MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdclem Structured version   Visualization version   GIF version

Theorem axdclem 10456
Description: Lemma for axdc 10458. (Contributed by Mario Carneiro, 25-Jan-2013.)
Hypothesis
Ref Expression
axdclem.1 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
Assertion
Ref Expression
axdclem ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹𝐾)𝑥𝑧) → (𝐾 ∈ ω → (𝐹𝐾)𝑥(𝐹‘suc 𝐾)))
Distinct variable groups:   𝑦,𝐹,𝑧   𝑦,𝐾,𝑧   𝑦,𝑔   𝑦,𝑠   𝑥,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥,𝑔,𝑠)   𝐾(𝑥,𝑔,𝑠)

Proof of Theorem axdclem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 neeq1 3007 . . . . . . 7 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → (𝑦 ≠ ∅ ↔ {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ≠ ∅))
2 abn0 4341 . . . . . . 7 ({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ≠ ∅ ↔ ∃𝑧(𝐹𝐾)𝑥𝑧)
31, 2bitrdi 287 . . . . . 6 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → (𝑦 ≠ ∅ ↔ ∃𝑧(𝐹𝐾)𝑥𝑧))
4 eleq2 2827 . . . . . . . . 9 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔𝑦) ∈ {𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
5 breq2 5110 . . . . . . . . . . 11 (𝑤 = 𝑧 → ((𝐹𝐾)𝑥𝑤 ↔ (𝐹𝐾)𝑥𝑧))
65cbvabv 2810 . . . . . . . . . 10 {𝑤 ∣ (𝐹𝐾)𝑥𝑤} = {𝑧 ∣ (𝐹𝐾)𝑥𝑧}
76eleq2i 2830 . . . . . . . . 9 ((𝑔𝑦) ∈ {𝑤 ∣ (𝐹𝐾)𝑥𝑤} ↔ (𝑔𝑦) ∈ {𝑧 ∣ (𝐹𝐾)𝑥𝑧})
84, 7bitr4di 289 . . . . . . . 8 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝑔𝑦) ∈ {𝑤 ∣ (𝐹𝐾)𝑥𝑤}))
9 fvex 6856 . . . . . . . . 9 (𝑔𝑦) ∈ V
10 breq2 5110 . . . . . . . . 9 (𝑤 = (𝑔𝑦) → ((𝐹𝐾)𝑥𝑤 ↔ (𝐹𝐾)𝑥(𝑔𝑦)))
119, 10elab 3631 . . . . . . . 8 ((𝑔𝑦) ∈ {𝑤 ∣ (𝐹𝐾)𝑥𝑤} ↔ (𝐹𝐾)𝑥(𝑔𝑦))
128, 11bitrdi 287 . . . . . . 7 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝐹𝐾)𝑥(𝑔𝑦)))
13 fveq2 6843 . . . . . . . 8 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → (𝑔𝑦) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
1413breq2d 5118 . . . . . . 7 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝐹𝐾)𝑥(𝑔𝑦) ↔ (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})))
1512, 14bitrd 279 . . . . . 6 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑔𝑦) ∈ 𝑦 ↔ (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})))
163, 15imbi12d 345 . . . . 5 (𝑦 = {𝑧 ∣ (𝐹𝐾)𝑥𝑧} → ((𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ↔ (∃𝑧(𝐹𝐾)𝑥𝑧 → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))))
1716rspcv 3578 . . . 4 ({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ∈ 𝒫 dom 𝑥 → (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (∃𝑧(𝐹𝐾)𝑥𝑧 → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))))
18 fvex 6856 . . . . . . . 8 (𝐹𝐾) ∈ V
19 vex 3450 . . . . . . . 8 𝑧 ∈ V
2018, 19brelrn 5898 . . . . . . 7 ((𝐹𝐾)𝑥𝑧𝑧 ∈ ran 𝑥)
2120abssi 4028 . . . . . 6 {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ ran 𝑥
22 sstr 3953 . . . . . 6 (({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ ran 𝑥 ∧ ran 𝑥 ⊆ dom 𝑥) → {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ dom 𝑥)
2321, 22mpan 689 . . . . 5 (ran 𝑥 ⊆ dom 𝑥 → {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ dom 𝑥)
24 vex 3450 . . . . . . 7 𝑥 ∈ V
2524dmex 7849 . . . . . 6 dom 𝑥 ∈ V
2625elpw2 5303 . . . . 5 ({𝑧 ∣ (𝐹𝐾)𝑥𝑧} ∈ 𝒫 dom 𝑥 ↔ {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ⊆ dom 𝑥)
2723, 26sylibr 233 . . . 4 (ran 𝑥 ⊆ dom 𝑥 → {𝑧 ∣ (𝐹𝐾)𝑥𝑧} ∈ 𝒫 dom 𝑥)
2817, 27syl11 33 . . 3 (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) → (ran 𝑥 ⊆ dom 𝑥 → (∃𝑧(𝐹𝐾)𝑥𝑧 → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))))
29283imp 1112 . 2 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹𝐾)𝑥𝑧) → (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
30 fvex 6856 . . . 4 (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}) ∈ V
31 nfcv 2908 . . . . 5 𝑦𝑠
32 nfcv 2908 . . . . 5 𝑦𝐾
33 nfcv 2908 . . . . 5 𝑦(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})
34 axdclem.1 . . . . 5 𝐹 = (rec((𝑦 ∈ V ↦ (𝑔‘{𝑧𝑦𝑥𝑧})), 𝑠) ↾ ω)
35 breq1 5109 . . . . . . 7 (𝑦 = (𝐹𝐾) → (𝑦𝑥𝑧 ↔ (𝐹𝐾)𝑥𝑧))
3635abbidv 2806 . . . . . 6 (𝑦 = (𝐹𝐾) → {𝑧𝑦𝑥𝑧} = {𝑧 ∣ (𝐹𝐾)𝑥𝑧})
3736fveq2d 6847 . . . . 5 (𝑦 = (𝐹𝐾) → (𝑔‘{𝑧𝑦𝑥𝑧}) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
3831, 32, 33, 34, 37frsucmpt 8385 . . . 4 ((𝐾 ∈ ω ∧ (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}) ∈ V) → (𝐹‘suc 𝐾) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
3930, 38mpan2 690 . . 3 (𝐾 ∈ ω → (𝐹‘suc 𝐾) = (𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧}))
4039breq2d 5118 . 2 (𝐾 ∈ ω → ((𝐹𝐾)𝑥(𝐹‘suc 𝐾) ↔ (𝐹𝐾)𝑥(𝑔‘{𝑧 ∣ (𝐹𝐾)𝑥𝑧})))
4129, 40syl5ibrcom 247 1 ((∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≠ ∅ → (𝑔𝑦) ∈ 𝑦) ∧ ran 𝑥 ⊆ dom 𝑥 ∧ ∃𝑧(𝐹𝐾)𝑥𝑧) → (𝐾 ∈ ω → (𝐹𝐾)𝑥(𝐹‘suc 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wex 1782  wcel 2107  {cab 2714  wne 2944  wral 3065  Vcvv 3446  wss 3911  c0 4283  𝒫 cpw 4561   class class class wbr 5106  cmpt 5189  dom cdm 5634  ran crn 5635  cres 5636  suc csuc 6320  cfv 6497  ωcom 7803  reccrdg 8356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357
This theorem is referenced by:  axdclem2  10457
  Copyright terms: Public domain W3C validator