![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneibex | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the base set exists. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneibex | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . 3 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | oveq2 7419 | . . . . 5 ⊢ (𝑖 = 𝑎 → (𝒫 𝑗 ↑m 𝑖) = (𝒫 𝑗 ↑m 𝑎)) | |
3 | rabeq 3446 | . . . . . 6 ⊢ (𝑖 = 𝑎 → {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)} = {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}) | |
4 | 3 | mpteq2dv 5250 | . . . . 5 ⊢ (𝑖 = 𝑎 → (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}) = (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)})) |
5 | 2, 4 | mpteq12dv 5239 | . . . 4 ⊢ (𝑖 = 𝑎 → (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)})) = (𝑘 ∈ (𝒫 𝑗 ↑m 𝑎) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
6 | pweq 4616 | . . . . . 6 ⊢ (𝑗 = 𝑏 → 𝒫 𝑗 = 𝒫 𝑏) | |
7 | 6 | oveq1d 7426 | . . . . 5 ⊢ (𝑗 = 𝑏 → (𝒫 𝑗 ↑m 𝑎) = (𝒫 𝑏 ↑m 𝑎)) |
8 | mpteq1 5241 | . . . . 5 ⊢ (𝑗 = 𝑏 → (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}) = (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)})) | |
9 | 7, 8 | mpteq12dv 5239 | . . . 4 ⊢ (𝑗 = 𝑏 → (𝑘 ∈ (𝒫 𝑗 ↑m 𝑎) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)})) = (𝑘 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
10 | 5, 9 | cbvmpov 7506 | . . 3 ⊢ (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑘 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
11 | 1, 10 | eqtri 2760 | . 2 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑘 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
12 | ntrnei.r | . 2 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
13 | ntrnei.f | . . 3 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝒫 𝐵𝑂𝐵)) |
15 | 11, 12, 14 | brovmptimex2 42862 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {crab 3432 Vcvv 3474 𝒫 cpw 4602 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7411 ∈ cmpo 7413 ↑m cmap 8822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5682 df-rel 5683 df-dm 5686 df-iota 6495 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 |
This theorem is referenced by: ntrneircomplex 42907 ntrneif1o 42908 ntrneicnv 42911 ntrneiel 42914 ntrneicls00 42922 ntrneik3 42929 ntrneix3 42930 ntrneik13 42931 ntrneix13 42932 |
Copyright terms: Public domain | W3C validator |