Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcoffn Structured version   Visualization version   GIF version

Theorem brcoffn 44069
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 7-Jun-2021.)
Hypotheses
Ref Expression
brcoffn.c (𝜑𝐶 Fn 𝑌)
brcoffn.d (𝜑𝐷:𝑋𝑌)
brcoffn.r (𝜑𝐴(𝐶𝐷)𝐵)
Assertion
Ref Expression
brcoffn (𝜑 → (𝐴𝐷(𝐷𝐴) ∧ (𝐷𝐴)𝐶𝐵))

Proof of Theorem brcoffn
StepHypRef Expression
1 brcoffn.c . . . 4 (𝜑𝐶 Fn 𝑌)
2 brcoffn.d . . . 4 (𝜑𝐷:𝑋𝑌)
3 fnfco 6688 . . . 4 ((𝐶 Fn 𝑌𝐷:𝑋𝑌) → (𝐶𝐷) Fn 𝑋)
41, 2, 3syl2anc 584 . . 3 (𝜑 → (𝐶𝐷) Fn 𝑋)
5 simpl 482 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋) → 𝜑)
6 simpr 484 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋) → (𝐶𝐷) Fn 𝑋)
7 brcoffn.r . . . . . 6 (𝜑𝐴(𝐶𝐷)𝐵)
85, 7syl 17 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋) → 𝐴(𝐶𝐷)𝐵)
9 fnbr 6589 . . . . 5 (((𝐶𝐷) Fn 𝑋𝐴(𝐶𝐷)𝐵) → 𝐴𝑋)
106, 8, 9syl2anc 584 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋) → 𝐴𝑋)
115, 6, 103jca 1128 . . 3 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋) → (𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋))
124, 11mpdan 687 . 2 (𝜑 → (𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋))
1323ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → 𝐷:𝑋𝑌)
14 simp3 1138 . . . . . 6 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → 𝐴𝑋)
15 fvco3 6921 . . . . . 6 ((𝐷:𝑋𝑌𝐴𝑋) → ((𝐶𝐷)‘𝐴) = (𝐶‘(𝐷𝐴)))
1613, 14, 15syl2anc 584 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → ((𝐶𝐷)‘𝐴) = (𝐶‘(𝐷𝐴)))
1773ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → 𝐴(𝐶𝐷)𝐵)
18 fnbrfvb 6872 . . . . . . 7 (((𝐶𝐷) Fn 𝑋𝐴𝑋) → (((𝐶𝐷)‘𝐴) = 𝐵𝐴(𝐶𝐷)𝐵))
19183adant1 1130 . . . . . 6 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → (((𝐶𝐷)‘𝐴) = 𝐵𝐴(𝐶𝐷)𝐵))
2017, 19mpbird 257 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → ((𝐶𝐷)‘𝐴) = 𝐵)
2116, 20eqtr3d 2768 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → (𝐶‘(𝐷𝐴)) = 𝐵)
22 eqid 2731 . . . 4 (𝐷𝐴) = (𝐷𝐴)
2321, 22jctil 519 . . 3 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → ((𝐷𝐴) = (𝐷𝐴) ∧ (𝐶‘(𝐷𝐴)) = 𝐵))
2413ffnd 6652 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → 𝐷 Fn 𝑋)
25 fnbrfvb 6872 . . . . 5 ((𝐷 Fn 𝑋𝐴𝑋) → ((𝐷𝐴) = (𝐷𝐴) ↔ 𝐴𝐷(𝐷𝐴)))
2624, 14, 25syl2anc 584 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → ((𝐷𝐴) = (𝐷𝐴) ↔ 𝐴𝐷(𝐷𝐴)))
2713ad2ant1 1133 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → 𝐶 Fn 𝑌)
2813, 14ffvelcdmd 7018 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → (𝐷𝐴) ∈ 𝑌)
29 fnbrfvb 6872 . . . . 5 ((𝐶 Fn 𝑌 ∧ (𝐷𝐴) ∈ 𝑌) → ((𝐶‘(𝐷𝐴)) = 𝐵 ↔ (𝐷𝐴)𝐶𝐵))
3027, 28, 29syl2anc 584 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → ((𝐶‘(𝐷𝐴)) = 𝐵 ↔ (𝐷𝐴)𝐶𝐵))
3126, 30anbi12d 632 . . 3 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → (((𝐷𝐴) = (𝐷𝐴) ∧ (𝐶‘(𝐷𝐴)) = 𝐵) ↔ (𝐴𝐷(𝐷𝐴) ∧ (𝐷𝐴)𝐶𝐵)))
3223, 31mpbid 232 . 2 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → (𝐴𝐷(𝐷𝐴) ∧ (𝐷𝐴)𝐶𝐵))
3312, 32syl 17 1 (𝜑 → (𝐴𝐷(𝐷𝐴) ∧ (𝐷𝐴)𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091  ccom 5620   Fn wfn 6476  wf 6477  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489
This theorem is referenced by:  brcofffn  44070  brco2f1o  44071  clsneikex  44145  clsneinex  44146  clsneiel1  44147
  Copyright terms: Public domain W3C validator