MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdclem Structured version   Visualization version   GIF version

Theorem axdclem 9930
Description: Lemma for axdc 9932. (Contributed by Mario Carneiro, 25-Jan-2013.)
Hypothesis
Ref Expression
axdclem.1 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
Assertion
Ref Expression
axdclem ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹𝐾)𝑥𝑧) → (𝐾 ∈ ω → (𝐹𝐾)𝑥(𝐹‘suc 𝐾)))
Distinct variable groups:   𝑦,𝐹,𝑧   𝑦,𝐾,𝑧   𝑦,𝑔   𝑦,𝑠   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑔,𝑠)   𝐾(𝑥,𝑔,𝑠)

Proof of Theorem axdclem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 neeq1 3049 . . . . . . 7 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → (𝑦 ≠ ∅ ↔ {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ≠ ∅))
2 abn0 4290 . . . . . . 7 ({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ≠ ∅ ↔ ∃𝑧(𝐹𝐾)𝑥𝑧)
31, 2syl6bb 290 . . . . . 6 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → (𝑦 ≠ ∅ ↔ ∃𝑧(𝐹𝐾)𝑥𝑧))
4 eleq2 2878 . . . . . . . . 9 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔𝑦) ∈ {𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
5 breq2 5034 . . . . . . . . . . 11 (𝑤 = 𝑧 → ((𝐹𝐾)𝑥𝑤 ↔ (𝐹𝐾)𝑥𝑧))
65cbvabv 2866 . . . . . . . . . 10 {𝑤 ∣ (𝐹𝐾)𝑥𝑤} = {𝑧 ∣ (𝐹𝐾)𝑥𝑧}
76eleq2i 2881 . . . . . . . . 9 ((𝑔𝑦) ∈ {𝑤 ∣ (𝐹𝐾)𝑥𝑤} ↔ (𝑔𝑦) ∈ {𝑧 ∣ (𝐹𝐾)𝑥𝑧})
84, 7syl6bbr 292 . . . . . . . 8 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔𝑦) ∈ {𝑤 ∣ (𝐹𝐾)𝑥𝑤}))
9 fvex 6658 . . . . . . . . 9 (𝑔𝑦) ∈ V
10 breq2 5034 . . . . . . . . 9 (𝑤 = (𝑔𝑦) → ((𝐹𝐾)𝑥𝑤 ↔ (𝐹𝐾)𝑥(𝑔𝑦)))
119, 10elab 3615 . . . . . . . 8 ((𝑔𝑦) ∈ {𝑤 ∣ (𝐹𝐾)𝑥𝑤} ↔ (𝐹𝐾)𝑥(𝑔𝑦))
128, 11syl6bb 290 . . . . . . 7 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝐹𝐾)𝑥(𝑔𝑦)))
13 fveq2 6645 . . . . . . . 8 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → (𝑔𝑦) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
1413breq2d 5042 . . . . . . 7 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝐹𝐾)𝑥(𝑔𝑦) ↔ (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})))
1512, 14bitrd 282 . . . . . 6 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})))
163, 15imbi12d 348 . . . . 5 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ↔ (∃𝑧(𝐹𝐾)𝑥𝑧 → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))))
1716rspcv 3566 . . . 4 ({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ∈ 𝒫 dom 𝑥 → (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (∃𝑧(𝐹𝐾)𝑥𝑧 → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))))
18 fvex 6658 . . . . . . . 8 (𝐹𝐾) ∈ V
19 vex 3444 . . . . . . . 8 𝑧 ∈ V
2018, 19brelrn 5776 . . . . . . 7 ((𝐹𝐾)𝑥𝑧𝑧 ∈ ran 𝑥)
2120abssi 3997 . . . . . 6 {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ ran 𝑥
22 sstr 3923 . . . . . 6 (({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ ran 𝑥 ∧ ran 𝑥 ⊆ dom 𝑥) → {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ dom 𝑥)
2321, 22mpan 689 . . . . 5 (ran 𝑥 ⊆ dom 𝑥 → {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ dom 𝑥)
24 vex 3444 . . . . . . 7 𝑥 ∈ V
2524dmex 7598 . . . . . 6 dom 𝑥 ∈ V
2625elpw2 5212 . . . . 5 ({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ∈ 𝒫 dom 𝑥 ↔ {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ dom 𝑥)
2723, 26sylibr 237 . . . 4 (ran 𝑥 ⊆ dom 𝑥 → {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ∈ 𝒫 dom 𝑥)
2817, 27syl11 33 . . 3 (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (ran 𝑥 ⊆ dom 𝑥 → (∃𝑧(𝐹𝐾)𝑥𝑧 → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))))
29283imp 1108 . 2 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹𝐾)𝑥𝑧) → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
30 fvex 6658 . . . 4 (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}) ∈ V
31 nfcv 2955 . . . . 5 𝑦𝑠
32 nfcv 2955 . . . . 5 𝑦𝐾
33 nfcv 2955 . . . . 5 𝑦(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})
34 axdclem.1 . . . . 5 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
35 breq1 5033 . . . . . . 7 (𝑦 = (𝐹𝐾) → (𝑦𝑥𝑧 ↔ (𝐹𝐾)𝑥𝑧))
3635abbidv 2862 . . . . . 6 (𝑦 = (𝐹𝐾) → {𝑧𝑦𝑥𝑧} = {𝑧 ∣ (𝐹𝐾)𝑥𝑧})
3736fveq2d 6649 . . . . 5 (𝑦 = (𝐹𝐾) → (𝑔‘{𝑧𝑦𝑥𝑧}) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
3831, 32, 33, 34, 37frsucmpt 8056 . . . 4 ((𝐾 ∈ ω ∧ (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}) ∈ V) → (𝐹‘suc 𝐾) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
3930, 38mpan2 690 . . 3 (𝐾 ∈ ω → (𝐹‘suc 𝐾) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
4039breq2d 5042 . 2 (𝐾 ∈ ω → ((𝐹𝐾)𝑥(𝐹‘suc 𝐾) ↔ (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})))
4129, 40syl5ibrcom 250 1 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹𝐾)𝑥𝑧) → (𝐾 ∈ ω → (𝐹𝐾)𝑥(𝐹‘suc 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wex 1781  wcel 2111  {cab 2776  wne 2987  wral 3106  Vcvv 3441  wss 3881  c0 4243  𝒫 cpw 4497   class class class wbr 5030  cmpt 5110  dom cdm 5519  ran crn 5520  cres 5521  suc csuc 6161  cfv 6324  ωcom 7560  reccrdg 8028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029
This theorem is referenced by:  axdclem2  9931
  Copyright terms: Public domain W3C validator