Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcoffn Structured version   Visualization version   GIF version

Theorem brcoffn 44029
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 7-Jun-2021.)
Hypotheses
Ref Expression
brcoffn.c (𝜑𝐶 Fn 𝑌)
brcoffn.d (𝜑𝐷:𝑋𝑌)
brcoffn.r (𝜑𝐴(𝐶𝐷)𝐵)
Assertion
Ref Expression
brcoffn (𝜑 → (𝐴𝐷(𝐷𝐴) ∧ (𝐷𝐴)𝐶𝐵))

Proof of Theorem brcoffn
StepHypRef Expression
1 brcoffn.c . . . 4 (𝜑𝐶 Fn 𝑌)
2 brcoffn.d . . . 4 (𝜑𝐷:𝑋𝑌)
3 fnfco 6748 . . . 4 ((𝐶 Fn 𝑌𝐷:𝑋𝑌) → (𝐶𝐷) Fn 𝑋)
41, 2, 3syl2anc 584 . . 3 (𝜑 → (𝐶𝐷) Fn 𝑋)
5 simpl 482 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋) → 𝜑)
6 simpr 484 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋) → (𝐶𝐷) Fn 𝑋)
7 brcoffn.r . . . . . 6 (𝜑𝐴(𝐶𝐷)𝐵)
85, 7syl 17 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋) → 𝐴(𝐶𝐷)𝐵)
9 fnbr 6651 . . . . 5 (((𝐶𝐷) Fn 𝑋𝐴(𝐶𝐷)𝐵) → 𝐴𝑋)
106, 8, 9syl2anc 584 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋) → 𝐴𝑋)
115, 6, 103jca 1128 . . 3 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋) → (𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋))
124, 11mpdan 687 . 2 (𝜑 → (𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋))
1323ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → 𝐷:𝑋𝑌)
14 simp3 1138 . . . . . 6 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → 𝐴𝑋)
15 fvco3 6983 . . . . . 6 ((𝐷:𝑋𝑌𝐴𝑋) → ((𝐶𝐷)‘𝐴) = (𝐶‘(𝐷𝐴)))
1613, 14, 15syl2anc 584 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → ((𝐶𝐷)‘𝐴) = (𝐶‘(𝐷𝐴)))
1773ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → 𝐴(𝐶𝐷)𝐵)
18 fnbrfvb 6934 . . . . . . 7 (((𝐶𝐷) Fn 𝑋𝐴𝑋) → (((𝐶𝐷)‘𝐴) = 𝐵𝐴(𝐶𝐷)𝐵))
19183adant1 1130 . . . . . 6 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → (((𝐶𝐷)‘𝐴) = 𝐵𝐴(𝐶𝐷)𝐵))
2017, 19mpbird 257 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → ((𝐶𝐷)‘𝐴) = 𝐵)
2116, 20eqtr3d 2773 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → (𝐶‘(𝐷𝐴)) = 𝐵)
22 eqid 2736 . . . 4 (𝐷𝐴) = (𝐷𝐴)
2321, 22jctil 519 . . 3 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → ((𝐷𝐴) = (𝐷𝐴) ∧ (𝐶‘(𝐷𝐴)) = 𝐵))
2413ffnd 6712 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → 𝐷 Fn 𝑋)
25 fnbrfvb 6934 . . . . 5 ((𝐷 Fn 𝑋𝐴𝑋) → ((𝐷𝐴) = (𝐷𝐴) ↔ 𝐴𝐷(𝐷𝐴)))
2624, 14, 25syl2anc 584 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → ((𝐷𝐴) = (𝐷𝐴) ↔ 𝐴𝐷(𝐷𝐴)))
2713ad2ant1 1133 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → 𝐶 Fn 𝑌)
2813, 14ffvelcdmd 7080 . . . . 5 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → (𝐷𝐴) ∈ 𝑌)
29 fnbrfvb 6934 . . . . 5 ((𝐶 Fn 𝑌 ∧ (𝐷𝐴) ∈ 𝑌) → ((𝐶‘(𝐷𝐴)) = 𝐵 ↔ (𝐷𝐴)𝐶𝐵))
3027, 28, 29syl2anc 584 . . . 4 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → ((𝐶‘(𝐷𝐴)) = 𝐵 ↔ (𝐷𝐴)𝐶𝐵))
3126, 30anbi12d 632 . . 3 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → (((𝐷𝐴) = (𝐷𝐴) ∧ (𝐶‘(𝐷𝐴)) = 𝐵) ↔ (𝐴𝐷(𝐷𝐴) ∧ (𝐷𝐴)𝐶𝐵)))
3223, 31mpbid 232 . 2 ((𝜑 ∧ (𝐶𝐷) Fn 𝑋𝐴𝑋) → (𝐴𝐷(𝐷𝐴) ∧ (𝐷𝐴)𝐶𝐵))
3312, 32syl 17 1 (𝜑 → (𝐴𝐷(𝐷𝐴) ∧ (𝐷𝐴)𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  ccom 5663   Fn wfn 6531  wf 6532  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544
This theorem is referenced by:  brcofffn  44030  brco2f1o  44031  clsneikex  44105  clsneinex  44106  clsneiel1  44107
  Copyright terms: Public domain W3C validator