Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptiunrelexplb1d Structured version   Visualization version   GIF version

Theorem fvmptiunrelexplb1d 43685
Description: If the indexed union ranges over the first power of the relation, then the relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.)
Hypotheses
Ref Expression
fvmptiunrelexplb1d.c 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
fvmptiunrelexplb1d.r (𝜑𝑅 ∈ V)
fvmptiunrelexplb1d.n (𝜑𝑁 ∈ V)
fvmptiunrelexplb1d.1 (𝜑 → 1 ∈ 𝑁)
Assertion
Ref Expression
fvmptiunrelexplb1d (𝜑𝑅 ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝑁   𝑅,𝑛,𝑟
Allowed substitution hints:   𝜑(𝑛,𝑟)   𝐶(𝑛,𝑟)

Proof of Theorem fvmptiunrelexplb1d
StepHypRef Expression
1 fvmptiunrelexplb1d.1 . . 3 (𝜑 → 1 ∈ 𝑁)
2 oveq2 7418 . . . 4 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
32ssiun2s 5029 . . 3 (1 ∈ 𝑁 → (𝑅𝑟1) ⊆ 𝑛𝑁 (𝑅𝑟𝑛))
41, 3syl 17 . 2 (𝜑 → (𝑅𝑟1) ⊆ 𝑛𝑁 (𝑅𝑟𝑛))
5 fvmptiunrelexplb1d.r . . 3 (𝜑𝑅 ∈ V)
65relexp1d 15053 . 2 (𝜑 → (𝑅𝑟1) = 𝑅)
7 fvmptiunrelexplb1d.c . . . 4 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
8 oveq1 7417 . . . . 5 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
98iuneq2d 5003 . . . 4 (𝑟 = 𝑅 𝑛𝑁 (𝑟𝑟𝑛) = 𝑛𝑁 (𝑅𝑟𝑛))
10 fvmptiunrelexplb1d.n . . . . 5 (𝜑𝑁 ∈ V)
11 ovex 7443 . . . . . 6 (𝑅𝑟𝑛) ∈ V
1211rgenw 3056 . . . . 5 𝑛𝑁 (𝑅𝑟𝑛) ∈ V
13 iunexg 7967 . . . . 5 ((𝑁 ∈ V ∧ ∀𝑛𝑁 (𝑅𝑟𝑛) ∈ V) → 𝑛𝑁 (𝑅𝑟𝑛) ∈ V)
1410, 12, 13sylancl 586 . . . 4 (𝜑 𝑛𝑁 (𝑅𝑟𝑛) ∈ V)
157, 9, 5, 14fvmptd3 7014 . . 3 (𝜑 → (𝐶𝑅) = 𝑛𝑁 (𝑅𝑟𝑛))
1615eqcomd 2742 . 2 (𝜑 𝑛𝑁 (𝑅𝑟𝑛) = (𝐶𝑅))
174, 6, 163sstr3d 4018 1 (𝜑𝑅 ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  wss 3931   ciun 4972  cmpt 5206  cfv 6536  (class class class)co 7410  1c1 11135  𝑟crelexp 15043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-seq 14025  df-relexp 15044
This theorem is referenced by:  fvilbdRP  43689  fvrcllb1d  43694  fvtrcllb1d  43721  fvrtrcllb1d  43736
  Copyright terms: Public domain W3C validator