Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brfvid | Structured version Visualization version GIF version |
Description: If two elements are connected by a value of the identity relation, then they are connected via the argument. (Contributed by RP, 21-Jul-2020.) |
Ref | Expression |
---|---|
brfvid.r | ⊢ (𝜑 → 𝑅 ∈ V) |
Ref | Expression |
---|---|
brfvid | ⊢ (𝜑 → (𝐴( I ‘𝑅)𝐵 ↔ 𝐴𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brfvid.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | fvi 6836 | . . 3 ⊢ (𝑅 ∈ V → ( I ‘𝑅) = 𝑅) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → ( I ‘𝑅) = 𝑅) |
4 | 3 | breqd 5084 | 1 ⊢ (𝜑 → (𝐴( I ‘𝑅)𝐵 ↔ 𝐴𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3429 class class class wbr 5073 I cid 5483 ‘cfv 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-iota 6384 df-fun 6428 df-fv 6434 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |