![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brfvidRP | Structured version Visualization version GIF version |
Description: If two elements are connected by a value of the identity relation, then they are connected via the argument. This is an example which uses brmptiunrelexpd 38753. (Contributed by RP, 21-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
brfvidRP.r | ⊢ (𝜑 → 𝑅 ∈ V) |
Ref | Expression |
---|---|
brfvidRP | ⊢ (𝜑 → (𝐴( I ‘𝑅)𝐵 ↔ 𝐴𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfid6 14108 | . . 3 ⊢ I = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ {1} (𝑟↑𝑟𝑛)) | |
2 | brfvidRP.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
3 | 1nn0 11597 | . . . 4 ⊢ 1 ∈ ℕ0 | |
4 | snssi 4528 | . . . 4 ⊢ (1 ∈ ℕ0 → {1} ⊆ ℕ0) | |
5 | 3, 4 | mp1i 13 | . . 3 ⊢ (𝜑 → {1} ⊆ ℕ0) |
6 | 1, 2, 5 | brmptiunrelexpd 38753 | . 2 ⊢ (𝜑 → (𝐴( I ‘𝑅)𝐵 ↔ ∃𝑛 ∈ {1}𝐴(𝑅↑𝑟𝑛)𝐵)) |
7 | oveq2 6887 | . . . . 5 ⊢ (𝑛 = 1 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟1)) | |
8 | 7 | breqd 4855 | . . . 4 ⊢ (𝑛 = 1 → (𝐴(𝑅↑𝑟𝑛)𝐵 ↔ 𝐴(𝑅↑𝑟1)𝐵)) |
9 | 8 | rexsng 4411 | . . 3 ⊢ (1 ∈ ℕ0 → (∃𝑛 ∈ {1}𝐴(𝑅↑𝑟𝑛)𝐵 ↔ 𝐴(𝑅↑𝑟1)𝐵)) |
10 | 3, 9 | mp1i 13 | . 2 ⊢ (𝜑 → (∃𝑛 ∈ {1}𝐴(𝑅↑𝑟𝑛)𝐵 ↔ 𝐴(𝑅↑𝑟1)𝐵)) |
11 | 2 | relexp1d 14111 | . . 3 ⊢ (𝜑 → (𝑅↑𝑟1) = 𝑅) |
12 | 11 | breqd 4855 | . 2 ⊢ (𝜑 → (𝐴(𝑅↑𝑟1)𝐵 ↔ 𝐴𝑅𝐵)) |
13 | 6, 10, 12 | 3bitrd 297 | 1 ⊢ (𝜑 → (𝐴( I ‘𝑅)𝐵 ↔ 𝐴𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 ∃wrex 3091 Vcvv 3386 ⊆ wss 3770 {csn 4369 class class class wbr 4844 I cid 5220 ‘cfv 6102 (class class class)co 6879 1c1 10226 ℕ0cn0 11579 ↑𝑟crelexp 14100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-n0 11580 df-z 11666 df-uz 11930 df-seq 13055 df-relexp 14101 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |