Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psdmrn | Structured version Visualization version GIF version |
Description: The domain and range of a poset equal its field. (Contributed by NM, 13-May-2008.) |
Ref | Expression |
---|---|
psdmrn | ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4106 | . . . . 5 ⊢ dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅) | |
2 | dmrnssfld 5879 | . . . . 5 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
3 | 1, 2 | sstri 3930 | . . . 4 ⊢ dom 𝑅 ⊆ ∪ ∪ 𝑅 |
4 | 3 | a1i 11 | . . 3 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 ⊆ ∪ ∪ 𝑅) |
5 | pslem 18290 | . . . . . 6 ⊢ (𝑅 ∈ PosetRel → (((𝑥𝑅𝑥 ∧ 𝑥𝑅𝑥) → 𝑥𝑅𝑥) ∧ (𝑥 ∈ ∪ ∪ 𝑅 → 𝑥𝑅𝑥) ∧ ((𝑥𝑅𝑥 ∧ 𝑥𝑅𝑥) → 𝑥 = 𝑥))) | |
6 | 5 | simp2d 1142 | . . . . 5 ⊢ (𝑅 ∈ PosetRel → (𝑥 ∈ ∪ ∪ 𝑅 → 𝑥𝑅𝑥)) |
7 | vex 3436 | . . . . . 6 ⊢ 𝑥 ∈ V | |
8 | 7, 7 | breldm 5817 | . . . . 5 ⊢ (𝑥𝑅𝑥 → 𝑥 ∈ dom 𝑅) |
9 | 6, 8 | syl6 35 | . . . 4 ⊢ (𝑅 ∈ PosetRel → (𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 ∈ dom 𝑅)) |
10 | 9 | ssrdv 3927 | . . 3 ⊢ (𝑅 ∈ PosetRel → ∪ ∪ 𝑅 ⊆ dom 𝑅) |
11 | 4, 10 | eqssd 3938 | . 2 ⊢ (𝑅 ∈ PosetRel → dom 𝑅 = ∪ ∪ 𝑅) |
12 | ssun2 4107 | . . . . 5 ⊢ ran 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅) | |
13 | 12, 2 | sstri 3930 | . . . 4 ⊢ ran 𝑅 ⊆ ∪ ∪ 𝑅 |
14 | 13 | a1i 11 | . . 3 ⊢ (𝑅 ∈ PosetRel → ran 𝑅 ⊆ ∪ ∪ 𝑅) |
15 | 7, 7 | brelrn 5851 | . . . . 5 ⊢ (𝑥𝑅𝑥 → 𝑥 ∈ ran 𝑅) |
16 | 6, 15 | syl6 35 | . . . 4 ⊢ (𝑅 ∈ PosetRel → (𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 ∈ ran 𝑅)) |
17 | 16 | ssrdv 3927 | . . 3 ⊢ (𝑅 ∈ PosetRel → ∪ ∪ 𝑅 ⊆ ran 𝑅) |
18 | 14, 17 | eqssd 3938 | . 2 ⊢ (𝑅 ∈ PosetRel → ran 𝑅 = ∪ ∪ 𝑅) |
19 | 11, 18 | jca 512 | 1 ⊢ (𝑅 ∈ PosetRel → (dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ⊆ wss 3887 ∪ cuni 4839 class class class wbr 5074 dom cdm 5589 ran crn 5590 PosetRelcps 18282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ps 18284 |
This theorem is referenced by: psref 18292 psrn 18293 psss 18298 tsrdir 18322 |
Copyright terms: Public domain | W3C validator |