![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneibex | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the base set exists. (Contributed by RP, 29-May-2021.) |
Ref | Expression |
---|---|
ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
Ref | Expression |
---|---|
ntrneibex | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrnei.o | . . 3 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | oveq2 7453 | . . . . 5 ⊢ (𝑖 = 𝑎 → (𝒫 𝑗 ↑m 𝑖) = (𝒫 𝑗 ↑m 𝑎)) | |
3 | rabeq 3453 | . . . . . 6 ⊢ (𝑖 = 𝑎 → {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)} = {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}) | |
4 | 3 | mpteq2dv 5271 | . . . . 5 ⊢ (𝑖 = 𝑎 → (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}) = (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)})) |
5 | 2, 4 | mpteq12dv 5260 | . . . 4 ⊢ (𝑖 = 𝑎 → (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)})) = (𝑘 ∈ (𝒫 𝑗 ↑m 𝑎) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
6 | pweq 4636 | . . . . . 6 ⊢ (𝑗 = 𝑏 → 𝒫 𝑗 = 𝒫 𝑏) | |
7 | 6 | oveq1d 7460 | . . . . 5 ⊢ (𝑗 = 𝑏 → (𝒫 𝑗 ↑m 𝑎) = (𝒫 𝑏 ↑m 𝑎)) |
8 | mpteq1 5262 | . . . . 5 ⊢ (𝑗 = 𝑏 → (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}) = (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)})) | |
9 | 7, 8 | mpteq12dv 5260 | . . . 4 ⊢ (𝑗 = 𝑏 → (𝑘 ∈ (𝒫 𝑗 ↑m 𝑎) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)})) = (𝑘 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
10 | 5, 9 | cbvmpov 7541 | . . 3 ⊢ (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑘 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
11 | 1, 10 | eqtri 2762 | . 2 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑘 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
12 | ntrnei.r | . 2 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
13 | ntrnei.f | . . 3 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝒫 𝐵𝑂𝐵)) |
15 | 11, 12, 14 | brovmptimex2 43932 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2103 {crab 3438 Vcvv 3482 𝒫 cpw 4622 class class class wbr 5169 ↦ cmpt 5252 ‘cfv 6572 (class class class)co 7445 ∈ cmpo 7447 ↑m cmap 8880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pr 5450 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-dif 3973 df-un 3975 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5170 df-opab 5232 df-mpt 5253 df-xp 5705 df-rel 5706 df-dm 5709 df-iota 6524 df-fv 6580 df-ov 7448 df-oprab 7449 df-mpo 7450 |
This theorem is referenced by: ntrneircomplex 43977 ntrneif1o 43978 ntrneicnv 43981 ntrneiel 43984 ntrneicls00 43992 ntrneik3 43999 ntrneix3 44000 ntrneik13 44001 ntrneix13 44002 |
Copyright terms: Public domain | W3C validator |