MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustexhalf Structured version   Visualization version   GIF version

Theorem metustexhalf 23166
Description: For any element 𝐴 of the filter base generated by the metric 𝐷, the half element (corresponding to half the distance) is also in this base. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustexhalf (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎,𝑣   𝑣,𝐴   𝑣,𝐷   𝑣,𝐹   𝑣,𝑋

Proof of Theorem metustexhalf
Dummy variables 𝑏 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-4r 782 . . . 4 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐷 ∈ (PsMet‘𝑋))
2 simplr 767 . . . . . 6 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝑎 ∈ ℝ+)
32rphalfcld 12444 . . . . 5 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝑎 / 2) ∈ ℝ+)
4 eqidd 2822 . . . . 5 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)(𝑎 / 2))))
5 oveq2 7164 . . . . . . 7 (𝑏 = (𝑎 / 2) → (0[,)𝑏) = (0[,)(𝑎 / 2)))
65imaeq2d 5929 . . . . . 6 (𝑏 = (𝑎 / 2) → (𝐷 “ (0[,)𝑏)) = (𝐷 “ (0[,)(𝑎 / 2))))
76rspceeqv 3638 . . . . 5 (((𝑎 / 2) ∈ ℝ+ ∧ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)(𝑎 / 2)))) → ∃𝑏 ∈ ℝ+ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)𝑏)))
83, 4, 7syl2anc 586 . . . 4 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ∃𝑏 ∈ ℝ+ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)𝑏)))
9 metust.1 . . . . . . 7 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
10 oveq2 7164 . . . . . . . . . 10 (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏))
1110imaeq2d 5929 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑏)))
1211cbvmptv 5169 . . . . . . . 8 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
1312rneqi 5807 . . . . . . 7 ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
149, 13eqtri 2844 . . . . . 6 𝐹 = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
1514metustel 23160 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → ((𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹 ↔ ∃𝑏 ∈ ℝ+ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)𝑏))))
1615biimpar 480 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ ∃𝑏 ∈ ℝ+ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)𝑏))) → (𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹)
171, 8, 16syl2anc 586 . . 3 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹)
18 relco 6097 . . . . 5 Rel ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))
1918a1i 11 . . . 4 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → Rel ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
20 cossxp 6123 . . . . . . . . . 10 ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2))))
21 cnvimass 5949 . . . . . . . . . . . . . 14 (𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom 𝐷
22 psmetf 22916 . . . . . . . . . . . . . 14 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2321, 22fssdm 6530 . . . . . . . . . . . . 13 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋))
24 dmss 5771 . . . . . . . . . . . . . 14 ((𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → dom (𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom (𝑋 × 𝑋))
25 rnss 5809 . . . . . . . . . . . . . 14 ((𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋))
26 xpss12 5570 . . . . . . . . . . . . . 14 ((dom (𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom (𝑋 × 𝑋) ∧ ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋)) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)))
2724, 25, 26syl2anc 586 . . . . . . . . . . . . 13 ((𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)))
2823, 27syl 17 . . . . . . . . . . . 12 (𝐷 ∈ (PsMet‘𝑋) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)))
2928adantl 484 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)))
30 dmxp 5799 . . . . . . . . . . . . 13 (𝑋 ≠ ∅ → dom (𝑋 × 𝑋) = 𝑋)
31 rnxp 6027 . . . . . . . . . . . . 13 (𝑋 ≠ ∅ → ran (𝑋 × 𝑋) = 𝑋)
3230, 31xpeq12d 5586 . . . . . . . . . . . 12 (𝑋 ≠ ∅ → (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)) = (𝑋 × 𝑋))
3332adantr 483 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)) = (𝑋 × 𝑋))
3429, 33sseqtrd 4007 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋))
3520, 34sstrid 3978 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋))
3635ad3antrrr 728 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋))
3736sselda 3967 . . . . . . 7 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
38 opelxp 5591 . . . . . . 7 (⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋) ↔ (𝑝𝑋𝑞𝑋))
3937, 38sylib 220 . . . . . 6 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → (𝑝𝑋𝑞𝑋))
40 simpll 765 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))))
41 simprl 769 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → 𝑝𝑋)
42 simprr 771 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → 𝑞𝑋)
43 simplr 767 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
44 simplll 773 . . . . . . . . . . . . . . 15 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋))
4544simp1d 1138 . . . . . . . . . . . . . 14 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))))
4645, 1syl 17 . . . . . . . . . . . . 13 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷 ∈ (PsMet‘𝑋))
4745, 2syl 17 . . . . . . . . . . . . 13 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ+)
4846, 47jca 514 . . . . . . . . . . . 12 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+))
4944simp2d 1139 . . . . . . . . . . . 12 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝𝑋)
5044simp3d 1140 . . . . . . . . . . . 12 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑞𝑋)
5148, 49, 503jca 1124 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋))
52 simplr 767 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟𝑋)
53 simprl 769 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟)
54 simprr 771 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)
55 simpll 765 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋))
5655simp1d 1138 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+))
5756simpld 497 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷 ∈ (PsMet‘𝑋))
5822ffund 6518 . . . . . . . . . . . . 13 (𝐷 ∈ (PsMet‘𝑋) → Fun 𝐷)
5957, 58syl 17 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → Fun 𝐷)
6055simp2d 1139 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝𝑋)
6155simp3d 1140 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑞𝑋)
6260, 61opelxpd 5593 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
6322fdmd 6523 . . . . . . . . . . . . . 14 (𝐷 ∈ (PsMet‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
6457, 63syl 17 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → dom 𝐷 = (𝑋 × 𝑋))
6562, 64eleqtrrd 2916 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑞⟩ ∈ dom 𝐷)
66 0xr 10688 . . . . . . . . . . . . . 14 0 ∈ ℝ*
6766a1i 11 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ∈ ℝ*)
6856simprd 498 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ+)
6968rpxrd 12433 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ*)
7057, 22syl 17 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
7170, 62ffvelrnd 6852 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑝, 𝑞⟩) ∈ ℝ*)
72 psmetge0 22922 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑝𝑋𝑞𝑋) → 0 ≤ (𝑝𝐷𝑞))
7357, 60, 61, 72syl3anc 1367 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ≤ (𝑝𝐷𝑞))
74 df-ov 7159 . . . . . . . . . . . . . 14 (𝑝𝐷𝑞) = (𝐷‘⟨𝑝, 𝑞⟩)
7573, 74breqtrdi 5107 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ≤ (𝐷‘⟨𝑝, 𝑞⟩))
7674, 71eqeltrid 2917 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) ∈ ℝ*)
77 0red 10644 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ∈ ℝ)
7868rpred 12432 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ)
7978rehalfcld 11885 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑎 / 2) ∈ ℝ)
8079rexrd 10691 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑎 / 2) ∈ ℝ*)
81 df-ov 7159 . . . . . . . . . . . . . . . . . . . 20 (𝑝𝐷𝑟) = (𝐷‘⟨𝑝, 𝑟⟩)
82 simplr 767 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟𝑋)
8360, 82opelxpd 5593 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑟⟩ ∈ (𝑋 × 𝑋))
8483, 64eleqtrrd 2916 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑟⟩ ∈ dom 𝐷)
85 simprl 769 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟)
86 df-br 5067 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟 ↔ ⟨𝑝, 𝑟⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2))))
8785, 86sylib 220 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑟⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2))))
88 fvimacnv 6823 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝐷 ∧ ⟨𝑝, 𝑟⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑟⟩) ∈ (0[,)(𝑎 / 2)) ↔ ⟨𝑝, 𝑟⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2)))))
8988biimpar 480 . . . . . . . . . . . . . . . . . . . . 21 (((Fun 𝐷 ∧ ⟨𝑝, 𝑟⟩ ∈ dom 𝐷) ∧ ⟨𝑝, 𝑟⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2)))) → (𝐷‘⟨𝑝, 𝑟⟩) ∈ (0[,)(𝑎 / 2)))
9059, 84, 87, 89syl21anc 835 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑝, 𝑟⟩) ∈ (0[,)(𝑎 / 2)))
9181, 90eqeltrid 2917 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2)))
92 elico2 12801 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) → ((𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2)) ↔ ((𝑝𝐷𝑟) ∈ ℝ ∧ 0 ≤ (𝑝𝐷𝑟) ∧ (𝑝𝐷𝑟) < (𝑎 / 2))))
9392biimpa 479 . . . . . . . . . . . . . . . . . . . 20 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → ((𝑝𝐷𝑟) ∈ ℝ ∧ 0 ≤ (𝑝𝐷𝑟) ∧ (𝑝𝐷𝑟) < (𝑎 / 2)))
9493simp1d 1138 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → (𝑝𝐷𝑟) ∈ ℝ)
9577, 80, 91, 94syl21anc 835 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) ∈ ℝ)
96 df-ov 7159 . . . . . . . . . . . . . . . . . . . 20 (𝑟𝐷𝑞) = (𝐷‘⟨𝑟, 𝑞⟩)
9782, 61opelxpd 5593 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑟, 𝑞⟩ ∈ (𝑋 × 𝑋))
9897, 64eleqtrrd 2916 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑟, 𝑞⟩ ∈ dom 𝐷)
99 simprr 771 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)
100 df-br 5067 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞 ↔ ⟨𝑟, 𝑞⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2))))
10199, 100sylib 220 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑟, 𝑞⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2))))
102 fvimacnv 6823 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝐷 ∧ ⟨𝑟, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑟, 𝑞⟩) ∈ (0[,)(𝑎 / 2)) ↔ ⟨𝑟, 𝑞⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2)))))
103102biimpar 480 . . . . . . . . . . . . . . . . . . . . 21 (((Fun 𝐷 ∧ ⟨𝑟, 𝑞⟩ ∈ dom 𝐷) ∧ ⟨𝑟, 𝑞⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2)))) → (𝐷‘⟨𝑟, 𝑞⟩) ∈ (0[,)(𝑎 / 2)))
10459, 98, 101, 103syl21anc 835 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑟, 𝑞⟩) ∈ (0[,)(𝑎 / 2)))
10596, 104eqeltrid 2917 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2)))
106 elico2 12801 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) → ((𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2)) ↔ ((𝑟𝐷𝑞) ∈ ℝ ∧ 0 ≤ (𝑟𝐷𝑞) ∧ (𝑟𝐷𝑞) < (𝑎 / 2))))
107106biimpa 479 . . . . . . . . . . . . . . . . . . . 20 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → ((𝑟𝐷𝑞) ∈ ℝ ∧ 0 ≤ (𝑟𝐷𝑞) ∧ (𝑟𝐷𝑞) < (𝑎 / 2)))
108107simp1d 1138 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → (𝑟𝐷𝑞) ∈ ℝ)
10977, 80, 105, 108syl21anc 835 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) ∈ ℝ)
11095, 109rexaddd 12628 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) = ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)))
11195, 109readdcld 10670 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)) ∈ ℝ)
112110, 111eqeltrd 2913 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) ∈ ℝ)
113112rexrd 10691 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) ∈ ℝ*)
114 psmettri 22921 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑝𝑋𝑞𝑋𝑟𝑋)) → (𝑝𝐷𝑞) ≤ ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)))
11557, 60, 61, 82, 114syl13anc 1368 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) ≤ ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)))
11693simp3d 1140 . . . . . . . . . . . . . . . . . 18 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → (𝑝𝐷𝑟) < (𝑎 / 2))
11777, 80, 91, 116syl21anc 835 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) < (𝑎 / 2))
118107simp3d 1140 . . . . . . . . . . . . . . . . . 18 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → (𝑟𝐷𝑞) < (𝑎 / 2))
11977, 80, 105, 118syl21anc 835 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) < (𝑎 / 2))
12095, 109, 78, 117, 119lt2halvesd 11886 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)) < 𝑎)
121110, 120eqbrtrd 5088 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) < 𝑎)
12276, 113, 69, 115, 121xrlelttrd 12554 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) < 𝑎)
12374, 122eqbrtrrid 5102 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑝, 𝑞⟩) < 𝑎)
12467, 69, 71, 75, 123elicod 12788 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎))
125 fvimacnv 6823 . . . . . . . . . . . . . 14 ((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
126125biimpa 479 . . . . . . . . . . . . 13 (((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) ∧ (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎)) → ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
127 df-br 5067 . . . . . . . . . . . . 13 (𝑝(𝐷 “ (0[,)𝑎))𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
128126, 127sylibr 236 . . . . . . . . . . . 12 (((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) ∧ (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎)) → 𝑝(𝐷 “ (0[,)𝑎))𝑞)
12959, 65, 124, 128syl21anc 835 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(𝐷 “ (0[,)𝑎))𝑞)
13051, 52, 53, 54, 129syl22anc 836 . . . . . . . . . 10 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(𝐷 “ (0[,)𝑎))𝑞)
13145simprd 498 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐴 = (𝐷 “ (0[,)𝑎)))
132131breqd 5077 . . . . . . . . . 10 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐴𝑞𝑝(𝐷 “ (0[,)𝑎))𝑞))
133130, 132mpbird 259 . . . . . . . . 9 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝𝐴𝑞)
134 simpr 487 . . . . . . . . . . . . 13 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
135 df-br 5067 . . . . . . . . . . . . 13 (𝑝((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
136134, 135sylibr 236 . . . . . . . . . . . 12 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → 𝑝((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))𝑞)
137 vex 3497 . . . . . . . . . . . . 13 𝑝 ∈ V
138 vex 3497 . . . . . . . . . . . . 13 𝑞 ∈ V
139137, 138brco 5741 . . . . . . . . . . . 12 (𝑝((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))𝑞 ↔ ∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))
140136, 139sylib 220 . . . . . . . . . . 11 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))
14123adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋))
142141, 25syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋))
14331adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑋 × 𝑋) = 𝑋)
144142, 143sseqtrd 4007 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ 𝑋)
145144adantr 483 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟) → ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ 𝑋)
146 vex 3497 . . . . . . . . . . . . . . . . . . . . 21 𝑟 ∈ V
147137, 146brelrn 5812 . . . . . . . . . . . . . . . . . . . 20 (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟 ∈ ran (𝐷 “ (0[,)(𝑎 / 2))))
148147adantl 484 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟) → 𝑟 ∈ ran (𝐷 “ (0[,)(𝑎 / 2))))
149145, 148sseldd 3968 . . . . . . . . . . . . . . . . . 18 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟) → 𝑟𝑋)
150149adantrr 715 . . . . . . . . . . . . . . . . 17 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟𝑋)
151150ex 415 . . . . . . . . . . . . . . . 16 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → 𝑟𝑋))
152151ancrd 554 . . . . . . . . . . . . . . 15 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → (𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
153152eximdv 1918 . . . . . . . . . . . . . 14 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
154153ad3antrrr 728 . . . . . . . . . . . . 13 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
1551543ad2ant1 1129 . . . . . . . . . . . 12 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) → (∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
156155adantr 483 . . . . . . . . . . 11 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → (∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
157140, 156mpd 15 . . . . . . . . . 10 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)))
158 df-rex 3144 . . . . . . . . . 10 (∃𝑟𝑋 (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) ↔ ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)))
159157, 158sylibr 236 . . . . . . . . 9 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟𝑋 (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))
160133, 159r19.29a 3289 . . . . . . . 8 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → 𝑝𝐴𝑞)
161 df-br 5067 . . . . . . . 8 (𝑝𝐴𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴)
162160, 161sylib 220 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
16340, 41, 42, 43, 162syl31anc 1369 . . . . . 6 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
16439, 163mpdan 685 . . . . 5 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
165164ex 415 . . . 4 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴))
16619, 165relssdv 5661 . . 3 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴)
167 id 22 . . . . . 6 (𝑣 = (𝐷 “ (0[,)(𝑎 / 2))) → 𝑣 = (𝐷 “ (0[,)(𝑎 / 2))))
168167, 167coeq12d 5735 . . . . 5 (𝑣 = (𝐷 “ (0[,)(𝑎 / 2))) → (𝑣𝑣) = ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
169168sseq1d 3998 . . . 4 (𝑣 = (𝐷 “ (0[,)(𝑎 / 2))) → ((𝑣𝑣) ⊆ 𝐴 ↔ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴))
170169rspcev 3623 . . 3 (((𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹 ∧ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
17117, 166, 170syl2anc 586 . 2 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
1729metustel 23160 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
173172adantl 484 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
174173biimpa 479 . 2 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
175171, 174r19.29a 3289 1 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3016  wrex 3139  wss 3936  c0 4291  cop 4573   class class class wbr 5066  cmpt 5146   × cxp 5553  ccnv 5554  dom cdm 5555  ran crn 5556  cima 5558  ccom 5559  Rel wrel 5560  Fun wfun 6349  wf 6351  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537   + caddc 10540  *cxr 10674   < clt 10675  cle 10676   / cdiv 11297  2c2 11693  +crp 12390   +𝑒 cxad 12506  [,)cico 12741  PsMetcpsmet 20529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-2 11701  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ico 12745  df-psmet 20537
This theorem is referenced by:  metust  23168
  Copyright terms: Public domain W3C validator