| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrneibex | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the base set exists. (Contributed by RP, 29-May-2021.) |
| Ref | Expression |
|---|---|
| ntrnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| ntrnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| ntrnei.r | ⊢ (𝜑 → 𝐼𝐹𝑁) |
| Ref | Expression |
|---|---|
| ntrneibex | ⊢ (𝜑 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrnei.o | . . 3 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 2 | oveq2 7420 | . . . . 5 ⊢ (𝑖 = 𝑎 → (𝒫 𝑗 ↑m 𝑖) = (𝒫 𝑗 ↑m 𝑎)) | |
| 3 | rabeq 3434 | . . . . . 6 ⊢ (𝑖 = 𝑎 → {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)} = {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}) | |
| 4 | 3 | mpteq2dv 5224 | . . . . 5 ⊢ (𝑖 = 𝑎 → (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}) = (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)})) |
| 5 | 2, 4 | mpteq12dv 5213 | . . . 4 ⊢ (𝑖 = 𝑎 → (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)})) = (𝑘 ∈ (𝒫 𝑗 ↑m 𝑎) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| 6 | pweq 4594 | . . . . . 6 ⊢ (𝑗 = 𝑏 → 𝒫 𝑗 = 𝒫 𝑏) | |
| 7 | 6 | oveq1d 7427 | . . . . 5 ⊢ (𝑗 = 𝑏 → (𝒫 𝑗 ↑m 𝑎) = (𝒫 𝑏 ↑m 𝑎)) |
| 8 | mpteq1 5215 | . . . . 5 ⊢ (𝑗 = 𝑏 → (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}) = (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)})) | |
| 9 | 7, 8 | mpteq12dv 5213 | . . . 4 ⊢ (𝑗 = 𝑏 → (𝑘 ∈ (𝒫 𝑗 ↑m 𝑎) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)})) = (𝑘 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| 10 | 5, 9 | cbvmpov 7509 | . . 3 ⊢ (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑘 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| 11 | 1, 10 | eqtri 2757 | . 2 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑘 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑙 ∈ 𝑏 ↦ {𝑚 ∈ 𝑎 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| 12 | ntrnei.r | . 2 ⊢ (𝜑 → 𝐼𝐹𝑁) | |
| 13 | ntrnei.f | . . 3 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝒫 𝐵𝑂𝐵)) |
| 15 | 11, 12, 14 | brovmptimex2 43980 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3419 Vcvv 3463 𝒫 cpw 4580 class class class wbr 5123 ↦ cmpt 5205 ‘cfv 6540 (class class class)co 7412 ∈ cmpo 7414 ↑m cmap 8847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-xp 5671 df-rel 5672 df-dm 5675 df-iota 6493 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 |
| This theorem is referenced by: ntrneircomplex 44025 ntrneif1o 44026 ntrneicnv 44029 ntrneiel 44032 ntrneicls00 44040 ntrneik3 44047 ntrneix3 44048 ntrneik13 44049 ntrneix13 44050 |
| Copyright terms: Public domain | W3C validator |