Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneibex Structured version   Visualization version   GIF version

Theorem ntrneibex 44034
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the base set exists. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneibex (𝜑𝐵 ∈ V)
Distinct variable groups:   𝑖,𝑗,𝑘   𝑖,𝑙,𝑗   𝑖,𝑚,𝑗
Allowed substitution hints:   𝜑(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneibex
Dummy variables 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ntrnei.o . . 3 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 oveq2 7402 . . . . 5 (𝑖 = 𝑎 → (𝒫 𝑗m 𝑖) = (𝒫 𝑗m 𝑎))
3 rabeq 3426 . . . . . 6 (𝑖 = 𝑎 → {𝑚𝑖𝑙 ∈ (𝑘𝑚)} = {𝑚𝑎𝑙 ∈ (𝑘𝑚)})
43mpteq2dv 5209 . . . . 5 (𝑖 = 𝑎 → (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)}) = (𝑙𝑗 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)}))
52, 4mpteq12dv 5202 . . . 4 (𝑖 = 𝑎 → (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})) = (𝑘 ∈ (𝒫 𝑗m 𝑎) ↦ (𝑙𝑗 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)})))
6 pweq 4585 . . . . . 6 (𝑗 = 𝑏 → 𝒫 𝑗 = 𝒫 𝑏)
76oveq1d 7409 . . . . 5 (𝑗 = 𝑏 → (𝒫 𝑗m 𝑎) = (𝒫 𝑏m 𝑎))
8 mpteq1 5204 . . . . 5 (𝑗 = 𝑏 → (𝑙𝑗 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)}) = (𝑙𝑏 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)}))
97, 8mpteq12dv 5202 . . . 4 (𝑗 = 𝑏 → (𝑘 ∈ (𝒫 𝑗m 𝑎) ↦ (𝑙𝑗 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)})) = (𝑘 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑙𝑏 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)})))
105, 9cbvmpov 7491 . . 3 (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)}))) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑘 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑙𝑏 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)})))
111, 10eqtri 2753 . 2 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑘 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑙𝑏 ↦ {𝑚𝑎𝑙 ∈ (𝑘𝑚)})))
12 ntrnei.r . 2 (𝜑𝐼𝐹𝑁)
13 ntrnei.f . . 3 𝐹 = (𝒫 𝐵𝑂𝐵)
1413a1i 11 . 2 (𝜑𝐹 = (𝒫 𝐵𝑂𝐵))
1511, 12, 14brovmptimex2 43990 1 (𝜑𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3411  Vcvv 3455  𝒫 cpw 4571   class class class wbr 5115  cmpt 5196  cfv 6519  (class class class)co 7394  cmpo 7396  m cmap 8803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-xp 5652  df-rel 5653  df-dm 5656  df-iota 6472  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399
This theorem is referenced by:  ntrneircomplex  44035  ntrneif1o  44036  ntrneicnv  44039  ntrneiel  44042  ntrneicls00  44050  ntrneik3  44057  ntrneix3  44058  ntrneik13  44059  ntrneix13  44060
  Copyright terms: Public domain W3C validator