MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustexhalf Structured version   Visualization version   GIF version

Theorem metustexhalf 24469
Description: For any element 𝐴 of the filter base generated by the metric 𝐷, the half element (corresponding to half the distance) is also in this base. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustexhalf (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎,𝑣   𝑣,𝐴   𝑣,𝐷   𝑣,𝐹   𝑣,𝑋

Proof of Theorem metustexhalf
Dummy variables 𝑏 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp-4r 783 . . . 4 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝐷 ∈ (PsMet‘𝑋))
2 simplr 768 . . . . . 6 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → 𝑎 ∈ ℝ+)
32rphalfcld 12943 . . . . 5 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝑎 / 2) ∈ ℝ+)
4 eqidd 2732 . . . . 5 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)(𝑎 / 2))))
5 oveq2 7354 . . . . . . 7 (𝑏 = (𝑎 / 2) → (0[,)𝑏) = (0[,)(𝑎 / 2)))
65imaeq2d 6009 . . . . . 6 (𝑏 = (𝑎 / 2) → (𝐷 “ (0[,)𝑏)) = (𝐷 “ (0[,)(𝑎 / 2))))
76rspceeqv 3600 . . . . 5 (((𝑎 / 2) ∈ ℝ+ ∧ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)(𝑎 / 2)))) → ∃𝑏 ∈ ℝ+ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)𝑏)))
83, 4, 7syl2anc 584 . . . 4 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ∃𝑏 ∈ ℝ+ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)𝑏)))
9 metust.1 . . . . . . 7 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
10 oveq2 7354 . . . . . . . . . 10 (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏))
1110imaeq2d 6009 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑏)))
1211cbvmptv 5195 . . . . . . . 8 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
1312rneqi 5877 . . . . . . 7 ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
149, 13eqtri 2754 . . . . . 6 𝐹 = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
1514metustel 24463 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → ((𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹 ↔ ∃𝑏 ∈ ℝ+ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)𝑏))))
1615biimpar 477 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ ∃𝑏 ∈ ℝ+ (𝐷 “ (0[,)(𝑎 / 2))) = (𝐷 “ (0[,)𝑏))) → (𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹)
171, 8, 16syl2anc 584 . . 3 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹)
18 relco 6057 . . . . 5 Rel ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))
1918a1i 11 . . . 4 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → Rel ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
20 cossxp 6219 . . . . . . . . . 10 ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2))))
21 cnvimass 6031 . . . . . . . . . . . . . 14 (𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom 𝐷
22 psmetf 24219 . . . . . . . . . . . . . 14 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2321, 22fssdm 6670 . . . . . . . . . . . . 13 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋))
24 dmss 5842 . . . . . . . . . . . . . 14 ((𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → dom (𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom (𝑋 × 𝑋))
25 rnss 5879 . . . . . . . . . . . . . 14 ((𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋))
26 xpss12 5631 . . . . . . . . . . . . . 14 ((dom (𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom (𝑋 × 𝑋) ∧ ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋)) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)))
2724, 25, 26syl2anc 584 . . . . . . . . . . . . 13 ((𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)))
2823, 27syl 17 . . . . . . . . . . . 12 (𝐷 ∈ (PsMet‘𝑋) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)))
2928adantl 481 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)))
30 dmxp 5869 . . . . . . . . . . . . 13 (𝑋 ≠ ∅ → dom (𝑋 × 𝑋) = 𝑋)
31 rnxp 6117 . . . . . . . . . . . . 13 (𝑋 ≠ ∅ → ran (𝑋 × 𝑋) = 𝑋)
3230, 31xpeq12d 5647 . . . . . . . . . . . 12 (𝑋 ≠ ∅ → (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)) = (𝑋 × 𝑋))
3332adantr 480 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)) = (𝑋 × 𝑋))
3429, 33sseqtrd 3971 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (𝐷 “ (0[,)(𝑎 / 2))) × ran (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋))
3520, 34sstrid 3946 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋))
3635ad3antrrr 730 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋))
3736sselda 3934 . . . . . . 7 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
38 opelxp 5652 . . . . . . 7 (⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋) ↔ (𝑝𝑋𝑞𝑋))
3937, 38sylib 218 . . . . . 6 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → (𝑝𝑋𝑞𝑋))
40 simpll 766 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))))
41 simprl 770 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → 𝑝𝑋)
42 simprr 772 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → 𝑞𝑋)
43 simplr 768 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
44 simplll 774 . . . . . . . . . . . . . . 15 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋))
4544simp1d 1142 . . . . . . . . . . . . . 14 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))))
4645, 1syl 17 . . . . . . . . . . . . 13 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷 ∈ (PsMet‘𝑋))
4745, 2syl 17 . . . . . . . . . . . . 13 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ+)
4846, 47jca 511 . . . . . . . . . . . 12 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+))
4944simp2d 1143 . . . . . . . . . . . 12 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝𝑋)
5044simp3d 1144 . . . . . . . . . . . 12 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑞𝑋)
5148, 49, 503jca 1128 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋))
52 simplr 768 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟𝑋)
53 simprl 770 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟)
54 simprr 772 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)
55 simpll 766 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋))
5655simp1d 1142 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+))
5756simpld 494 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷 ∈ (PsMet‘𝑋))
5822ffund 6655 . . . . . . . . . . . . 13 (𝐷 ∈ (PsMet‘𝑋) → Fun 𝐷)
5957, 58syl 17 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → Fun 𝐷)
6055simp2d 1143 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝𝑋)
6155simp3d 1144 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑞𝑋)
6260, 61opelxpd 5655 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑞⟩ ∈ (𝑋 × 𝑋))
6322fdmd 6661 . . . . . . . . . . . . . 14 (𝐷 ∈ (PsMet‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
6457, 63syl 17 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → dom 𝐷 = (𝑋 × 𝑋))
6562, 64eleqtrrd 2834 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑞⟩ ∈ dom 𝐷)
66 0xr 11156 . . . . . . . . . . . . . 14 0 ∈ ℝ*
6766a1i 11 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ∈ ℝ*)
6856simprd 495 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ+)
6968rpxrd 12932 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ*)
7057, 22syl 17 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
7170, 62ffvelcdmd 7018 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑝, 𝑞⟩) ∈ ℝ*)
72 psmetge0 24225 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑝𝑋𝑞𝑋) → 0 ≤ (𝑝𝐷𝑞))
7357, 60, 61, 72syl3anc 1373 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ≤ (𝑝𝐷𝑞))
74 df-ov 7349 . . . . . . . . . . . . . 14 (𝑝𝐷𝑞) = (𝐷‘⟨𝑝, 𝑞⟩)
7573, 74breqtrdi 5132 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ≤ (𝐷‘⟨𝑝, 𝑞⟩))
7674, 71eqeltrid 2835 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) ∈ ℝ*)
77 0red 11112 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ∈ ℝ)
7868rpred 12931 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ)
7978rehalfcld 12365 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑎 / 2) ∈ ℝ)
8079rexrd 11159 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑎 / 2) ∈ ℝ*)
81 df-ov 7349 . . . . . . . . . . . . . . . . . . . 20 (𝑝𝐷𝑟) = (𝐷‘⟨𝑝, 𝑟⟩)
82 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟𝑋)
8360, 82opelxpd 5655 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑟⟩ ∈ (𝑋 × 𝑋))
8483, 64eleqtrrd 2834 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑟⟩ ∈ dom 𝐷)
85 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟)
86 df-br 5092 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟 ↔ ⟨𝑝, 𝑟⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2))))
8785, 86sylib 218 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑝, 𝑟⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2))))
88 fvimacnv 6986 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝐷 ∧ ⟨𝑝, 𝑟⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑟⟩) ∈ (0[,)(𝑎 / 2)) ↔ ⟨𝑝, 𝑟⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2)))))
8988biimpar 477 . . . . . . . . . . . . . . . . . . . . 21 (((Fun 𝐷 ∧ ⟨𝑝, 𝑟⟩ ∈ dom 𝐷) ∧ ⟨𝑝, 𝑟⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2)))) → (𝐷‘⟨𝑝, 𝑟⟩) ∈ (0[,)(𝑎 / 2)))
9059, 84, 87, 89syl21anc 837 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑝, 𝑟⟩) ∈ (0[,)(𝑎 / 2)))
9181, 90eqeltrid 2835 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2)))
92 elico2 13307 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) → ((𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2)) ↔ ((𝑝𝐷𝑟) ∈ ℝ ∧ 0 ≤ (𝑝𝐷𝑟) ∧ (𝑝𝐷𝑟) < (𝑎 / 2))))
9392biimpa 476 . . . . . . . . . . . . . . . . . . . 20 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → ((𝑝𝐷𝑟) ∈ ℝ ∧ 0 ≤ (𝑝𝐷𝑟) ∧ (𝑝𝐷𝑟) < (𝑎 / 2)))
9493simp1d 1142 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → (𝑝𝐷𝑟) ∈ ℝ)
9577, 80, 91, 94syl21anc 837 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) ∈ ℝ)
96 df-ov 7349 . . . . . . . . . . . . . . . . . . . 20 (𝑟𝐷𝑞) = (𝐷‘⟨𝑟, 𝑞⟩)
9782, 61opelxpd 5655 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑟, 𝑞⟩ ∈ (𝑋 × 𝑋))
9897, 64eleqtrrd 2834 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑟, 𝑞⟩ ∈ dom 𝐷)
99 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)
100 df-br 5092 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞 ↔ ⟨𝑟, 𝑞⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2))))
10199, 100sylib 218 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ⟨𝑟, 𝑞⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2))))
102 fvimacnv 6986 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝐷 ∧ ⟨𝑟, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑟, 𝑞⟩) ∈ (0[,)(𝑎 / 2)) ↔ ⟨𝑟, 𝑞⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2)))))
103102biimpar 477 . . . . . . . . . . . . . . . . . . . . 21 (((Fun 𝐷 ∧ ⟨𝑟, 𝑞⟩ ∈ dom 𝐷) ∧ ⟨𝑟, 𝑞⟩ ∈ (𝐷 “ (0[,)(𝑎 / 2)))) → (𝐷‘⟨𝑟, 𝑞⟩) ∈ (0[,)(𝑎 / 2)))
10459, 98, 101, 103syl21anc 837 . . . . . . . . . . . . . . . . . . . 20 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑟, 𝑞⟩) ∈ (0[,)(𝑎 / 2)))
10596, 104eqeltrid 2835 . . . . . . . . . . . . . . . . . . 19 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2)))
106 elico2 13307 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) → ((𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2)) ↔ ((𝑟𝐷𝑞) ∈ ℝ ∧ 0 ≤ (𝑟𝐷𝑞) ∧ (𝑟𝐷𝑞) < (𝑎 / 2))))
107106biimpa 476 . . . . . . . . . . . . . . . . . . . 20 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → ((𝑟𝐷𝑞) ∈ ℝ ∧ 0 ≤ (𝑟𝐷𝑞) ∧ (𝑟𝐷𝑞) < (𝑎 / 2)))
108107simp1d 1142 . . . . . . . . . . . . . . . . . . 19 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → (𝑟𝐷𝑞) ∈ ℝ)
10977, 80, 105, 108syl21anc 837 . . . . . . . . . . . . . . . . . 18 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) ∈ ℝ)
11095, 109rexaddd 13130 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) = ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)))
11195, 109readdcld 11138 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)) ∈ ℝ)
112110, 111eqeltrd 2831 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) ∈ ℝ)
113112rexrd 11159 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) ∈ ℝ*)
114 psmettri 24224 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑝𝑋𝑞𝑋𝑟𝑋)) → (𝑝𝐷𝑞) ≤ ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)))
11557, 60, 61, 82, 114syl13anc 1374 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) ≤ ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)))
11693simp3d 1144 . . . . . . . . . . . . . . . . . 18 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → (𝑝𝐷𝑟) < (𝑎 / 2))
11777, 80, 91, 116syl21anc 837 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) < (𝑎 / 2))
118107simp3d 1144 . . . . . . . . . . . . . . . . . 18 (((0 ∈ ℝ ∧ (𝑎 / 2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → (𝑟𝐷𝑞) < (𝑎 / 2))
11977, 80, 105, 118syl21anc 837 . . . . . . . . . . . . . . . . 17 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) < (𝑎 / 2))
12095, 109, 78, 117, 119lt2halvesd 12366 . . . . . . . . . . . . . . . 16 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)) < 𝑎)
121110, 120eqbrtrd 5113 . . . . . . . . . . . . . . 15 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) < 𝑎)
12276, 113, 69, 115, 121xrlelttrd 13056 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) < 𝑎)
12374, 122eqbrtrrid 5127 . . . . . . . . . . . . 13 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑝, 𝑞⟩) < 𝑎)
12467, 69, 71, 75, 123elicod 13292 . . . . . . . . . . . 12 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎))
125 fvimacnv 6986 . . . . . . . . . . . . . 14 ((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) → ((𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎) ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎))))
126125biimpa 476 . . . . . . . . . . . . 13 (((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) ∧ (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎)) → ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
127 df-br 5092 . . . . . . . . . . . . 13 (𝑝(𝐷 “ (0[,)𝑎))𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ (𝐷 “ (0[,)𝑎)))
128126, 127sylibr 234 . . . . . . . . . . . 12 (((Fun 𝐷 ∧ ⟨𝑝, 𝑞⟩ ∈ dom 𝐷) ∧ (𝐷‘⟨𝑝, 𝑞⟩) ∈ (0[,)𝑎)) → 𝑝(𝐷 “ (0[,)𝑎))𝑞)
12959, 65, 124, 128syl21anc 837 . . . . . . . . . . 11 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝𝑋𝑞𝑋) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(𝐷 “ (0[,)𝑎))𝑞)
13051, 52, 53, 54, 129syl22anc 838 . . . . . . . . . 10 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(𝐷 “ (0[,)𝑎))𝑞)
13145simprd 495 . . . . . . . . . . 11 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐴 = (𝐷 “ (0[,)𝑎)))
132131breqd 5102 . . . . . . . . . 10 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐴𝑞𝑝(𝐷 “ (0[,)𝑎))𝑞))
133130, 132mpbird 257 . . . . . . . . 9 (((((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟𝑋) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝𝐴𝑞)
134 simpr 484 . . . . . . . . . . . . 13 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
135 df-br 5092 . . . . . . . . . . . . 13 (𝑝((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
136134, 135sylibr 234 . . . . . . . . . . . 12 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → 𝑝((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))𝑞)
137 vex 3440 . . . . . . . . . . . . 13 𝑝 ∈ V
138 vex 3440 . . . . . . . . . . . . 13 𝑞 ∈ V
139137, 138brco 5810 . . . . . . . . . . . 12 (𝑝((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))𝑞 ↔ ∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))
140136, 139sylib 218 . . . . . . . . . . 11 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))
14123adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋))
142141, 25syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋))
14331adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑋 × 𝑋) = 𝑋)
144142, 143sseqtrd 3971 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ 𝑋)
145144adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟) → ran (𝐷 “ (0[,)(𝑎 / 2))) ⊆ 𝑋)
146 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑟 ∈ V
147137, 146brelrn 5882 . . . . . . . . . . . . . . . . . . . 20 (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟 ∈ ran (𝐷 “ (0[,)(𝑎 / 2))))
148147adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟) → 𝑟 ∈ ran (𝐷 “ (0[,)(𝑎 / 2))))
149145, 148sseldd 3935 . . . . . . . . . . . . . . . . . 18 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟) → 𝑟𝑋)
150149adantrr 717 . . . . . . . . . . . . . . . . 17 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟𝑋)
151150ex 412 . . . . . . . . . . . . . . . 16 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → 𝑟𝑋))
152151ancrd 551 . . . . . . . . . . . . . . 15 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → (𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
153152eximdv 1918 . . . . . . . . . . . . . 14 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
154153ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
1551543ad2ant1 1133 . . . . . . . . . . . 12 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) → (∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
156155adantr 480 . . . . . . . . . . 11 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → (∃𝑟(𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))))
157140, 156mpd 15 . . . . . . . . . 10 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)))
158 df-rex 3057 . . . . . . . . . 10 (∃𝑟𝑋 (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞) ↔ ∃𝑟(𝑟𝑋 ∧ (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞)))
159157, 158sylibr 234 . . . . . . . . 9 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟𝑋 (𝑝(𝐷 “ (0[,)(𝑎 / 2)))𝑟𝑟(𝐷 “ (0[,)(𝑎 / 2)))𝑞))
160133, 159r19.29a 3140 . . . . . . . 8 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → 𝑝𝐴𝑞)
161 df-br 5092 . . . . . . . 8 (𝑝𝐴𝑞 ↔ ⟨𝑝, 𝑞⟩ ∈ 𝐴)
162160, 161sylib 218 . . . . . . 7 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ 𝑝𝑋𝑞𝑋) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
16340, 41, 42, 43, 162syl31anc 1375 . . . . . 6 (((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝𝑋𝑞𝑋)) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
16439, 163mpdan 687 . . . . 5 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) ∧ ⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2))))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴)
165164ex 412 . . . 4 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → (⟨𝑝, 𝑞⟩ ∈ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) → ⟨𝑝, 𝑞⟩ ∈ 𝐴))
16619, 165relssdv 5728 . . 3 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴)
167 id 22 . . . . . 6 (𝑣 = (𝐷 “ (0[,)(𝑎 / 2))) → 𝑣 = (𝐷 “ (0[,)(𝑎 / 2))))
168167, 167coeq12d 5804 . . . . 5 (𝑣 = (𝐷 “ (0[,)(𝑎 / 2))) → (𝑣𝑣) = ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))))
169168sseq1d 3966 . . . 4 (𝑣 = (𝐷 “ (0[,)(𝑎 / 2))) → ((𝑣𝑣) ⊆ 𝐴 ↔ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴))
170169rspcev 3577 . . 3 (((𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹 ∧ ((𝐷 “ (0[,)(𝑎 / 2))) ∘ (𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
17117, 166, 170syl2anc 584 . 2 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (𝐷 “ (0[,)𝑎))) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
1729metustel 24463 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
173172adantl 481 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
174173biimpa 476 . 2 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
175171, 174r19.29a 3140 1 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴𝐹) → ∃𝑣𝐹 (𝑣𝑣) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  wss 3902  c0 4283  cop 4582   class class class wbr 5091  cmpt 5172   × cxp 5614  ccnv 5615  dom cdm 5616  ran crn 5617  cima 5619  ccom 5620  Rel wrel 5621  Fun wfun 6475  wf 6477  cfv 6481  (class class class)co 7346  cr 11002  0cc0 11003   + caddc 11006  *cxr 11142   < clt 11143  cle 11144   / cdiv 11771  2c2 12177  +crp 12887   +𝑒 cxad 13006  [,)cico 13244  PsMetcpsmet 21273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ico 13248  df-psmet 21281
This theorem is referenced by:  metust  24471
  Copyright terms: Public domain W3C validator