Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneibex Structured version   Visualization version   GIF version

Theorem ntrneibex 44024
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the base set exists. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneibex (𝜑𝐵 ∈ V)
Distinct variable groups:   𝑖,𝑗,𝑘   𝑖,𝑙,𝑗   𝑖,𝑚,𝑗
Allowed substitution hints:   𝜑(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneibex
Dummy variables 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ntrnei.o . . 3 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 oveq2 7420 . . . . 5 (𝑖 = 𝑎 → (𝒫 𝑗m 𝑖) = (𝒫 𝑗m 𝑎))
3 rabeq 3434 . . . . . 6 (𝑖 = 𝑎 → {𝑚𝑖𝑙 ∈ (𝑘𝑚)} = {𝑚𝑎𝑙 ∈ (𝑘𝑚)})
43mpteq2dv 5224 . . . . 5 (𝑖 = 𝑎 → (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)}) = (𝑙𝑗 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)}))
52, 4mpteq12dv 5213 . . . 4 (𝑖 = 𝑎 → (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})) = (𝑘 ∈ (𝒫 𝑗m 𝑎) ↦ (𝑙𝑗 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)})))
6 pweq 4594 . . . . . 6 (𝑗 = 𝑏 → 𝒫 𝑗 = 𝒫 𝑏)
76oveq1d 7427 . . . . 5 (𝑗 = 𝑏 → (𝒫 𝑗m 𝑎) = (𝒫 𝑏m 𝑎))
8 mpteq1 5215 . . . . 5 (𝑗 = 𝑏 → (𝑙𝑗 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)}) = (𝑙𝑏 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)}))
97, 8mpteq12dv 5213 . . . 4 (𝑗 = 𝑏 → (𝑘 ∈ (𝒫 𝑗m 𝑎) ↦ (𝑙𝑗 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)})) = (𝑘 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑙𝑏 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)})))
105, 9cbvmpov 7509 . . 3 (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)}))) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑘 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑙𝑏 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)})))
111, 10eqtri 2757 . 2 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑘 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑙𝑏 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)})))
12 ntrnei.r . 2 (𝜑𝐼𝐹𝑁)
13 ntrnei.f . . 3 𝐹 = (𝒫 𝐵𝑂𝐵)
1413a1i 11 . 2 (𝜑𝐹 = (𝒫 𝐵𝑂𝐵))
1511, 12, 14brovmptimex2 43980 1 (𝜑𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {crab 3419  Vcvv 3463  𝒫 cpw 4580   class class class wbr 5123  cmpt 5205  cfv 6540  (class class class)co 7412  cmpo 7414  m cmap 8847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-xp 5671  df-rel 5672  df-dm 5675  df-iota 6493  df-fv 6548  df-ov 7415  df-oprab 7416  df-mpo 7417
This theorem is referenced by:  ntrneircomplex  44025  ntrneif1o  44026  ntrneicnv  44029  ntrneiel  44032  ntrneicls00  44040  ntrneik3  44047  ntrneix3  44048  ntrneik13  44049  ntrneix13  44050
  Copyright terms: Public domain W3C validator