MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustexhalf Structured version   Visualization version   GIF version

Theorem metustexhalf 24590
Description: For any element 𝐴 of the filter base generated by the metric 𝐷, the half element (corresponding to half the distance) is also in this base. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustexhalf (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎,𝑣   𝑣,𝐴   𝑣,𝐷   𝑣,𝐹   𝑣,𝑋

Proof of Theorem metustexhalf
Dummy variables 𝑏 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-4r 783 . . . 4 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐷 ∈ (PsMet‘𝑋))
2 simplr 768 . . . . . 6 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝑎 ∈ ℝ+)
32rphalfcld 13111 . . . . 5 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝑎 / 2) ∈ ℝ+)
4 eqidd 2741 . . . . 5 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)(𝑎 / 2))))
5 oveq2 7456 . . . . . . 7 (𝑏 = (𝑎 / 2) → (0[,)𝑏) = (0[,)(𝑎 / 2)))
65imaeq2d 6089 . . . . . 6 (𝑏 = (𝑎 / 2) → (𝐷 “ (0[,)𝑏)) = (𝐷 “ (0[,)(𝑎 / 2))))
76rspceeqv 3658 . . . . 5 (((𝑎 / 2) ∈ ℝ+ ∧ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)(𝑎 / 2)))) → ∃𝑏 ∈ ℝ+ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)𝑏)))
83, 4, 7syl2anc 583 . . . 4 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ∃𝑏 ∈ ℝ+ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)𝑏)))
9 metust.1 . . . . . . 7 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
10 oveq2 7456 . . . . . . . . . 10 (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏))
1110imaeq2d 6089 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑏)))
1211cbvmptv 5279 . . . . . . . 8 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
1312rneqi 5962 . . . . . . 7 ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
149, 13eqtri 2768 . . . . . 6 𝐹 = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
1514metustel 24584 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → ((𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹 ↔ ∃𝑏 ∈ ℝ+ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)𝑏))))
1615biimpar 477 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ ∃𝑏 ∈ ℝ+ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)𝑏))) → (𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹)
171, 8, 16syl2anc 583 . . 3 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹)
18 relco 6138 . . . . 5 Rel ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))
1918a1i 11 . . . 4 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → Rel ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
20 cossxp 6303 . . . . . . . . . 10 ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2))))
21 cnvimass 6111 . . . . . . . . . . . . . 14 (𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom 𝐷
22 psmetf 24337 . . . . . . . . . . . . . 14 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2321, 22fssdm 6766 . . . . . . . . . . . . 13 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋))
24 dmss 5927 . . . . . . . . . . . . . 14 ((𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → dom (𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom (𝑋 × 𝑋))
25 rnss 5964 . . . . . . . . . . . . . 14 ((𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋))
26 xpss12 5715 . . . . . . . . . . . . . 14 ((dom (𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom (𝑋 × 𝑋) ∧ ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋)) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)))
2724, 25, 26syl2anc 583 . . . . . . . . . . . . 13 ((𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)))
2823, 27syl 17 . . . . . . . . . . . 12 (𝐷 ∈ (PsMet‘𝑋) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)))
2928adantl 481 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)))
30 dmxp 5953 . . . . . . . . . . . . 13 (𝑋 ≠ ∅ → dom (𝑋 × 𝑋) = 𝑋)
31 rnxp 6201 . . . . . . . . . . . . 13 (𝑋 ≠ ∅ → ran (𝑋 × 𝑋) = 𝑋)
3230, 31xpeq12d 5731 . . . . . . . . . . . 12 (𝑋 ≠ ∅ → (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)) = (𝑋 × 𝑋))
3332adantr 480 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)) = (𝑋 × 𝑋))
3429, 33sseqtrd 4049 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋))
3520, 34sstrid 4020 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋))
3635ad3antrrr 729 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋))
3736sselda 4008 . . . . . . 7 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
38 opelxp 5736 . . . . . . 7 (⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋) ↔ (𝑝𝑋𝑞𝑋))
3937, 38sylib 218 . . . . . 6 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → (𝑝𝑋𝑞𝑋))
40 simpll 766 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))))
41 simprl 770 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → 𝑝𝑋)
42 simprr 772 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → 𝑞𝑋)
43 simplr 768 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
44 simplll 774 . . . . . . . . . . . . . . 15 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋))
4544simp1d 1142 . . . . . . . . . . . . . 14 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))))
4645, 1syl 17 . . . . . . . . . . . . 13 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷 ∈ (PsMet‘𝑋))
4745, 2syl 17 . . . . . . . . . . . . 13 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ+)
4846, 47jca 511 . . . . . . . . . . . 12 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+))
4944simp2d 1143 . . . . . . . . . . . 12 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝𝑋)
5044simp3d 1144 . . . . . . . . . . . 12 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑞𝑋)
5148, 49, 503jca 1128 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋))
52 simplr 768 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟𝑋)
53 simprl 770 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟)
54 simprr 772 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)
55 simpll 766 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋))
5655simp1d 1142 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+))
5756simpld 494 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷 ∈ (PsMet‘𝑋))
5822ffund 6751 . . . . . . . . . . . . 13 (𝐷 ∈ (PsMet‘𝑋) → Fun 𝐷)
5957, 58syl 17 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → Fun 𝐷)
6055simp2d 1143 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝𝑋)
6155simp3d 1144 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑞𝑋)
6260, 61opelxpd 5739 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
6322fdmd 6757 . . . . . . . . . . . . . 14 (𝐷 ∈ (PsMet‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
6457, 63syl 17 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → dom 𝐷 = (𝑋 × 𝑋))
6562, 64eleqtrrd 2847 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑞⟩ ∈ dom 𝐷)
66 0xr 11337 . . . . . . . . . . . . . 14 0 ∈ ℝ*
6766a1i 11 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ∈ ℝ*)
6856simprd 495 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ+)
6968rpxrd 13100 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ*)
7057, 22syl 17 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
7170, 62ffvelcdmd 7119 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑝, 𝑞⟩) ∈ ℝ*)
72 psmetge0 24343 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑝𝑋𝑞𝑋) → 0 ≤ (𝑝𝐷𝑞))
7357, 60, 61, 72syl3anc 1371 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ≤ (𝑝𝐷𝑞))
74 df-ov 7451 . . . . . . . . . . . . . 14 (𝑝𝐷𝑞) = (𝐷‘⟨𝑝, 𝑞⟩)
7573, 74breqtrdi 5207 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ≤ (𝐷‘⟨𝑝, 𝑞⟩))
7674, 71eqeltrid 2848 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) ∈ ℝ*)
77 0red 11293 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ∈ ℝ)
7868rpred 13099 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ)
7978rehalfcld 12540 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑎 / 2) ∈ ℝ)
8079rexrd 11340 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑎 / 2) ∈ ℝ*)
81 df-ov 7451 . . . . . . . . . . . . . . . . . . . 20 (𝑝𝐷𝑟) = (𝐷‘⟨𝑝, 𝑟⟩)
82 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟𝑋)
8360, 82opelxpd 5739 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑟⟩ ∈ (𝑋 × 𝑋))
8483, 64eleqtrrd 2847 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑟⟩ ∈ dom 𝐷)
85 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟)
86 df-br 5167 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟 ↔ ⟨𝑝, 𝑟⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2))))
8785, 86sylib 218 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑟⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2))))
88 fvimacnv 7086 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝐷 ∧ ⟨𝑝, 𝑟⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑟⟩) ∈ (0[,)(𝑎 / 2)) ↔ ⟨𝑝, 𝑟⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2)))))
8988biimpar 477 . . . . . . . . . . . . . . . . . . . . 21 (((Fun 𝐷 ∧ ⟨𝑝, 𝑟⟩ ∈ dom 𝐷) ∧ ⟨𝑝, 𝑟⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2)))) → (𝐷‘⟨𝑝, 𝑟⟩) ∈ (0[,)(𝑎 / 2)))
9059, 84, 87, 89syl21anc 837 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑝, 𝑟⟩) ∈ (0[,)(𝑎 / 2)))
9181, 90eqeltrid 2848 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2)))
92 elico2 13471 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) → ((𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2)) ↔ ((𝑝𝐷𝑟) ∈ ℝ ∧ 0 ≤ (𝑝𝐷𝑟) ∧ (𝑝𝐷𝑟) < (𝑎 / 2))))
9392biimpa 476 . . . . . . . . . . . . . . . . . . . 20 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → ((𝑝𝐷𝑟) ∈ ℝ ∧ 0 ≤ (𝑝𝐷𝑟) ∧ (𝑝𝐷𝑟) < (𝑎 / 2)))
9493simp1d 1142 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → (𝑝𝐷𝑟) ∈ ℝ)
9577, 80, 91, 94syl21anc 837 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) ∈ ℝ)
96 df-ov 7451 . . . . . . . . . . . . . . . . . . . 20 (𝑟𝐷𝑞) = (𝐷‘⟨𝑟, 𝑞⟩)
9782, 61opelxpd 5739 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑟, 𝑞⟩ ∈ (𝑋 × 𝑋))
9897, 64eleqtrrd 2847 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑟, 𝑞⟩ ∈ dom 𝐷)
99 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)
100 df-br 5167 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞 ↔ ⟨𝑟, 𝑞⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2))))
10199, 100sylib 218 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑟, 𝑞⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2))))
102 fvimacnv 7086 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝐷 ∧ ⟨𝑟, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑟, 𝑞⟩) ∈ (0[,)(𝑎 / 2)) ↔ ⟨𝑟, 𝑞⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2)))))
103102biimpar 477 . . . . . . . . . . . . . . . . . . . . 21 (((Fun 𝐷 ∧ ⟨𝑟, 𝑞⟩ ∈ dom 𝐷) ∧ ⟨𝑟, 𝑞⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2)))) → (𝐷‘⟨𝑟, 𝑞⟩) ∈ (0[,)(𝑎 / 2)))
10459, 98, 101, 103syl21anc 837 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑟, 𝑞⟩) ∈ (0[,)(𝑎 / 2)))
10596, 104eqeltrid 2848 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2)))
106 elico2 13471 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) → ((𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2)) ↔ ((𝑟𝐷𝑞) ∈ ℝ ∧ 0 ≤ (𝑟𝐷𝑞) ∧ (𝑟𝐷𝑞) < (𝑎 / 2))))
107106biimpa 476 . . . . . . . . . . . . . . . . . . . 20 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → ((𝑟𝐷𝑞) ∈ ℝ ∧ 0 ≤ (𝑟𝐷𝑞) ∧ (𝑟𝐷𝑞) < (𝑎 / 2)))
108107simp1d 1142 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → (𝑟𝐷𝑞) ∈ ℝ)
10977, 80, 105, 108syl21anc 837 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) ∈ ℝ)
11095, 109rexaddd 13296 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) = ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)))
11195, 109readdcld 11319 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)) ∈ ℝ)
112110, 111eqeltrd 2844 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) ∈ ℝ)
113112rexrd 11340 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) ∈ ℝ*)
114 psmettri 24342 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑝𝑋𝑞𝑋𝑟𝑋)) → (𝑝𝐷𝑞) ≤ ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)))
11557, 60, 61, 82, 114syl13anc 1372 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) ≤ ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)))
11693simp3d 1144 . . . . . . . . . . . . . . . . . 18 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → (𝑝𝐷𝑟) < (𝑎 / 2))
11777, 80, 91, 116syl21anc 837 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) < (𝑎 / 2))
118107simp3d 1144 . . . . . . . . . . . . . . . . . 18 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → (𝑟𝐷𝑞) < (𝑎 / 2))
11977, 80, 105, 118syl21anc 837 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) < (𝑎 / 2))
12095, 109, 78, 117, 119lt2halvesd 12541 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)) < 𝑎)
121110, 120eqbrtrd 5188 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) < 𝑎)
12276, 113, 69, 115, 121xrlelttrd 13222 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) < 𝑎)
12374, 122eqbrtrrid 5202 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑝, 𝑞⟩) < 𝑎)
12467, 69, 71, 75, 123elicod 13457 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎))
125 fvimacnv 7086 . . . . . . . . . . . . . 14 ((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
126125biimpa 476 . . . . . . . . . . . . 13 (((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) ∧ (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎)) → ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
127 df-br 5167 . . . . . . . . . . . . 13 (𝑝(𝐷 “ (0[,)𝑎))𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
128126, 127sylibr 234 . . . . . . . . . . . 12 (((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) ∧ (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎)) → 𝑝(𝐷 “ (0[,)𝑎))𝑞)
12959, 65, 124, 128syl21anc 837 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(𝐷 “ (0[,)𝑎))𝑞)
13051, 52, 53, 54, 129syl22anc 838 . . . . . . . . . 10 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(𝐷 “ (0[,)𝑎))𝑞)
13145simprd 495 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐴 = (𝐷 “ (0[,)𝑎)))
132131breqd 5177 . . . . . . . . . 10 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐴𝑞𝑝(𝐷 “ (0[,)𝑎))𝑞))
133130, 132mpbird 257 . . . . . . . . 9 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝𝐴𝑞)
134 simpr 484 . . . . . . . . . . . . 13 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
135 df-br 5167 . . . . . . . . . . . . 13 (𝑝((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
136134, 135sylibr 234 . . . . . . . . . . . 12 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → 𝑝((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))𝑞)
137 vex 3492 . . . . . . . . . . . . 13 𝑝 ∈ V
138 vex 3492 . . . . . . . . . . . . 13 𝑞 ∈ V
139137, 138brco 5895 . . . . . . . . . . . 12 (𝑝((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))𝑞 ↔ ∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))
140136, 139sylib 218 . . . . . . . . . . 11 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))
14123adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋))
142141, 25syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋))
14331adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑋 × 𝑋) = 𝑋)
144142, 143sseqtrd 4049 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ 𝑋)
145144adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟) → ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ 𝑋)
146 vex 3492 . . . . . . . . . . . . . . . . . . . . 21 𝑟 ∈ V
147137, 146brelrn 5967 . . . . . . . . . . . . . . . . . . . 20 (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟 ∈ ran (𝐷 “ (0[,)(𝑎 / 2))))
148147adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟) → 𝑟 ∈ ran (𝐷 “ (0[,)(𝑎 / 2))))
149145, 148sseldd 4009 . . . . . . . . . . . . . . . . . 18 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟) → 𝑟𝑋)
150149adantrr 716 . . . . . . . . . . . . . . . . 17 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟𝑋)
151150ex 412 . . . . . . . . . . . . . . . 16 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → 𝑟𝑋))
152151ancrd 551 . . . . . . . . . . . . . . 15 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → (𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
153152eximdv 1916 . . . . . . . . . . . . . 14 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
154153ad3antrrr 729 . . . . . . . . . . . . 13 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
1551543ad2ant1 1133 . . . . . . . . . . . 12 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) → (∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
156155adantr 480 . . . . . . . . . . 11 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → (∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
157140, 156mpd 15 . . . . . . . . . 10 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)))
158 df-rex 3077 . . . . . . . . . 10 (∃𝑟𝑋 (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) ↔ ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)))
159157, 158sylibr 234 . . . . . . . . 9 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟𝑋 (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))
160133, 159r19.29a 3168 . . . . . . . 8 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → 𝑝𝐴𝑞)
161 df-br 5167 . . . . . . . 8 (𝑝𝐴𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴)
162160, 161sylib 218 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
16340, 41, 42, 43, 162syl31anc 1373 . . . . . 6 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
16439, 163mpdan 686 . . . . 5 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
165164ex 412 . . . 4 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴))
16619, 165relssdv 5812 . . 3 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴)
167 id 22 . . . . . 6 (𝑣 = (𝐷 “ (0[,)(𝑎 / 2))) → 𝑣 = (𝐷 “ (0[,)(𝑎 / 2))))
168167, 167coeq12d 5889 . . . . 5 (𝑣 = (𝐷 “ (0[,)(𝑎 / 2))) → (𝑣𝑣) = ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
169168sseq1d 4040 . . . 4 (𝑣 = (𝐷 “ (0[,)(𝑎 / 2))) → ((𝑣𝑣) ⊆ 𝐴 ↔ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴))
170169rspcev 3635 . . 3 (((𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹 ∧ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
17117, 166, 170syl2anc 583 . 2 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
1729metustel 24584 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
173172adantl 481 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
174173biimpa 476 . 2 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
175171, 174r19.29a 3168 1 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  wss 3976  c0 4352  cop 4654   class class class wbr 5166  cmpt 5249   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  ccom 5704  Rel wrel 5705  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184   + caddc 11187  *cxr 11323   < clt 11324  cle 11325   / cdiv 11947  2c2 12348  +crp 13057   +𝑒 cxad 13173  [,)cico 13409  PsMetcpsmet 21371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-psmet 21379
This theorem is referenced by:  metust  24592
  Copyright terms: Public domain W3C validator