Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfvid Structured version   Visualization version   GIF version

Theorem brfvid 42988
Description: If two elements are connected by a value of the identity relation, then they are connected via the argument. (Contributed by RP, 21-Jul-2020.)
Hypothesis
Ref Expression
brfvid.r (𝜑𝑅 ∈ V)
Assertion
Ref Expression
brfvid (𝜑 → (𝐴( I ‘𝑅)𝐵𝐴𝑅𝐵))

Proof of Theorem brfvid
StepHypRef Expression
1 brfvid.r . . 3 (𝜑𝑅 ∈ V)
2 fvi 6958 . . 3 (𝑅 ∈ V → ( I ‘𝑅) = 𝑅)
31, 2syl 17 . 2 (𝜑 → ( I ‘𝑅) = 𝑅)
43breqd 5150 1 (𝜑 → (𝐴( I ‘𝑅)𝐵𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  Vcvv 3466   class class class wbr 5139   I cid 5564  cfv 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6486  df-fun 6536  df-fv 6542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator