| Step | Hyp | Ref
| Expression |
| 1 | | simp-4r 783 |
. . . 4
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 𝐷 ∈ (PsMet‘𝑋)) |
| 2 | | simplr 768 |
. . . . . 6
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 𝑎 ∈ ℝ+) |
| 3 | 2 | rphalfcld 13068 |
. . . . 5
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (𝑎 / 2) ∈
ℝ+) |
| 4 | | eqidd 2737 |
. . . . 5
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (◡𝐷 “ (0[,)(𝑎 / 2))) = (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 5 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑏 = (𝑎 / 2) → (0[,)𝑏) = (0[,)(𝑎 / 2))) |
| 6 | 5 | imaeq2d 6052 |
. . . . . 6
⊢ (𝑏 = (𝑎 / 2) → (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 7 | 6 | rspceeqv 3629 |
. . . . 5
⊢ (((𝑎 / 2) ∈ ℝ+
∧ (◡𝐷 “ (0[,)(𝑎 / 2))) = (◡𝐷 “ (0[,)(𝑎 / 2)))) → ∃𝑏 ∈ ℝ+ (◡𝐷 “ (0[,)(𝑎 / 2))) = (◡𝐷 “ (0[,)𝑏))) |
| 8 | 3, 4, 7 | syl2anc 584 |
. . . 4
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → ∃𝑏 ∈ ℝ+ (◡𝐷 “ (0[,)(𝑎 / 2))) = (◡𝐷 “ (0[,)𝑏))) |
| 9 | | metust.1 |
. . . . . . 7
⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| 10 | | oveq2 7418 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏)) |
| 11 | 10 | imaeq2d 6052 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → (◡𝐷 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)𝑏))) |
| 12 | 11 | cbvmptv 5230 |
. . . . . . . 8
⊢ (𝑎 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) |
| 13 | 12 | rneqi 5922 |
. . . . . . 7
⊢ ran
(𝑎 ∈
ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) |
| 14 | 9, 13 | eqtri 2759 |
. . . . . 6
⊢ 𝐹 = ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) |
| 15 | 14 | metustel 24494 |
. . . . 5
⊢ (𝐷 ∈ (PsMet‘𝑋) → ((◡𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹 ↔ ∃𝑏 ∈ ℝ+ (◡𝐷 “ (0[,)(𝑎 / 2))) = (◡𝐷 “ (0[,)𝑏)))) |
| 16 | 15 | biimpar 477 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ ∃𝑏 ∈ ℝ+
(◡𝐷 “ (0[,)(𝑎 / 2))) = (◡𝐷 “ (0[,)𝑏))) → (◡𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹) |
| 17 | 1, 8, 16 | syl2anc 584 |
. . 3
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (◡𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹) |
| 18 | | relco 6100 |
. . . . 5
⊢ Rel
((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 19 | 18 | a1i 11 |
. . . 4
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → Rel ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) |
| 20 | | cossxp 6266 |
. . . . . . . . . 10
⊢ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (◡𝐷 “ (0[,)(𝑎 / 2))) × ran (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 21 | | cnvimass 6074 |
. . . . . . . . . . . . . 14
⊢ (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom 𝐷 |
| 22 | | psmetf 24250 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 23 | 21, 22 | fssdm 6730 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ (PsMet‘𝑋) → (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋)) |
| 24 | | dmss 5887 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → dom (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom (𝑋 × 𝑋)) |
| 25 | | rnss 5924 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → ran (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋)) |
| 26 | | xpss12 5674 |
. . . . . . . . . . . . . 14
⊢ ((dom
(◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom (𝑋 × 𝑋) ∧ ran (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋)) → (dom (◡𝐷 “ (0[,)(𝑎 / 2))) × ran (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋))) |
| 27 | 24, 25, 26 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → (dom (◡𝐷 “ (0[,)(𝑎 / 2))) × ran (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋))) |
| 28 | 23, 27 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (PsMet‘𝑋) → (dom (◡𝐷 “ (0[,)(𝑎 / 2))) × ran (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋))) |
| 29 | 28 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (◡𝐷 “ (0[,)(𝑎 / 2))) × ran (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋))) |
| 30 | | dmxp 5913 |
. . . . . . . . . . . . 13
⊢ (𝑋 ≠ ∅ → dom (𝑋 × 𝑋) = 𝑋) |
| 31 | | rnxp 6164 |
. . . . . . . . . . . . 13
⊢ (𝑋 ≠ ∅ → ran (𝑋 × 𝑋) = 𝑋) |
| 32 | 30, 31 | xpeq12d 5690 |
. . . . . . . . . . . 12
⊢ (𝑋 ≠ ∅ → (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)) = (𝑋 × 𝑋)) |
| 33 | 32 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)) = (𝑋 × 𝑋)) |
| 34 | 29, 33 | sseqtrd 4000 |
. . . . . . . . . 10
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (◡𝐷 “ (0[,)(𝑎 / 2))) × ran (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋)) |
| 35 | 20, 34 | sstrid 3975 |
. . . . . . . . 9
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋)) |
| 36 | 35 | ad3antrrr 730 |
. . . . . . . 8
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋)) |
| 37 | 36 | sselda 3963 |
. . . . . . 7
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → 〈𝑝, 𝑞〉 ∈ (𝑋 × 𝑋)) |
| 38 | | opelxp 5695 |
. . . . . . 7
⊢
(〈𝑝, 𝑞〉 ∈ (𝑋 × 𝑋) ↔ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) |
| 39 | 37, 38 | sylib 218 |
. . . . . 6
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) |
| 40 | | simpll 766 |
. . . . . . 7
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎)))) |
| 41 | | simprl 770 |
. . . . . . 7
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → 𝑝 ∈ 𝑋) |
| 42 | | simprr 772 |
. . . . . . 7
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → 𝑞 ∈ 𝑋) |
| 43 | | simplr 768 |
. . . . . . 7
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) |
| 44 | | simplll 774 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) |
| 45 | 44 | simp1d 1142 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎)))) |
| 46 | 45, 1 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷 ∈ (PsMet‘𝑋)) |
| 47 | 45, 2 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ+) |
| 48 | 46, 47 | jca 511 |
. . . . . . . . . . . 12
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈
ℝ+)) |
| 49 | 44 | simp2d 1143 |
. . . . . . . . . . . 12
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝 ∈ 𝑋) |
| 50 | 44 | simp3d 1144 |
. . . . . . . . . . . 12
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑞 ∈ 𝑋) |
| 51 | 48, 49, 50 | 3jca 1128 |
. . . . . . . . . . 11
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) |
| 52 | | simplr 768 |
. . . . . . . . . . 11
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟 ∈ 𝑋) |
| 53 | | simprl 770 |
. . . . . . . . . . 11
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟) |
| 54 | | simprr 772 |
. . . . . . . . . . 11
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) |
| 55 | | simpll 766 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) |
| 56 | 55 | simp1d 1142 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈
ℝ+)) |
| 57 | 56 | simpld 494 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷 ∈ (PsMet‘𝑋)) |
| 58 | 22 | ffund 6715 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ (PsMet‘𝑋) → Fun 𝐷) |
| 59 | 57, 58 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → Fun 𝐷) |
| 60 | 55 | simp2d 1143 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝 ∈ 𝑋) |
| 61 | 55 | simp3d 1144 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑞 ∈ 𝑋) |
| 62 | 60, 61 | opelxpd 5698 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 〈𝑝, 𝑞〉 ∈ (𝑋 × 𝑋)) |
| 63 | 22 | fdmd 6721 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (PsMet‘𝑋) → dom 𝐷 = (𝑋 × 𝑋)) |
| 64 | 57, 63 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → dom 𝐷 = (𝑋 × 𝑋)) |
| 65 | 62, 64 | eleqtrrd 2838 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 〈𝑝, 𝑞〉 ∈ dom 𝐷) |
| 66 | | 0xr 11287 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ* |
| 67 | 66 | a1i 11 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ∈
ℝ*) |
| 68 | 56 | simprd 495 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ+) |
| 69 | 68 | rpxrd 13057 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ*) |
| 70 | 57, 22 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 71 | 70, 62 | ffvelcdmd 7080 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘〈𝑝, 𝑞〉) ∈
ℝ*) |
| 72 | | psmetge0 24256 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) → 0 ≤ (𝑝𝐷𝑞)) |
| 73 | 57, 60, 61, 72 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ≤ (𝑝𝐷𝑞)) |
| 74 | | df-ov 7413 |
. . . . . . . . . . . . . 14
⊢ (𝑝𝐷𝑞) = (𝐷‘〈𝑝, 𝑞〉) |
| 75 | 73, 74 | breqtrdi 5165 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ≤ (𝐷‘〈𝑝, 𝑞〉)) |
| 76 | 74, 71 | eqeltrid 2839 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) ∈
ℝ*) |
| 77 | | 0red 11243 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ∈ ℝ) |
| 78 | 68 | rpred 13056 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ) |
| 79 | 78 | rehalfcld 12493 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑎 / 2) ∈ ℝ) |
| 80 | 79 | rexrd 11290 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑎 / 2) ∈
ℝ*) |
| 81 | | df-ov 7413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝𝐷𝑟) = (𝐷‘〈𝑝, 𝑟〉) |
| 82 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟 ∈ 𝑋) |
| 83 | 60, 82 | opelxpd 5698 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 〈𝑝, 𝑟〉 ∈ (𝑋 × 𝑋)) |
| 84 | 83, 64 | eleqtrrd 2838 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 〈𝑝, 𝑟〉 ∈ dom 𝐷) |
| 85 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟) |
| 86 | | df-br 5125 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ↔ 〈𝑝, 𝑟〉 ∈ (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 87 | 85, 86 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 〈𝑝, 𝑟〉 ∈ (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 88 | | fvimacnv 7048 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((Fun
𝐷 ∧ 〈𝑝, 𝑟〉 ∈ dom 𝐷) → ((𝐷‘〈𝑝, 𝑟〉) ∈ (0[,)(𝑎 / 2)) ↔ 〈𝑝, 𝑟〉 ∈ (◡𝐷 “ (0[,)(𝑎 / 2))))) |
| 89 | 88 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((Fun
𝐷 ∧ 〈𝑝, 𝑟〉 ∈ dom 𝐷) ∧ 〈𝑝, 𝑟〉 ∈ (◡𝐷 “ (0[,)(𝑎 / 2)))) → (𝐷‘〈𝑝, 𝑟〉) ∈ (0[,)(𝑎 / 2))) |
| 90 | 59, 84, 87, 89 | syl21anc 837 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘〈𝑝, 𝑟〉) ∈ (0[,)(𝑎 / 2))) |
| 91 | 81, 90 | eqeltrid 2839 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) |
| 92 | | elico2 13432 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((0
∈ ℝ ∧ (𝑎 /
2) ∈ ℝ*) → ((𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2)) ↔ ((𝑝𝐷𝑟) ∈ ℝ ∧ 0 ≤ (𝑝𝐷𝑟) ∧ (𝑝𝐷𝑟) < (𝑎 / 2)))) |
| 93 | 92 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((0
∈ ℝ ∧ (𝑎 /
2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → ((𝑝𝐷𝑟) ∈ ℝ ∧ 0 ≤ (𝑝𝐷𝑟) ∧ (𝑝𝐷𝑟) < (𝑎 / 2))) |
| 94 | 93 | simp1d 1142 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((0
∈ ℝ ∧ (𝑎 /
2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → (𝑝𝐷𝑟) ∈ ℝ) |
| 95 | 77, 80, 91, 94 | syl21anc 837 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) ∈ ℝ) |
| 96 | | df-ov 7413 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟𝐷𝑞) = (𝐷‘〈𝑟, 𝑞〉) |
| 97 | 82, 61 | opelxpd 5698 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 〈𝑟, 𝑞〉 ∈ (𝑋 × 𝑋)) |
| 98 | 97, 64 | eleqtrrd 2838 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 〈𝑟, 𝑞〉 ∈ dom 𝐷) |
| 99 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) |
| 100 | | df-br 5125 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞 ↔ 〈𝑟, 𝑞〉 ∈ (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 101 | 99, 100 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 〈𝑟, 𝑞〉 ∈ (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 102 | | fvimacnv 7048 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((Fun
𝐷 ∧ 〈𝑟, 𝑞〉 ∈ dom 𝐷) → ((𝐷‘〈𝑟, 𝑞〉) ∈ (0[,)(𝑎 / 2)) ↔ 〈𝑟, 𝑞〉 ∈ (◡𝐷 “ (0[,)(𝑎 / 2))))) |
| 103 | 102 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((Fun
𝐷 ∧ 〈𝑟, 𝑞〉 ∈ dom 𝐷) ∧ 〈𝑟, 𝑞〉 ∈ (◡𝐷 “ (0[,)(𝑎 / 2)))) → (𝐷‘〈𝑟, 𝑞〉) ∈ (0[,)(𝑎 / 2))) |
| 104 | 59, 98, 101, 103 | syl21anc 837 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘〈𝑟, 𝑞〉) ∈ (0[,)(𝑎 / 2))) |
| 105 | 96, 104 | eqeltrid 2839 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) |
| 106 | | elico2 13432 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((0
∈ ℝ ∧ (𝑎 /
2) ∈ ℝ*) → ((𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2)) ↔ ((𝑟𝐷𝑞) ∈ ℝ ∧ 0 ≤ (𝑟𝐷𝑞) ∧ (𝑟𝐷𝑞) < (𝑎 / 2)))) |
| 107 | 106 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((0
∈ ℝ ∧ (𝑎 /
2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → ((𝑟𝐷𝑞) ∈ ℝ ∧ 0 ≤ (𝑟𝐷𝑞) ∧ (𝑟𝐷𝑞) < (𝑎 / 2))) |
| 108 | 107 | simp1d 1142 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((0
∈ ℝ ∧ (𝑎 /
2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → (𝑟𝐷𝑞) ∈ ℝ) |
| 109 | 77, 80, 105, 108 | syl21anc 837 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) ∈ ℝ) |
| 110 | 95, 109 | rexaddd 13255 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) = ((𝑝𝐷𝑟) + (𝑟𝐷𝑞))) |
| 111 | 95, 109 | readdcld 11269 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)) ∈ ℝ) |
| 112 | 110, 111 | eqeltrd 2835 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) ∈ ℝ) |
| 113 | 112 | rexrd 11290 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) ∈
ℝ*) |
| 114 | | psmettri 24255 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋)) → (𝑝𝐷𝑞) ≤ ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞))) |
| 115 | 57, 60, 61, 82, 114 | syl13anc 1374 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) ≤ ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞))) |
| 116 | 93 | simp3d 1144 |
. . . . . . . . . . . . . . . . . 18
⊢ (((0
∈ ℝ ∧ (𝑎 /
2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → (𝑝𝐷𝑟) < (𝑎 / 2)) |
| 117 | 77, 80, 91, 116 | syl21anc 837 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) < (𝑎 / 2)) |
| 118 | 107 | simp3d 1144 |
. . . . . . . . . . . . . . . . . 18
⊢ (((0
∈ ℝ ∧ (𝑎 /
2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → (𝑟𝐷𝑞) < (𝑎 / 2)) |
| 119 | 77, 80, 105, 118 | syl21anc 837 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) < (𝑎 / 2)) |
| 120 | 95, 109, 78, 117, 119 | lt2halvesd 12494 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)) < 𝑎) |
| 121 | 110, 120 | eqbrtrd 5146 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) < 𝑎) |
| 122 | 76, 113, 69, 115, 121 | xrlelttrd 13181 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) < 𝑎) |
| 123 | 74, 122 | eqbrtrrid 5160 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘〈𝑝, 𝑞〉) < 𝑎) |
| 124 | 67, 69, 71, 75, 123 | elicod 13417 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘〈𝑝, 𝑞〉) ∈ (0[,)𝑎)) |
| 125 | | fvimacnv 7048 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝐷 ∧ 〈𝑝, 𝑞〉 ∈ dom 𝐷) → ((𝐷‘〈𝑝, 𝑞〉) ∈ (0[,)𝑎) ↔ 〈𝑝, 𝑞〉 ∈ (◡𝐷 “ (0[,)𝑎)))) |
| 126 | 125 | biimpa 476 |
. . . . . . . . . . . . 13
⊢ (((Fun
𝐷 ∧ 〈𝑝, 𝑞〉 ∈ dom 𝐷) ∧ (𝐷‘〈𝑝, 𝑞〉) ∈ (0[,)𝑎)) → 〈𝑝, 𝑞〉 ∈ (◡𝐷 “ (0[,)𝑎))) |
| 127 | | df-br 5125 |
. . . . . . . . . . . . 13
⊢ (𝑝(◡𝐷 “ (0[,)𝑎))𝑞 ↔ 〈𝑝, 𝑞〉 ∈ (◡𝐷 “ (0[,)𝑎))) |
| 128 | 126, 127 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (((Fun
𝐷 ∧ 〈𝑝, 𝑞〉 ∈ dom 𝐷) ∧ (𝐷‘〈𝑝, 𝑞〉) ∈ (0[,)𝑎)) → 𝑝(◡𝐷 “ (0[,)𝑎))𝑞) |
| 129 | 59, 65, 124, 128 | syl21anc 837 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(◡𝐷 “ (0[,)𝑎))𝑞) |
| 130 | 51, 52, 53, 54, 129 | syl22anc 838 |
. . . . . . . . . 10
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(◡𝐷 “ (0[,)𝑎))𝑞) |
| 131 | 45 | simprd 495 |
. . . . . . . . . . 11
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐴 = (◡𝐷 “ (0[,)𝑎))) |
| 132 | 131 | breqd 5135 |
. . . . . . . . . 10
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐴𝑞 ↔ 𝑝(◡𝐷 “ (0[,)𝑎))𝑞)) |
| 133 | 130, 132 | mpbird 257 |
. . . . . . . . 9
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝𝐴𝑞) |
| 134 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) |
| 135 | | df-br 5125 |
. . . . . . . . . . . . 13
⊢ (𝑝((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))𝑞 ↔ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) |
| 136 | 134, 135 | sylibr 234 |
. . . . . . . . . . . 12
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → 𝑝((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))𝑞) |
| 137 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑝 ∈ V |
| 138 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑞 ∈ V |
| 139 | 137, 138 | brco 5855 |
. . . . . . . . . . . 12
⊢ (𝑝((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))𝑞 ↔ ∃𝑟(𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) |
| 140 | 136, 139 | sylib 218 |
. . . . . . . . . . 11
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟(𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) |
| 141 | 23 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋)) |
| 142 | 141, 25 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋)) |
| 143 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑋 × 𝑋) = 𝑋) |
| 144 | 142, 143 | sseqtrd 4000 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ 𝑋) |
| 145 | 144 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟) → ran (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ 𝑋) |
| 146 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑟 ∈ V |
| 147 | 137, 146 | brelrn 5927 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 → 𝑟 ∈ ran (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 148 | 147 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟) → 𝑟 ∈ ran (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 149 | 145, 148 | sseldd 3964 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟) → 𝑟 ∈ 𝑋) |
| 150 | 149 | adantrr 717 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟 ∈ 𝑋) |
| 151 | 150 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) → 𝑟 ∈ 𝑋)) |
| 152 | 151 | ancrd 551 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) → (𝑟 ∈ 𝑋 ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)))) |
| 153 | 152 | eximdv 1917 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (∃𝑟(𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟 ∈ 𝑋 ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)))) |
| 154 | 153 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (∃𝑟(𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟 ∈ 𝑋 ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)))) |
| 155 | 154 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) → (∃𝑟(𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟 ∈ 𝑋 ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)))) |
| 156 | 155 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → (∃𝑟(𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟 ∈ 𝑋 ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)))) |
| 157 | 140, 156 | mpd 15 |
. . . . . . . . . 10
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟(𝑟 ∈ 𝑋 ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞))) |
| 158 | | df-rex 3062 |
. . . . . . . . . 10
⊢
(∃𝑟 ∈
𝑋 (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) ↔ ∃𝑟(𝑟 ∈ 𝑋 ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞))) |
| 159 | 157, 158 | sylibr 234 |
. . . . . . . . 9
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟 ∈ 𝑋 (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) |
| 160 | 133, 159 | r19.29a 3149 |
. . . . . . . 8
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → 𝑝𝐴𝑞) |
| 161 | | df-br 5125 |
. . . . . . . 8
⊢ (𝑝𝐴𝑞 ↔ 〈𝑝, 𝑞〉 ∈ 𝐴) |
| 162 | 160, 161 | sylib 218 |
. . . . . . 7
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → 〈𝑝, 𝑞〉 ∈ 𝐴) |
| 163 | 40, 41, 42, 43, 162 | syl31anc 1375 |
. . . . . 6
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → 〈𝑝, 𝑞〉 ∈ 𝐴) |
| 164 | 39, 163 | mpdan 687 |
. . . . 5
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → 〈𝑝, 𝑞〉 ∈ 𝐴) |
| 165 | 164 | ex 412 |
. . . 4
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2)))) → 〈𝑝, 𝑞〉 ∈ 𝐴)) |
| 166 | 19, 165 | relssdv 5772 |
. . 3
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴) |
| 167 | | id 22 |
. . . . . 6
⊢ (𝑣 = (◡𝐷 “ (0[,)(𝑎 / 2))) → 𝑣 = (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 168 | 167, 167 | coeq12d 5849 |
. . . . 5
⊢ (𝑣 = (◡𝐷 “ (0[,)(𝑎 / 2))) → (𝑣 ∘ 𝑣) = ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) |
| 169 | 168 | sseq1d 3995 |
. . . 4
⊢ (𝑣 = (◡𝐷 “ (0[,)(𝑎 / 2))) → ((𝑣 ∘ 𝑣) ⊆ 𝐴 ↔ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴)) |
| 170 | 169 | rspcev 3606 |
. . 3
⊢ (((◡𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹 ∧ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴) → ∃𝑣 ∈ 𝐹 (𝑣 ∘ 𝑣) ⊆ 𝐴) |
| 171 | 17, 166, 170 | syl2anc 584 |
. 2
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → ∃𝑣 ∈ 𝐹 (𝑣 ∘ 𝑣) ⊆ 𝐴) |
| 172 | 9 | metustel 24494 |
. . . 4
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐴 ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎)))) |
| 173 | 172 | adantl 481 |
. . 3
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐴 ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎)))) |
| 174 | 173 | biimpa 476 |
. 2
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴 ∈ 𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎))) |
| 175 | 171, 174 | r19.29a 3149 |
1
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴 ∈ 𝐹) → ∃𝑣 ∈ 𝐹 (𝑣 ∘ 𝑣) ⊆ 𝐴) |