![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psdmrn | Structured version Visualization version GIF version |
Description: The domain and range of a poset equal its field. (Contributed by NM, 13-May-2008.) |
Ref | Expression |
---|---|
psdmrn | ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4173 | . . . . 5 ⊢ dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅) | |
2 | dmrnssfld 5970 | . . . . 5 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
3 | 1, 2 | sstri 3992 | . . . 4 ⊢ dom 𝑅 ⊆ ∪ ∪ 𝑅 |
4 | 3 | a1i 11 | . . 3 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 ⊆ ∪ ∪ 𝑅) |
5 | pslem 18531 | . . . . . 6 ⊢ (𝑅 ∈ PosetRel → (((𝑥𝑅𝑥 ∧ 𝑥𝑅𝑥) → 𝑥𝑅𝑥) ∧ (𝑥 ∈ ∪ ∪ 𝑅 → 𝑥𝑅𝑥) ∧ ((𝑥𝑅𝑥 ∧ 𝑥𝑅𝑥) → 𝑥 = 𝑥))) | |
6 | 5 | simp2d 1141 | . . . . 5 ⊢ (𝑅 ∈ PosetRel → (𝑥 ∈ ∪ ∪ 𝑅 → 𝑥𝑅𝑥)) |
7 | vex 3476 | . . . . . 6 ⊢ 𝑥 ∈ V | |
8 | 7, 7 | breldm 5909 | . . . . 5 ⊢ (𝑥𝑅𝑥 → 𝑥 ∈ dom 𝑅) |
9 | 6, 8 | syl6 35 | . . . 4 ⊢ (𝑅 ∈ PosetRel → (𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 ∈ dom 𝑅)) |
10 | 9 | ssrdv 3989 | . . 3 ⊢ (𝑅 ∈ PosetRel → ∪ ∪ 𝑅 ⊆ dom 𝑅) |
11 | 4, 10 | eqssd 4000 | . 2 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ∪ ∪ 𝑅) |
12 | ssun2 4174 | . . . . 5 ⊢ ran 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅) | |
13 | 12, 2 | sstri 3992 | . . . 4 ⊢ ran 𝑅 ⊆ ∪ ∪ 𝑅 |
14 | 13 | a1i 11 | . . 3 ⊢ (𝑅 ∈ PosetRel → ran 𝑅 ⊆ ∪ ∪ 𝑅) |
15 | 7, 7 | brelrn 5942 | . . . . 5 ⊢ (𝑥𝑅𝑥 → 𝑥 ∈ ran 𝑅) |
16 | 6, 15 | syl6 35 | . . . 4 ⊢ (𝑅 ∈ PosetRel → (𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 ∈ ran 𝑅)) |
17 | 16 | ssrdv 3989 | . . 3 ⊢ (𝑅 ∈ PosetRel → ∪ ∪ 𝑅 ⊆ ran 𝑅) |
18 | 14, 17 | eqssd 4000 | . 2 ⊢ (𝑅 ∈ PosetRel → ran 𝑅 = ∪ ∪ 𝑅) |
19 | 11, 18 | jca 510 | 1 ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∪ cun 3947 ⊆ wss 3949 ∪ cuni 4909 class class class wbr 5149 dom cdm 5677 ran crn 5678 PosetRelcps 18523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ps 18525 |
This theorem is referenced by: psref 18533 psrn 18534 psss 18539 tsrdir 18563 |
Copyright terms: Public domain | W3C validator |