| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneibex | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the base set exists. (Contributed by RP, 29-May-2021.) |
| Ref | Expression |
|---|---|
| ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
| Ref | Expression |
|---|---|
| ntrneibex | ⊢ (𝜑 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrnei.o | . . 3 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 2 | oveq2 7360 | . . . . 5 ⊢ (𝑖 = 𝑎 → (𝒫 𝑗 ↑m 𝑖) = (𝒫 𝑗 ↑m 𝑎)) | |
| 3 | rabeq 3410 | . . . . . 6 ⊢ (𝑖 = 𝑎 → {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)} = {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}) | |
| 4 | 3 | mpteq2dv 5187 | . . . . 5 ⊢ (𝑖 = 𝑎 → (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}) = (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)})) |
| 5 | 2, 4 | mpteq12dv 5180 | . . . 4 ⊢ (𝑖 = 𝑎 → (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)})) = (𝑘 ∈ (𝒫 𝑗 ↑m 𝑎) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| 6 | pweq 4563 | . . . . . 6 ⊢ (𝑗 = 𝑏 → 𝒫 𝑗 = 𝒫 𝑏) | |
| 7 | 6 | oveq1d 7367 | . . . . 5 ⊢ (𝑗 = 𝑏 → (𝒫 𝑗 ↑m 𝑎) = (𝒫 𝑏 ↑m 𝑎)) |
| 8 | mpteq1 5182 | . . . . 5 ⊢ (𝑗 = 𝑏 → (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}) = (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)})) | |
| 9 | 7, 8 | mpteq12dv 5180 | . . . 4 ⊢ (𝑗 = 𝑏 → (𝑘 ∈ (𝒫 𝑗 ↑m 𝑎) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)})) = (𝑘 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| 10 | 5, 9 | cbvmpov 7447 | . . 3 ⊢ (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑘 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| 11 | 1, 10 | eqtri 2756 | . 2 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑘 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| 12 | ntrnei.r | . 2 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
| 13 | ntrnei.f | . . 3 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝒫 𝐵𝑂𝐵)) |
| 15 | 11, 12, 14 | brovmptimex2 44146 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 𝒫 cpw 4549 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 ↑m cmap 8756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-xp 5625 df-rel 5626 df-dm 5629 df-iota 6442 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 |
| This theorem is referenced by: ntrneircomplex 44191 ntrneif1o 44192 ntrneicnv 44195 ntrneiel 44198 ntrneicls00 44206 ntrneik3 44213 ntrneix3 44214 ntrneik13 44215 ntrneix13 44216 |
| Copyright terms: Public domain | W3C validator |