MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmrn Structured version   Visualization version   GIF version

Theorem psdmrn 18532
Description: The domain and range of a poset equal its field. (Contributed by NM, 13-May-2008.)
Assertion
Ref Expression
psdmrn (𝑅 ∈ PosetRel → (dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅))

Proof of Theorem psdmrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssun1 4173 . . . . 5 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
2 dmrnssfld 5970 . . . . 5 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
31, 2sstri 3992 . . . 4 dom 𝑅 𝑅
43a1i 11 . . 3 (𝑅 ∈ PosetRel → dom 𝑅 𝑅)
5 pslem 18531 . . . . . 6 (𝑅 ∈ PosetRel → (((𝑥𝑅𝑥𝑥𝑅𝑥) → 𝑥𝑅𝑥) ∧ (𝑥 𝑅𝑥𝑅𝑥) ∧ ((𝑥𝑅𝑥𝑥𝑅𝑥) → 𝑥 = 𝑥)))
65simp2d 1141 . . . . 5 (𝑅 ∈ PosetRel → (𝑥 𝑅𝑥𝑅𝑥))
7 vex 3476 . . . . . 6 𝑥 ∈ V
87, 7breldm 5909 . . . . 5 (𝑥𝑅𝑥𝑥 ∈ dom 𝑅)
96, 8syl6 35 . . . 4 (𝑅 ∈ PosetRel → (𝑥 𝑅𝑥 ∈ dom 𝑅))
109ssrdv 3989 . . 3 (𝑅 ∈ PosetRel → 𝑅 ⊆ dom 𝑅)
114, 10eqssd 4000 . 2 (𝑅 ∈ PosetRel → dom 𝑅 = 𝑅)
12 ssun2 4174 . . . . 5 ran 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
1312, 2sstri 3992 . . . 4 ran 𝑅 𝑅
1413a1i 11 . . 3 (𝑅 ∈ PosetRel → ran 𝑅 𝑅)
157, 7brelrn 5942 . . . . 5 (𝑥𝑅𝑥𝑥 ∈ ran 𝑅)
166, 15syl6 35 . . . 4 (𝑅 ∈ PosetRel → (𝑥 𝑅𝑥 ∈ ran 𝑅))
1716ssrdv 3989 . . 3 (𝑅 ∈ PosetRel → 𝑅 ⊆ ran 𝑅)
1814, 17eqssd 4000 . 2 (𝑅 ∈ PosetRel → ran 𝑅 = 𝑅)
1911, 18jca 510 1 (𝑅 ∈ PosetRel → (dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  cun 3947  wss 3949   cuni 4909   class class class wbr 5149  dom cdm 5677  ran crn 5678  PosetRelcps 18523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ps 18525
This theorem is referenced by:  psref  18533  psrn  18534  psss  18539  tsrdir  18563
  Copyright terms: Public domain W3C validator