MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdclem Structured version   Visualization version   GIF version

Theorem axdclem 10407
Description: Lemma for axdc 10409. (Contributed by Mario Carneiro, 25-Jan-2013.)
Hypothesis
Ref Expression
axdclem.1 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
Assertion
Ref Expression
axdclem ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹𝐾)𝑥𝑧) → (𝐾 ∈ ω → (𝐹𝐾)𝑥(𝐹‘suc 𝐾)))
Distinct variable groups:   𝑦,𝐹,𝑧   𝑦,𝐾,𝑧   𝑦,𝑔   𝑦,𝑠   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑔,𝑠)   𝐾(𝑥,𝑔,𝑠)

Proof of Theorem axdclem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 neeq1 2990 . . . . . . 7 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → (𝑦 ≠ ∅ ↔ {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ≠ ∅))
2 abn0 4335 . . . . . . 7 ({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ≠ ∅ ↔ ∃𝑧(𝐹𝐾)𝑥𝑧)
31, 2bitrdi 287 . . . . . 6 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → (𝑦 ≠ ∅ ↔ ∃𝑧(𝐹𝐾)𝑥𝑧))
4 eleq2 2820 . . . . . . . . 9 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔𝑦) ∈ {𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
5 breq2 5095 . . . . . . . . . . 11 (𝑤 = 𝑧 → ((𝐹𝐾)𝑥𝑤 ↔ (𝐹𝐾)𝑥𝑧))
65cbvabv 2801 . . . . . . . . . 10 {𝑤 ∣ (𝐹𝐾)𝑥𝑤} = {𝑧 ∣ (𝐹𝐾)𝑥𝑧}
76eleq2i 2823 . . . . . . . . 9 ((𝑔𝑦) ∈ {𝑤 ∣ (𝐹𝐾)𝑥𝑤} ↔ (𝑔𝑦) ∈ {𝑧 ∣ (𝐹𝐾)𝑥𝑧})
84, 7bitr4di 289 . . . . . . . 8 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔𝑦) ∈ {𝑤 ∣ (𝐹𝐾)𝑥𝑤}))
9 fvex 6835 . . . . . . . . 9 (𝑔𝑦) ∈ V
10 breq2 5095 . . . . . . . . 9 (𝑤 = (𝑔𝑦) → ((𝐹𝐾)𝑥𝑤 ↔ (𝐹𝐾)𝑥(𝑔𝑦)))
119, 10elab 3635 . . . . . . . 8 ((𝑔𝑦) ∈ {𝑤 ∣ (𝐹𝐾)𝑥𝑤} ↔ (𝐹𝐾)𝑥(𝑔𝑦))
128, 11bitrdi 287 . . . . . . 7 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝐹𝐾)𝑥(𝑔𝑦)))
13 fveq2 6822 . . . . . . . 8 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → (𝑔𝑦) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
1413breq2d 5103 . . . . . . 7 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝐹𝐾)𝑥(𝑔𝑦) ↔ (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})))
1512, 14bitrd 279 . . . . . 6 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})))
163, 15imbi12d 344 . . . . 5 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ↔ (∃𝑧(𝐹𝐾)𝑥𝑧 → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))))
1716rspcv 3573 . . . 4 ({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ∈ 𝒫 dom 𝑥 → (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (∃𝑧(𝐹𝐾)𝑥𝑧 → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))))
18 fvex 6835 . . . . . . . 8 (𝐹𝐾) ∈ V
19 vex 3440 . . . . . . . 8 𝑧 ∈ V
2018, 19brelrn 5882 . . . . . . 7 ((𝐹𝐾)𝑥𝑧𝑧 ∈ ran 𝑥)
2120abssi 4020 . . . . . 6 {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ ran 𝑥
22 sstr 3943 . . . . . 6 (({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ ran 𝑥 ∧ ran 𝑥 ⊆ dom 𝑥) → {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ dom 𝑥)
2321, 22mpan 690 . . . . 5 (ran 𝑥 ⊆ dom 𝑥 → {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ dom 𝑥)
24 vex 3440 . . . . . . 7 𝑥 ∈ V
2524dmex 7839 . . . . . 6 dom 𝑥 ∈ V
2625elpw2 5272 . . . . 5 ({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ∈ 𝒫 dom 𝑥 ↔ {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ dom 𝑥)
2723, 26sylibr 234 . . . 4 (ran 𝑥 ⊆ dom 𝑥 → {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ∈ 𝒫 dom 𝑥)
2817, 27syl11 33 . . 3 (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (ran 𝑥 ⊆ dom 𝑥 → (∃𝑧(𝐹𝐾)𝑥𝑧 → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))))
29283imp 1110 . 2 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹𝐾)𝑥𝑧) → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
30 fvex 6835 . . . 4 (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}) ∈ V
31 nfcv 2894 . . . . 5 𝑦𝑠
32 nfcv 2894 . . . . 5 𝑦𝐾
33 nfcv 2894 . . . . 5 𝑦(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})
34 axdclem.1 . . . . 5 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
35 breq1 5094 . . . . . . 7 (𝑦 = (𝐹𝐾) → (𝑦𝑥𝑧 ↔ (𝐹𝐾)𝑥𝑧))
3635abbidv 2797 . . . . . 6 (𝑦 = (𝐹𝐾) → {𝑧𝑦𝑥𝑧} = {𝑧 ∣ (𝐹𝐾)𝑥𝑧})
3736fveq2d 6826 . . . . 5 (𝑦 = (𝐹𝐾) → (𝑔‘{𝑧𝑦𝑥𝑧}) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
3831, 32, 33, 34, 37frsucmpt 8357 . . . 4 ((𝐾 ∈ ω ∧ (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}) ∈ V) → (𝐹‘suc 𝐾) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
3930, 38mpan2 691 . . 3 (𝐾 ∈ ω → (𝐹‘suc 𝐾) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
4039breq2d 5103 . 2 (𝐾 ∈ ω → ((𝐹𝐾)𝑥(𝐹‘suc 𝐾) ↔ (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})))
4129, 40syl5ibrcom 247 1 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹𝐾)𝑥𝑧) → (𝐾 ∈ ω → (𝐹𝐾)𝑥(𝐹‘suc 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wne 2928  wral 3047  Vcvv 3436  wss 3902  c0 4283  𝒫 cpw 4550   class class class wbr 5091  cmpt 5172  dom cdm 5616  ran crn 5617  cres 5618  suc csuc 6308  cfv 6481  ωcom 7796  reccrdg 8328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329
This theorem is referenced by:  axdclem2  10408
  Copyright terms: Public domain W3C validator