Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptiunrelexplb1d Structured version   Visualization version   GIF version

Theorem fvmptiunrelexplb1d 38812
Description: If the indexed union ranges over the first power of the relation, then the relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.)
Hypotheses
Ref Expression
fvmptiunrelexplb1d.c 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
fvmptiunrelexplb1d.r (𝜑𝑅 ∈ V)
fvmptiunrelexplb1d.n (𝜑𝑁 ∈ V)
fvmptiunrelexplb1d.1 (𝜑 → 1 ∈ 𝑁)
Assertion
Ref Expression
fvmptiunrelexplb1d (𝜑𝑅 ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝑁   𝑅,𝑛,𝑟
Allowed substitution hints:   𝜑(𝑛,𝑟)   𝐶(𝑛,𝑟)

Proof of Theorem fvmptiunrelexplb1d
StepHypRef Expression
1 fvmptiunrelexplb1d.1 . . 3 (𝜑 → 1 ∈ 𝑁)
2 oveq2 6913 . . . 4 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
32ssiun2s 4784 . . 3 (1 ∈ 𝑁 → (𝑅𝑟1) ⊆ 𝑛𝑁 (𝑅𝑟𝑛))
41, 3syl 17 . 2 (𝜑 → (𝑅𝑟1) ⊆ 𝑛𝑁 (𝑅𝑟𝑛))
5 fvmptiunrelexplb1d.r . . 3 (𝜑𝑅 ∈ V)
65relexp1d 14148 . 2 (𝜑 → (𝑅𝑟1) = 𝑅)
7 fvmptiunrelexplb1d.c . . . 4 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
8 oveq1 6912 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
98iuneq2d 4767 . . . 4 (𝑟 = 𝑅 𝑛𝑁 (𝑟𝑟𝑛) = 𝑛𝑁 (𝑅𝑟𝑛))
10 fvmptiunrelexplb1d.n . . . . 5 (𝜑𝑁 ∈ V)
11 ovex 6937 . . . . . 6 (𝑅𝑟𝑛) ∈ V
1211rgenw 3133 . . . . 5 𝑛𝑁 (𝑅𝑟𝑛) ∈ V
13 iunexg 7404 . . . . 5 ((𝑁 ∈ V ∧ ∀𝑛𝑁 (𝑅𝑟𝑛) ∈ V) → 𝑛𝑁 (𝑅𝑟𝑛) ∈ V)
1410, 12, 13sylancl 580 . . . 4 (𝜑 𝑛𝑁 (𝑅𝑟𝑛) ∈ V)
157, 9, 5, 14fvmptd3 6550 . . 3 (𝜑 → (𝐶𝑅) = 𝑛𝑁 (𝑅𝑟𝑛))
1615eqcomd 2831 . 2 (𝜑 𝑛𝑁 (𝑅𝑟𝑛) = (𝐶𝑅))
174, 6, 163sstr3d 3872 1 (𝜑𝑅 ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1656  wcel 2164  wral 3117  Vcvv 3414  wss 3798   ciun 4740  cmpt 4952  cfv 6123  (class class class)co 6905  1c1 10253  𝑟crelexp 14137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-seq 13096  df-relexp 14138
This theorem is referenced by:  fvilbdRP  38816  fvrcllb1d  38821  fvtrcllb1d  38848  fvrtrcllb1d  38863
  Copyright terms: Public domain W3C validator