Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcoffn Structured version   Visualization version   GIF version

Theorem brcoffn 44020
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 7-Jun-2021.)
Hypotheses
Ref Expression
brcoffn.c (𝜑𝐶 Fn 𝑌)
brcoffn.d (𝜑𝐷:𝑋𝑌)
brcoffn.r (𝜑𝐴(𝐶𝐷)𝐵)
Assertion
Ref Expression
brcoffn (𝜑 → (𝐴𝐷(𝐷𝐴) ∧ (𝐷𝐴)𝐶𝐵))

Proof of Theorem brcoffn
StepHypRef Expression
1 brcoffn.c . . . 4 (𝜑𝐶 Fn 𝑌)
2 brcoffn.d . . . 4 (𝜑𝐷:𝑋𝑌)
3 fnfco 6774 . . . 4 ((𝐶 Fn 𝑌𝐷:𝑋𝑌) → (𝐶𝐷) Fn 𝑋)
41, 2, 3syl2anc 584 . . 3 (𝜑 → (𝐶𝐷) Fn 𝑋)
5 simpl 482 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋) → 𝜑)
6 simpr 484 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋) → (𝐶𝐷) Fn 𝑋)
7 brcoffn.r . . . . . 6 (𝜑𝐴(𝐶𝐷)𝐵)
85, 7syl 17 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋) → 𝐴(𝐶𝐷)𝐵)
9 fnbr 6677 . . . . 5 (((𝐶𝐷) Fn 𝑋𝐴(𝐶𝐷)𝐵) → 𝐴𝑋)
106, 8, 9syl2anc 584 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋) → 𝐴𝑋)
115, 6, 103jca 1127 . . 3 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋) → (𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋))
124, 11mpdan 687 . 2 (𝜑 → (𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋))
1323ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → 𝐷:𝑋𝑌)
14 simp3 1137 . . . . . 6 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → 𝐴𝑋)
15 fvco3 7008 . . . . . 6 ((𝐷:𝑋𝑌𝐴𝑋) → ((𝐶𝐷)‘𝐴) = (𝐶‘(𝐷𝐴)))
1613, 14, 15syl2anc 584 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → ((𝐶𝐷)‘𝐴) = (𝐶‘(𝐷𝐴)))
1773ad2ant1 1132 . . . . . 6 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → 𝐴(𝐶𝐷)𝐵)
18 fnbrfvb 6960 . . . . . . 7 (((𝐶𝐷) Fn 𝑋𝐴𝑋) → (((𝐶𝐷)‘𝐴) = 𝐵𝐴(𝐶𝐷)𝐵))
19183adant1 1129 . . . . . 6 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → (((𝐶𝐷)‘𝐴) = 𝐵𝐴(𝐶𝐷)𝐵))
2017, 19mpbird 257 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → ((𝐶𝐷)‘𝐴) = 𝐵)
2116, 20eqtr3d 2777 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → (𝐶‘(𝐷𝐴)) = 𝐵)
22 eqid 2735 . . . 4 (𝐷𝐴) = (𝐷𝐴)
2321, 22jctil 519 . . 3 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → ((𝐷𝐴) = (𝐷𝐴) ∧ (𝐶‘(𝐷𝐴)) = 𝐵))
2413ffnd 6738 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → 𝐷 Fn 𝑋)
25 fnbrfvb 6960 . . . . 5 ((𝐷 Fn 𝑋𝐴𝑋) → ((𝐷𝐴) = (𝐷𝐴) ↔ 𝐴𝐷(𝐷𝐴)))
2624, 14, 25syl2anc 584 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → ((𝐷𝐴) = (𝐷𝐴) ↔ 𝐴𝐷(𝐷𝐴)))
2713ad2ant1 1132 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → 𝐶 Fn 𝑌)
2813, 14ffvelcdmd 7105 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → (𝐷𝐴) ∈ 𝑌)
29 fnbrfvb 6960 . . . . 5 ((𝐶 Fn 𝑌 ∧ (𝐷𝐴) ∈ 𝑌) → ((𝐶‘(𝐷𝐴)) = 𝐵 ↔ (𝐷𝐴)𝐶𝐵))
3027, 28, 29syl2anc 584 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → ((𝐶‘(𝐷𝐴)) = 𝐵 ↔ (𝐷𝐴)𝐶𝐵))
3126, 30anbi12d 632 . . 3 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → (((𝐷𝐴) = (𝐷𝐴) ∧ (𝐶‘(𝐷𝐴)) = 𝐵) ↔ (𝐴𝐷(𝐷𝐴) ∧ (𝐷𝐴)𝐶𝐵)))
3223, 31mpbid 232 . 2 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → (𝐴𝐷(𝐷𝐴) ∧ (𝐷𝐴)𝐶𝐵))
3312, 32syl 17 1 (𝜑 → (𝐴𝐷(𝐷𝐴) ∧ (𝐷𝐴)𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  ccom 5693   Fn wfn 6558  wf 6559  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571
This theorem is referenced by:  brcofffn  44021  brco2f1o  44022  clsneikex  44096  clsneinex  44097  clsneiel1  44098
  Copyright terms: Public domain W3C validator