Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfvid Structured version   Visualization version   GIF version

Theorem brfvid 43680
Description: If two elements are connected by a value of the identity relation, then they are connected via the argument. (Contributed by RP, 21-Jul-2020.)
Hypothesis
Ref Expression
brfvid.r (𝜑𝑅 ∈ V)
Assertion
Ref Expression
brfvid (𝜑 → (𝐴( I ‘𝑅)𝐵𝐴𝑅𝐵))

Proof of Theorem brfvid
StepHypRef Expression
1 brfvid.r . . 3 (𝜑𝑅 ∈ V)
2 fvi 6899 . . 3 (𝑅 ∈ V → ( I ‘𝑅) = 𝑅)
31, 2syl 17 . 2 (𝜑 → ( I ‘𝑅) = 𝑅)
43breqd 5103 1 (𝜑 → (𝐴( I ‘𝑅)𝐵𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3436   class class class wbr 5092   I cid 5513  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator