![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneibex | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the base set exists. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneibex | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . 3 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | oveq2 7422 | . . . . 5 ⊢ (𝑖 = 𝑎 → (𝒫 𝑗 ↑m 𝑖) = (𝒫 𝑗 ↑m 𝑎)) | |
3 | rabeq 3441 | . . . . . 6 ⊢ (𝑖 = 𝑎 → {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)} = {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}) | |
4 | 3 | mpteq2dv 5244 | . . . . 5 ⊢ (𝑖 = 𝑎 → (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}) = (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)})) |
5 | 2, 4 | mpteq12dv 5233 | . . . 4 ⊢ (𝑖 = 𝑎 → (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)})) = (𝑘 ∈ (𝒫 𝑗 ↑m 𝑎) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
6 | pweq 4612 | . . . . . 6 ⊢ (𝑗 = 𝑏 → 𝒫 𝑗 = 𝒫 𝑏) | |
7 | 6 | oveq1d 7429 | . . . . 5 ⊢ (𝑗 = 𝑏 → (𝒫 𝑗 ↑m 𝑎) = (𝒫 𝑏 ↑m 𝑎)) |
8 | mpteq1 5235 | . . . . 5 ⊢ (𝑗 = 𝑏 → (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}) = (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)})) | |
9 | 7, 8 | mpteq12dv 5233 | . . . 4 ⊢ (𝑗 = 𝑏 → (𝑘 ∈ (𝒫 𝑗 ↑m 𝑎) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)})) = (𝑘 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
10 | 5, 9 | cbvmpov 7509 | . . 3 ⊢ (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑘 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
11 | 1, 10 | eqtri 2755 | . 2 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑘 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
12 | ntrnei.r | . 2 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
13 | ntrnei.f | . . 3 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝒫 𝐵𝑂𝐵)) |
15 | 11, 12, 14 | brovmptimex2 43382 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {crab 3427 Vcvv 3469 𝒫 cpw 4598 class class class wbr 5142 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 ↑m cmap 8836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-xp 5678 df-rel 5679 df-dm 5682 df-iota 6494 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 |
This theorem is referenced by: ntrneircomplex 43427 ntrneif1o 43428 ntrneicnv 43431 ntrneiel 43434 ntrneicls00 43442 ntrneik3 43449 ntrneix3 43450 ntrneik13 43451 ntrneix13 43452 |
Copyright terms: Public domain | W3C validator |