MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdmrn Structured version   Visualization version   GIF version

Theorem psdmrn 18206
Description: The domain and range of a poset equal its field. (Contributed by NM, 13-May-2008.)
Assertion
Ref Expression
psdmrn (𝑅 ∈ PosetRel → (dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅))

Proof of Theorem psdmrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssun1 4102 . . . . 5 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
2 dmrnssfld 5868 . . . . 5 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
31, 2sstri 3926 . . . 4 dom 𝑅 𝑅
43a1i 11 . . 3 (𝑅 ∈ PosetRel → dom 𝑅 𝑅)
5 pslem 18205 . . . . . 6 (𝑅 ∈ PosetRel → (((𝑥𝑅𝑥𝑥𝑅𝑥) → 𝑥𝑅𝑥) ∧ (𝑥 𝑅𝑥𝑅𝑥) ∧ ((𝑥𝑅𝑥𝑥𝑅𝑥) → 𝑥 = 𝑥)))
65simp2d 1141 . . . . 5 (𝑅 ∈ PosetRel → (𝑥 𝑅𝑥𝑅𝑥))
7 vex 3426 . . . . . 6 𝑥 ∈ V
87, 7breldm 5806 . . . . 5 (𝑥𝑅𝑥𝑥 ∈ dom 𝑅)
96, 8syl6 35 . . . 4 (𝑅 ∈ PosetRel → (𝑥 𝑅𝑥 ∈ dom 𝑅))
109ssrdv 3923 . . 3 (𝑅 ∈ PosetRel → 𝑅 ⊆ dom 𝑅)
114, 10eqssd 3934 . 2 (𝑅 ∈ PosetRel → dom 𝑅 = 𝑅)
12 ssun2 4103 . . . . 5 ran 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
1312, 2sstri 3926 . . . 4 ran 𝑅 𝑅
1413a1i 11 . . 3 (𝑅 ∈ PosetRel → ran 𝑅 𝑅)
157, 7brelrn 5840 . . . . 5 (𝑥𝑅𝑥𝑥 ∈ ran 𝑅)
166, 15syl6 35 . . . 4 (𝑅 ∈ PosetRel → (𝑥 𝑅𝑥 ∈ ran 𝑅))
1716ssrdv 3923 . . 3 (𝑅 ∈ PosetRel → 𝑅 ⊆ ran 𝑅)
1814, 17eqssd 3934 . 2 (𝑅 ∈ PosetRel → ran 𝑅 = 𝑅)
1911, 18jca 511 1 (𝑅 ∈ PosetRel → (dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cun 3881  wss 3883   cuni 4836   class class class wbr 5070  dom cdm 5580  ran crn 5581  PosetRelcps 18197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ps 18199
This theorem is referenced by:  psref  18207  psrn  18208  psss  18213  tsrdir  18237
  Copyright terms: Public domain W3C validator