Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptiunrelexplb1d Structured version   Visualization version   GIF version

Theorem fvmptiunrelexplb1d 43661
Description: If the indexed union ranges over the first power of the relation, then the relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.)
Hypotheses
Ref Expression
fvmptiunrelexplb1d.c 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
fvmptiunrelexplb1d.r (𝜑𝑅 ∈ V)
fvmptiunrelexplb1d.n (𝜑𝑁 ∈ V)
fvmptiunrelexplb1d.1 (𝜑 → 1 ∈ 𝑁)
Assertion
Ref Expression
fvmptiunrelexplb1d (𝜑𝑅 ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝑁   𝑅,𝑛,𝑟
Allowed substitution hints:   𝜑(𝑛,𝑟)   𝐶(𝑛,𝑟)

Proof of Theorem fvmptiunrelexplb1d
StepHypRef Expression
1 fvmptiunrelexplb1d.1 . . 3 (𝜑 → 1 ∈ 𝑁)
2 oveq2 7421 . . . 4 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
32ssiun2s 5028 . . 3 (1 ∈ 𝑁 → (𝑅𝑟1) ⊆ 𝑛𝑁 (𝑅𝑟𝑛))
41, 3syl 17 . 2 (𝜑 → (𝑅𝑟1) ⊆ 𝑛𝑁 (𝑅𝑟𝑛))
5 fvmptiunrelexplb1d.r . . 3 (𝜑𝑅 ∈ V)
65relexp1d 15050 . 2 (𝜑 → (𝑅𝑟1) = 𝑅)
7 fvmptiunrelexplb1d.c . . . 4 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
8 oveq1 7420 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
98iuneq2d 5002 . . . 4 (𝑟 = 𝑅 𝑛𝑁 (𝑟𝑟𝑛) = 𝑛𝑁 (𝑅𝑟𝑛))
10 fvmptiunrelexplb1d.n . . . . 5 (𝜑𝑁 ∈ V)
11 ovex 7446 . . . . . 6 (𝑅𝑟𝑛) ∈ V
1211rgenw 3054 . . . . 5 𝑛𝑁 (𝑅𝑟𝑛) ∈ V
13 iunexg 7970 . . . . 5 ((𝑁 ∈ V ∧ ∀𝑛𝑁 (𝑅𝑟𝑛) ∈ V) → 𝑛𝑁 (𝑅𝑟𝑛) ∈ V)
1410, 12, 13sylancl 586 . . . 4 (𝜑 𝑛𝑁 (𝑅𝑟𝑛) ∈ V)
157, 9, 5, 14fvmptd3 7019 . . 3 (𝜑 → (𝐶𝑅) = 𝑛𝑁 (𝑅𝑟𝑛))
1615eqcomd 2740 . 2 (𝜑 𝑛𝑁 (𝑅𝑟𝑛) = (𝐶𝑅))
174, 6, 163sstr3d 4018 1 (𝜑𝑅 ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3050  Vcvv 3463  wss 3931   ciun 4971  cmpt 5205  cfv 6541  (class class class)co 7413  1c1 11138  𝑟crelexp 15040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-seq 14025  df-relexp 15041
This theorem is referenced by:  fvilbdRP  43665  fvrcllb1d  43670  fvtrcllb1d  43697  fvrtrcllb1d  43712
  Copyright terms: Public domain W3C validator