MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmrn Structured version   Visualization version   GIF version

Theorem psdmrn 18539
Description: The domain and range of a poset equal its field. (Contributed by NM, 13-May-2008.)
Assertion
Ref Expression
psdmrn (𝑅 ∈ PosetRel → (dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅))

Proof of Theorem psdmrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssun1 4144 . . . . 5 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
2 dmrnssfld 5940 . . . . 5 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
31, 2sstri 3959 . . . 4 dom 𝑅 𝑅
43a1i 11 . . 3 (𝑅 ∈ PosetRel → dom 𝑅 𝑅)
5 pslem 18538 . . . . . 6 (𝑅 ∈ PosetRel → (((𝑥𝑅𝑥𝑥𝑅𝑥) → 𝑥𝑅𝑥) ∧ (𝑥 𝑅𝑥𝑅𝑥) ∧ ((𝑥𝑅𝑥𝑥𝑅𝑥) → 𝑥 = 𝑥)))
65simp2d 1143 . . . . 5 (𝑅 ∈ PosetRel → (𝑥 𝑅𝑥𝑅𝑥))
7 vex 3454 . . . . . 6 𝑥 ∈ V
87, 7breldm 5875 . . . . 5 (𝑥𝑅𝑥𝑥 ∈ dom 𝑅)
96, 8syl6 35 . . . 4 (𝑅 ∈ PosetRel → (𝑥 𝑅𝑥 ∈ dom 𝑅))
109ssrdv 3955 . . 3 (𝑅 ∈ PosetRel → 𝑅 ⊆ dom 𝑅)
114, 10eqssd 3967 . 2 (𝑅 ∈ PosetRel → dom 𝑅 = 𝑅)
12 ssun2 4145 . . . . 5 ran 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
1312, 2sstri 3959 . . . 4 ran 𝑅 𝑅
1413a1i 11 . . 3 (𝑅 ∈ PosetRel → ran 𝑅 𝑅)
157, 7brelrn 5909 . . . . 5 (𝑥𝑅𝑥𝑥 ∈ ran 𝑅)
166, 15syl6 35 . . . 4 (𝑅 ∈ PosetRel → (𝑥 𝑅𝑥 ∈ ran 𝑅))
1716ssrdv 3955 . . 3 (𝑅 ∈ PosetRel → 𝑅 ⊆ ran 𝑅)
1814, 17eqssd 3967 . 2 (𝑅 ∈ PosetRel → ran 𝑅 = 𝑅)
1911, 18jca 511 1 (𝑅 ∈ PosetRel → (dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3915  wss 3917   cuni 4874   class class class wbr 5110  dom cdm 5641  ran crn 5642  PosetRelcps 18530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ps 18532
This theorem is referenced by:  psref  18540  psrn  18541  psss  18546  tsrdir  18570
  Copyright terms: Public domain W3C validator