MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustexhalf Structured version   Visualization version   GIF version

Theorem metustexhalf 22773
Description: For any element 𝐴 of the filter base generated by the metric 𝐷, the half element (corresponding to half the distance) is also in this base. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustexhalf (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎,𝑣   𝑣,𝐴   𝑣,𝐷   𝑣,𝐹   𝑣,𝑋

Proof of Theorem metustexhalf
Dummy variables 𝑏 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-4r 774 . . . 4 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐷 ∈ (PsMet‘𝑋))
2 simplr 759 . . . . . 6 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝑎 ∈ ℝ+)
32rphalfcld 12197 . . . . 5 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝑎 / 2) ∈ ℝ+)
4 eqidd 2779 . . . . 5 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)(𝑎 / 2))))
5 oveq2 6932 . . . . . . 7 (𝑏 = (𝑎 / 2) → (0[,)𝑏) = (0[,)(𝑎 / 2)))
65imaeq2d 5722 . . . . . 6 (𝑏 = (𝑎 / 2) → (𝐷 “ (0[,)𝑏)) = (𝐷 “ (0[,)(𝑎 / 2))))
76rspceeqv 3529 . . . . 5 (((𝑎 / 2) ∈ ℝ+ ∧ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)(𝑎 / 2)))) → ∃𝑏 ∈ ℝ+ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)𝑏)))
83, 4, 7syl2anc 579 . . . 4 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ∃𝑏 ∈ ℝ+ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)𝑏)))
9 metust.1 . . . . . . 7 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
10 oveq2 6932 . . . . . . . . . 10 (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏))
1110imaeq2d 5722 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑏)))
1211cbvmptv 4987 . . . . . . . 8 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
1312rneqi 5599 . . . . . . 7 ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
149, 13eqtri 2802 . . . . . 6 𝐹 = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
1514metustel 22767 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → ((𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹 ↔ ∃𝑏 ∈ ℝ+ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)𝑏))))
1615biimpar 471 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ ∃𝑏 ∈ ℝ+ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)𝑏))) → (𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹)
171, 8, 16syl2anc 579 . . 3 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹)
18 relco 5889 . . . . 5 Rel ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))
1918a1i 11 . . . 4 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → Rel ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
20 cossxp 5914 . . . . . . . . . 10 ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2))))
21 cnvimass 5741 . . . . . . . . . . . . . 14 (𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom 𝐷
22 psmetf 22523 . . . . . . . . . . . . . 14 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2321, 22fssdm 6309 . . . . . . . . . . . . 13 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋))
24 dmss 5570 . . . . . . . . . . . . . 14 ((𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → dom (𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom (𝑋 × 𝑋))
25 rnss 5601 . . . . . . . . . . . . . 14 ((𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋))
26 xpss12 5372 . . . . . . . . . . . . . 14 ((dom (𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom (𝑋 × 𝑋) ∧ ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋)) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)))
2724, 25, 26syl2anc 579 . . . . . . . . . . . . 13 ((𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)))
2823, 27syl 17 . . . . . . . . . . . 12 (𝐷 ∈ (PsMet‘𝑋) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)))
2928adantl 475 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)))
30 dmxp 5591 . . . . . . . . . . . . 13 (𝑋 ≠ ∅ → dom (𝑋 × 𝑋) = 𝑋)
31 rnxp 5820 . . . . . . . . . . . . 13 (𝑋 ≠ ∅ → ran (𝑋 × 𝑋) = 𝑋)
3230, 31xpeq12d 5388 . . . . . . . . . . . 12 (𝑋 ≠ ∅ → (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)) = (𝑋 × 𝑋))
3332adantr 474 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)) = (𝑋 × 𝑋))
3429, 33sseqtrd 3860 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋))
3520, 34syl5ss 3832 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋))
3635ad3antrrr 720 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋))
3736sselda 3821 . . . . . . 7 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
38 opelxp 5393 . . . . . . 7 (⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋) ↔ (𝑝𝑋𝑞𝑋))
3937, 38sylib 210 . . . . . 6 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → (𝑝𝑋𝑞𝑋))
40 simpll 757 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))))
41 simprl 761 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → 𝑝𝑋)
42 simprr 763 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → 𝑞𝑋)
43 simplr 759 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
44 simplll 765 . . . . . . . . . . . . . . 15 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋))
4544simp1d 1133 . . . . . . . . . . . . . 14 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))))
4645, 1syl 17 . . . . . . . . . . . . 13 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷 ∈ (PsMet‘𝑋))
4745, 2syl 17 . . . . . . . . . . . . 13 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ+)
4846, 47jca 507 . . . . . . . . . . . 12 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+))
4944simp2d 1134 . . . . . . . . . . . 12 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝𝑋)
5044simp3d 1135 . . . . . . . . . . . 12 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑞𝑋)
5148, 49, 503jca 1119 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋))
52 simplr 759 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟𝑋)
53 simprl 761 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟)
54 simprr 763 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)
55 simpll 757 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋))
5655simp1d 1133 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+))
5756simpld 490 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷 ∈ (PsMet‘𝑋))
5822ffund 6297 . . . . . . . . . . . . 13 (𝐷 ∈ (PsMet‘𝑋) → Fun 𝐷)
5957, 58syl 17 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → Fun 𝐷)
6055simp2d 1134 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝𝑋)
6155simp3d 1135 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑞𝑋)
6260, 61, 38sylanbrc 578 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
6322fdmd 6302 . . . . . . . . . . . . . 14 (𝐷 ∈ (PsMet‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
6457, 63syl 17 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → dom 𝐷 = (𝑋 × 𝑋))
6562, 64eleqtrrd 2862 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑞⟩ ∈ dom 𝐷)
66 0xr 10425 . . . . . . . . . . . . . 14 0 ∈ ℝ*
6766a1i 11 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ∈ ℝ*)
6856simprd 491 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ+)
6968rpxrd 12186 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ*)
7057, 22syl 17 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
7170, 62ffvelrnd 6626 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑝, 𝑞⟩) ∈ ℝ*)
72 psmetge0 22529 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑝𝑋𝑞𝑋) → 0 ≤ (𝑝𝐷𝑞))
7357, 60, 61, 72syl3anc 1439 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ≤ (𝑝𝐷𝑞))
74 df-ov 6927 . . . . . . . . . . . . . 14 (𝑝𝐷𝑞) = (𝐷‘⟨𝑝, 𝑞⟩)
7573, 74syl6breq 4929 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ≤ (𝐷‘⟨𝑝, 𝑞⟩))
7674, 71syl5eqel 2863 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) ∈ ℝ*)
77 0red 10382 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ∈ ℝ)
7868rpred 12185 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ)
7978rehalfcld 11633 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑎 / 2) ∈ ℝ)
8079rexrd 10428 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑎 / 2) ∈ ℝ*)
81 df-ov 6927 . . . . . . . . . . . . . . . . . . . 20 (𝑝𝐷𝑟) = (𝐷‘⟨𝑝, 𝑟⟩)
82 simplr 759 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟𝑋)
83 opelxp 5393 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑝, 𝑟⟩ ∈ (𝑋 × 𝑋) ↔ (𝑝𝑋𝑟𝑋))
8460, 82, 83sylanbrc 578 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑟⟩ ∈ (𝑋 × 𝑋))
8584, 64eleqtrrd 2862 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑟⟩ ∈ dom 𝐷)
86 simprl 761 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟)
87 df-br 4889 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟 ↔ ⟨𝑝, 𝑟⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2))))
8886, 87sylib 210 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑟⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2))))
89 fvimacnv 6597 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝐷 ∧ ⟨𝑝, 𝑟⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑟⟩) ∈ (0[,)(𝑎 / 2)) ↔ ⟨𝑝, 𝑟⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2)))))
9089biimpar 471 . . . . . . . . . . . . . . . . . . . . 21 (((Fun 𝐷 ∧ ⟨𝑝, 𝑟⟩ ∈ dom 𝐷) ∧ ⟨𝑝, 𝑟⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2)))) → (𝐷‘⟨𝑝, 𝑟⟩) ∈ (0[,)(𝑎 / 2)))
9159, 85, 88, 90syl21anc 828 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑝, 𝑟⟩) ∈ (0[,)(𝑎 / 2)))
9281, 91syl5eqel 2863 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2)))
93 elico2 12553 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) → ((𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2)) ↔ ((𝑝𝐷𝑟) ∈ ℝ ∧ 0 ≤ (𝑝𝐷𝑟) ∧ (𝑝𝐷𝑟) < (𝑎 / 2))))
9493biimpa 470 . . . . . . . . . . . . . . . . . . . 20 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → ((𝑝𝐷𝑟) ∈ ℝ ∧ 0 ≤ (𝑝𝐷𝑟) ∧ (𝑝𝐷𝑟) < (𝑎 / 2)))
9594simp1d 1133 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → (𝑝𝐷𝑟) ∈ ℝ)
9677, 80, 92, 95syl21anc 828 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) ∈ ℝ)
97 df-ov 6927 . . . . . . . . . . . . . . . . . . . 20 (𝑟𝐷𝑞) = (𝐷‘⟨𝑟, 𝑞⟩)
98 opelxp 5393 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑟, 𝑞⟩ ∈ (𝑋 × 𝑋) ↔ (𝑟𝑋𝑞𝑋))
9982, 61, 98sylanbrc 578 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑟, 𝑞⟩ ∈ (𝑋 × 𝑋))
10099, 64eleqtrrd 2862 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑟, 𝑞⟩ ∈ dom 𝐷)
101 simprr 763 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)
102 df-br 4889 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞 ↔ ⟨𝑟, 𝑞⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2))))
103101, 102sylib 210 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑟, 𝑞⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2))))
104 fvimacnv 6597 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝐷 ∧ ⟨𝑟, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑟, 𝑞⟩) ∈ (0[,)(𝑎 / 2)) ↔ ⟨𝑟, 𝑞⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2)))))
105104biimpar 471 . . . . . . . . . . . . . . . . . . . . 21 (((Fun 𝐷 ∧ ⟨𝑟, 𝑞⟩ ∈ dom 𝐷) ∧ ⟨𝑟, 𝑞⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2)))) → (𝐷‘⟨𝑟, 𝑞⟩) ∈ (0[,)(𝑎 / 2)))
10659, 100, 103, 105syl21anc 828 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑟, 𝑞⟩) ∈ (0[,)(𝑎 / 2)))
10797, 106syl5eqel 2863 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2)))
108 elico2 12553 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) → ((𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2)) ↔ ((𝑟𝐷𝑞) ∈ ℝ ∧ 0 ≤ (𝑟𝐷𝑞) ∧ (𝑟𝐷𝑞) < (𝑎 / 2))))
109108biimpa 470 . . . . . . . . . . . . . . . . . . . 20 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → ((𝑟𝐷𝑞) ∈ ℝ ∧ 0 ≤ (𝑟𝐷𝑞) ∧ (𝑟𝐷𝑞) < (𝑎 / 2)))
110109simp1d 1133 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → (𝑟𝐷𝑞) ∈ ℝ)
11177, 80, 107, 110syl21anc 828 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) ∈ ℝ)
112 rexadd 12379 . . . . . . . . . . . . . . . . . 18 (((𝑝𝐷𝑟) ∈ ℝ ∧ (𝑟𝐷𝑞) ∈ ℝ) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) = ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)))
11396, 111, 112syl2anc 579 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) = ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)))
11496, 111readdcld 10408 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)) ∈ ℝ)
115113, 114eqeltrd 2859 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) ∈ ℝ)
116115rexrd 10428 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) ∈ ℝ*)
117 psmettri 22528 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑝𝑋𝑞𝑋𝑟𝑋)) → (𝑝𝐷𝑞) ≤ ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)))
11857, 60, 61, 82, 117syl13anc 1440 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) ≤ ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)))
11994simp3d 1135 . . . . . . . . . . . . . . . . . 18 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → (𝑝𝐷𝑟) < (𝑎 / 2))
12077, 80, 92, 119syl21anc 828 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) < (𝑎 / 2))
121109simp3d 1135 . . . . . . . . . . . . . . . . . 18 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → (𝑟𝐷𝑞) < (𝑎 / 2))
12277, 80, 107, 121syl21anc 828 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) < (𝑎 / 2))
12396, 111, 78, 120, 122lt2halvesd 11634 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)) < 𝑎)
124113, 123eqbrtrd 4910 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) < 𝑎)
12576, 116, 69, 118, 124xrlelttrd 12307 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) < 𝑎)
12674, 125syl5eqbrr 4924 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑝, 𝑞⟩) < 𝑎)
127 elico1 12534 . . . . . . . . . . . . . 14 ((0 ∈ ℝ*𝑎 ∈ ℝ*) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ((𝐷‘⟨𝑝, 𝑞⟩) ∈ ℝ* ∧ 0 ≤ (𝐷‘⟨𝑝, 𝑞⟩) ∧ (𝐷‘⟨𝑝, 𝑞⟩) < 𝑎)))
128127biimpar 471 . . . . . . . . . . . . 13 (((0 ∈ ℝ*𝑎 ∈ ℝ*) ∧ ((𝐷‘⟨𝑝, 𝑞⟩) ∈ ℝ* ∧ 0 ≤ (𝐷‘⟨𝑝, 𝑞⟩) ∧ (𝐷‘⟨𝑝, 𝑞⟩) < 𝑎)) → (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎))
12967, 69, 71, 75, 126, 128syl23anc 1445 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎))
130 fvimacnv 6597 . . . . . . . . . . . . . 14 ((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
131130biimpa 470 . . . . . . . . . . . . 13 (((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) ∧ (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎)) → ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
132 df-br 4889 . . . . . . . . . . . . 13 (𝑝(𝐷 “ (0[,)𝑎))𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
133131, 132sylibr 226 . . . . . . . . . . . 12 (((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) ∧ (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎)) → 𝑝(𝐷 “ (0[,)𝑎))𝑞)
13459, 65, 129, 133syl21anc 828 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(𝐷 “ (0[,)𝑎))𝑞)
13551, 52, 53, 54, 134syl22anc 829 . . . . . . . . . 10 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(𝐷 “ (0[,)𝑎))𝑞)
13645simprd 491 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐴 = (𝐷 “ (0[,)𝑎)))
137136breqd 4899 . . . . . . . . . 10 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐴𝑞𝑝(𝐷 “ (0[,)𝑎))𝑞))
138135, 137mpbird 249 . . . . . . . . 9 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝𝐴𝑞)
139 simpr 479 . . . . . . . . . . . . 13 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
140 df-br 4889 . . . . . . . . . . . . 13 (𝑝((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
141139, 140sylibr 226 . . . . . . . . . . . 12 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → 𝑝((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))𝑞)
142 vex 3401 . . . . . . . . . . . . 13 𝑝 ∈ V
143 vex 3401 . . . . . . . . . . . . 13 𝑞 ∈ V
144142, 143brco 5540 . . . . . . . . . . . 12 (𝑝((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))𝑞 ↔ ∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))
145141, 144sylib 210 . . . . . . . . . . 11 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))
14623adantl 475 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋))
147146, 25syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋))
14831adantr 474 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑋 × 𝑋) = 𝑋)
149147, 148sseqtrd 3860 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ 𝑋)
150149adantr 474 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟) → ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ 𝑋)
151 vex 3401 . . . . . . . . . . . . . . . . . . . . 21 𝑟 ∈ V
152142, 151brelrn 5604 . . . . . . . . . . . . . . . . . . . 20 (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟 ∈ ran (𝐷 “ (0[,)(𝑎 / 2))))
153152adantl 475 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟) → 𝑟 ∈ ran (𝐷 “ (0[,)(𝑎 / 2))))
154150, 153sseldd 3822 . . . . . . . . . . . . . . . . . 18 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟) → 𝑟𝑋)
155154adantrr 707 . . . . . . . . . . . . . . . . 17 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟𝑋)
156155ex 403 . . . . . . . . . . . . . . . 16 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → 𝑟𝑋))
157156ancrd 547 . . . . . . . . . . . . . . 15 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → (𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
158157eximdv 1960 . . . . . . . . . . . . . 14 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
159158ad3antrrr 720 . . . . . . . . . . . . 13 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
1601593ad2ant1 1124 . . . . . . . . . . . 12 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) → (∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
161160adantr 474 . . . . . . . . . . 11 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → (∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
162145, 161mpd 15 . . . . . . . . . 10 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)))
163 df-rex 3096 . . . . . . . . . 10 (∃𝑟𝑋 (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) ↔ ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)))
164162, 163sylibr 226 . . . . . . . . 9 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟𝑋 (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))
165138, 164r19.29a 3264 . . . . . . . 8 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → 𝑝𝐴𝑞)
166 df-br 4889 . . . . . . . 8 (𝑝𝐴𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴)
167165, 166sylib 210 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
16840, 41, 42, 43, 167syl31anc 1441 . . . . . 6 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
16939, 168mpdan 677 . . . . 5 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
170169ex 403 . . . 4 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴))
17119, 170relssdv 5461 . . 3 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴)
172 id 22 . . . . . 6 (𝑣 = (𝐷 “ (0[,)(𝑎 / 2))) → 𝑣 = (𝐷 “ (0[,)(𝑎 / 2))))
173172, 172coeq12d 5534 . . . . 5 (𝑣 = (𝐷 “ (0[,)(𝑎 / 2))) → (𝑣𝑣) = ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
174173sseq1d 3851 . . . 4 (𝑣 = (𝐷 “ (0[,)(𝑎 / 2))) → ((𝑣𝑣) ⊆ 𝐴 ↔ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴))
175174rspcev 3511 . . 3 (((𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹 ∧ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
17617, 171, 175syl2anc 579 . 2 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
1779metustel 22767 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
178177adantl 475 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
179178biimpa 470 . 2 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
180176, 179r19.29a 3264 1 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wex 1823  wcel 2107  wne 2969  wrex 3091  wss 3792  c0 4141  cop 4404   class class class wbr 4888  cmpt 4967   × cxp 5355  ccnv 5356  dom cdm 5357  ran crn 5358  cima 5360  ccom 5361  Rel wrel 5362  Fun wfun 6131  wf 6133  cfv 6137  (class class class)co 6924  cr 10273  0cc0 10274   + caddc 10277  *cxr 10412   < clt 10413  cle 10414   / cdiv 11034  2c2 11434  +crp 12141   +𝑒 cxad 12259  [,)cico 12493  PsMetcpsmet 20130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-po 5276  df-so 5277  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-2 11442  df-rp 12142  df-xneg 12261  df-xadd 12262  df-xmul 12263  df-ico 12497  df-psmet 20138
This theorem is referenced by:  metust  22775
  Copyright terms: Public domain W3C validator