MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmrn Structured version   Visualization version   GIF version

Theorem psdmrn 18643
Description: The domain and range of a poset equal its field. (Contributed by NM, 13-May-2008.)
Assertion
Ref Expression
psdmrn (𝑅 ∈ PosetRel → (dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅))

Proof of Theorem psdmrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssun1 4201 . . . . 5 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
2 dmrnssfld 5996 . . . . 5 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
31, 2sstri 4018 . . . 4 dom 𝑅 𝑅
43a1i 11 . . 3 (𝑅 ∈ PosetRel → dom 𝑅 𝑅)
5 pslem 18642 . . . . . 6 (𝑅 ∈ PosetRel → (((𝑥𝑅𝑥𝑥𝑅𝑥) → 𝑥𝑅𝑥) ∧ (𝑥 𝑅𝑥𝑅𝑥) ∧ ((𝑥𝑅𝑥𝑥𝑅𝑥) → 𝑥 = 𝑥)))
65simp2d 1143 . . . . 5 (𝑅 ∈ PosetRel → (𝑥 𝑅𝑥𝑅𝑥))
7 vex 3492 . . . . . 6 𝑥 ∈ V
87, 7breldm 5933 . . . . 5 (𝑥𝑅𝑥𝑥 ∈ dom 𝑅)
96, 8syl6 35 . . . 4 (𝑅 ∈ PosetRel → (𝑥 𝑅𝑥 ∈ dom 𝑅))
109ssrdv 4014 . . 3 (𝑅 ∈ PosetRel → 𝑅 ⊆ dom 𝑅)
114, 10eqssd 4026 . 2 (𝑅 ∈ PosetRel → dom 𝑅 = 𝑅)
12 ssun2 4202 . . . . 5 ran 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
1312, 2sstri 4018 . . . 4 ran 𝑅 𝑅
1413a1i 11 . . 3 (𝑅 ∈ PosetRel → ran 𝑅 𝑅)
157, 7brelrn 5967 . . . . 5 (𝑥𝑅𝑥𝑥 ∈ ran 𝑅)
166, 15syl6 35 . . . 4 (𝑅 ∈ PosetRel → (𝑥 𝑅𝑥 ∈ ran 𝑅))
1716ssrdv 4014 . . 3 (𝑅 ∈ PosetRel → 𝑅 ⊆ ran 𝑅)
1814, 17eqssd 4026 . 2 (𝑅 ∈ PosetRel → ran 𝑅 = 𝑅)
1911, 18jca 511 1 (𝑅 ∈ PosetRel → (dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cun 3974  wss 3976   cuni 4931   class class class wbr 5166  dom cdm 5700  ran crn 5701  PosetRelcps 18634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ps 18636
This theorem is referenced by:  psref  18644  psrn  18645  psss  18650  tsrdir  18674
  Copyright terms: Public domain W3C validator