| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psdmrn | Structured version Visualization version GIF version | ||
| Description: The domain and range of a poset equal its field. (Contributed by NM, 13-May-2008.) |
| Ref | Expression |
|---|---|
| psdmrn | ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4125 | . . . . 5 ⊢ dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅) | |
| 2 | dmrnssfld 5912 | . . . . 5 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
| 3 | 1, 2 | sstri 3939 | . . . 4 ⊢ dom 𝑅 ⊆ ∪ ∪ 𝑅 |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 ⊆ ∪ ∪ 𝑅) |
| 5 | pslem 18478 | . . . . . 6 ⊢ (𝑅 ∈ PosetRel → (((𝑥𝑅𝑥 ∧ 𝑥𝑅𝑥) → 𝑥𝑅𝑥) ∧ (𝑥 ∈ ∪ ∪ 𝑅 → 𝑥𝑅𝑥) ∧ ((𝑥𝑅𝑥 ∧ 𝑥𝑅𝑥) → 𝑥 = 𝑥))) | |
| 6 | 5 | simp2d 1143 | . . . . 5 ⊢ (𝑅 ∈ PosetRel → (𝑥 ∈ ∪ ∪ 𝑅 → 𝑥𝑅𝑥)) |
| 7 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 8 | 7, 7 | breldm 5847 | . . . . 5 ⊢ (𝑥𝑅𝑥 → 𝑥 ∈ dom 𝑅) |
| 9 | 6, 8 | syl6 35 | . . . 4 ⊢ (𝑅 ∈ PosetRel → (𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 ∈ dom 𝑅)) |
| 10 | 9 | ssrdv 3935 | . . 3 ⊢ (𝑅 ∈ PosetRel → ∪ ∪ 𝑅 ⊆ dom 𝑅) |
| 11 | 4, 10 | eqssd 3947 | . 2 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ∪ ∪ 𝑅) |
| 12 | ssun2 4126 | . . . . 5 ⊢ ran 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅) | |
| 13 | 12, 2 | sstri 3939 | . . . 4 ⊢ ran 𝑅 ⊆ ∪ ∪ 𝑅 |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝑅 ∈ PosetRel → ran 𝑅 ⊆ ∪ ∪ 𝑅) |
| 15 | 7, 7 | brelrn 5881 | . . . . 5 ⊢ (𝑥𝑅𝑥 → 𝑥 ∈ ran 𝑅) |
| 16 | 6, 15 | syl6 35 | . . . 4 ⊢ (𝑅 ∈ PosetRel → (𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 ∈ ran 𝑅)) |
| 17 | 16 | ssrdv 3935 | . . 3 ⊢ (𝑅 ∈ PosetRel → ∪ ∪ 𝑅 ⊆ ran 𝑅) |
| 18 | 14, 17 | eqssd 3947 | . 2 ⊢ (𝑅 ∈ PosetRel → ran 𝑅 = ∪ ∪ 𝑅) |
| 19 | 11, 18 | jca 511 | 1 ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ⊆ wss 3897 ∪ cuni 4856 class class class wbr 5089 dom cdm 5614 ran crn 5615 PosetRelcps 18470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ps 18472 |
| This theorem is referenced by: psref 18480 psrn 18481 psss 18486 tsrdir 18510 |
| Copyright terms: Public domain | W3C validator |