MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdclem Structured version   Visualization version   GIF version

Theorem axdclem 10511
Description: Lemma for axdc 10513. (Contributed by Mario Carneiro, 25-Jan-2013.)
Hypothesis
Ref Expression
axdclem.1 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
Assertion
Ref Expression
axdclem ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹𝐾)𝑥𝑧) → (𝐾 ∈ ω → (𝐹𝐾)𝑥(𝐹‘suc 𝐾)))
Distinct variable groups:   𝑦,𝐹,𝑧   𝑦,𝐾,𝑧   𝑦,𝑔   𝑦,𝑠   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑔,𝑠)   𝐾(𝑥,𝑔,𝑠)

Proof of Theorem axdclem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 neeq1 3004 . . . . . . 7 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → (𝑦 ≠ ∅ ↔ {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ≠ ∅))
2 abn0 4380 . . . . . . 7 ({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ≠ ∅ ↔ ∃𝑧(𝐹𝐾)𝑥𝑧)
31, 2bitrdi 287 . . . . . 6 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → (𝑦 ≠ ∅ ↔ ∃𝑧(𝐹𝐾)𝑥𝑧))
4 eleq2 2823 . . . . . . . . 9 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔𝑦) ∈ {𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
5 breq2 5152 . . . . . . . . . . 11 (𝑤 = 𝑧 → ((𝐹𝐾)𝑥𝑤 ↔ (𝐹𝐾)𝑥𝑧))
65cbvabv 2806 . . . . . . . . . 10 {𝑤 ∣ (𝐹𝐾)𝑥𝑤} = {𝑧 ∣ (𝐹𝐾)𝑥𝑧}
76eleq2i 2826 . . . . . . . . 9 ((𝑔𝑦) ∈ {𝑤 ∣ (𝐹𝐾)𝑥𝑤} ↔ (𝑔𝑦) ∈ {𝑧 ∣ (𝐹𝐾)𝑥𝑧})
84, 7bitr4di 289 . . . . . . . 8 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔𝑦) ∈ {𝑤 ∣ (𝐹𝐾)𝑥𝑤}))
9 fvex 6902 . . . . . . . . 9 (𝑔𝑦) ∈ V
10 breq2 5152 . . . . . . . . 9 (𝑤 = (𝑔𝑦) → ((𝐹𝐾)𝑥𝑤 ↔ (𝐹𝐾)𝑥(𝑔𝑦)))
119, 10elab 3668 . . . . . . . 8 ((𝑔𝑦) ∈ {𝑤 ∣ (𝐹𝐾)𝑥𝑤} ↔ (𝐹𝐾)𝑥(𝑔𝑦))
128, 11bitrdi 287 . . . . . . 7 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝐹𝐾)𝑥(𝑔𝑦)))
13 fveq2 6889 . . . . . . . 8 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → (𝑔𝑦) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
1413breq2d 5160 . . . . . . 7 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝐹𝐾)𝑥(𝑔𝑦) ↔ (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})))
1512, 14bitrd 279 . . . . . 6 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})))
163, 15imbi12d 345 . . . . 5 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ↔ (∃𝑧(𝐹𝐾)𝑥𝑧 → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))))
1716rspcv 3609 . . . 4 ({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ∈ 𝒫 dom 𝑥 → (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (∃𝑧(𝐹𝐾)𝑥𝑧 → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))))
18 fvex 6902 . . . . . . . 8 (𝐹𝐾) ∈ V
19 vex 3479 . . . . . . . 8 𝑧 ∈ V
2018, 19brelrn 5940 . . . . . . 7 ((𝐹𝐾)𝑥𝑧𝑧 ∈ ran 𝑥)
2120abssi 4067 . . . . . 6 {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ ran 𝑥
22 sstr 3990 . . . . . 6 (({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ ran 𝑥 ∧ ran 𝑥 ⊆ dom 𝑥) → {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ dom 𝑥)
2321, 22mpan 689 . . . . 5 (ran 𝑥 ⊆ dom 𝑥 → {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ dom 𝑥)
24 vex 3479 . . . . . . 7 𝑥 ∈ V
2524dmex 7899 . . . . . 6 dom 𝑥 ∈ V
2625elpw2 5345 . . . . 5 ({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ∈ 𝒫 dom 𝑥 ↔ {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ dom 𝑥)
2723, 26sylibr 233 . . . 4 (ran 𝑥 ⊆ dom 𝑥 → {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ∈ 𝒫 dom 𝑥)
2817, 27syl11 33 . . 3 (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (ran 𝑥 ⊆ dom 𝑥 → (∃𝑧(𝐹𝐾)𝑥𝑧 → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))))
29283imp 1112 . 2 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹𝐾)𝑥𝑧) → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
30 fvex 6902 . . . 4 (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}) ∈ V
31 nfcv 2904 . . . . 5 𝑦𝑠
32 nfcv 2904 . . . . 5 𝑦𝐾
33 nfcv 2904 . . . . 5 𝑦(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})
34 axdclem.1 . . . . 5 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
35 breq1 5151 . . . . . . 7 (𝑦 = (𝐹𝐾) → (𝑦𝑥𝑧 ↔ (𝐹𝐾)𝑥𝑧))
3635abbidv 2802 . . . . . 6 (𝑦 = (𝐹𝐾) → {𝑧𝑦𝑥𝑧} = {𝑧 ∣ (𝐹𝐾)𝑥𝑧})
3736fveq2d 6893 . . . . 5 (𝑦 = (𝐹𝐾) → (𝑔‘{𝑧𝑦𝑥𝑧}) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
3831, 32, 33, 34, 37frsucmpt 8435 . . . 4 ((𝐾 ∈ ω ∧ (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}) ∈ V) → (𝐹‘suc 𝐾) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
3930, 38mpan2 690 . . 3 (𝐾 ∈ ω → (𝐹‘suc 𝐾) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
4039breq2d 5160 . 2 (𝐾 ∈ ω → ((𝐹𝐾)𝑥(𝐹‘suc 𝐾) ↔ (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})))
4129, 40syl5ibrcom 246 1 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹𝐾)𝑥𝑧) → (𝐾 ∈ ω → (𝐹𝐾)𝑥(𝐹‘suc 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wex 1782  wcel 2107  {cab 2710  wne 2941  wral 3062  Vcvv 3475  wss 3948  c0 4322  𝒫 cpw 4602   class class class wbr 5148  cmpt 5231  dom cdm 5676  ran crn 5677  cres 5678  suc csuc 6364  cfv 6541  ωcom 7852  reccrdg 8406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-om 7853  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407
This theorem is referenced by:  axdclem2  10512
  Copyright terms: Public domain W3C validator