0gc0g 17343  -gcsg 18814   ~RL cerl 33193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-erl 33195
This theorem is referenced by:  rlocaddval  33208  rlocmulval  33209  rlocf1  33213  fracfld  33247
  Copyright terms: Public domain W3C validator