Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brfvid Structured version   Visualization version   GIF version

Theorem brfvid 41276
Description: If two elements are connected by a value of the identity relation, then they are connected via the argument. (Contributed by RP, 21-Jul-2020.)
Hypothesis
Ref Expression
brfvid.r (𝜑𝑅 ∈ V)
Assertion
Ref Expression
brfvid (𝜑 → (𝐴( I ‘𝑅)𝐵𝐴𝑅𝐵))

Proof of Theorem brfvid
StepHypRef Expression
1 brfvid.r . . 3 (𝜑𝑅 ∈ V)
2 fvi 6836 . . 3 (𝑅 ∈ V → ( I ‘𝑅) = 𝑅)
31, 2syl 17 . 2 (𝜑 → ( I ‘𝑅) = 𝑅)
43breqd 5084 1 (𝜑 → (𝐴( I ‘𝑅)𝐵𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  Vcvv 3429   class class class wbr 5073   I cid 5483  cfv 6426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pr 5350
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3431  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5074  df-opab 5136  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-iota 6384  df-fun 6428  df-fv 6434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator