Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imagesset Structured version   Visualization version   GIF version

Theorem imagesset 34913
Description: The Image functor applied to the converse of the subset relationship yields a subset of the subset relationship. (Contributed by Scott Fenton, 14-Apr-2018.)
Assertion
Ref Expression
imagesset Image SSet SSet

Proof of Theorem imagesset
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 4003 . . . . . . . 8 𝑦𝑦
2 sseq2 4007 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑦𝑧𝑦𝑦))
32rspcev 3612 . . . . . . . 8 ((𝑦𝑥𝑦𝑦) → ∃𝑧𝑥 𝑦𝑧)
41, 3mpan2 689 . . . . . . 7 (𝑦𝑥 → ∃𝑧𝑥 𝑦𝑧)
5 vex 3478 . . . . . . . . 9 𝑦 ∈ V
65elima 6062 . . . . . . . 8 (𝑦 ∈ ( SSet 𝑥) ↔ ∃𝑧𝑥 𝑧 SSet 𝑦)
7 vex 3478 . . . . . . . . . . 11 𝑧 ∈ V
87, 5brcnv 5880 . . . . . . . . . 10 (𝑧 SSet 𝑦𝑦 SSet 𝑧)
97brsset 34849 . . . . . . . . . 10 (𝑦 SSet 𝑧𝑦𝑧)
108, 9bitri 274 . . . . . . . . 9 (𝑧 SSet 𝑦𝑦𝑧)
1110rexbii 3094 . . . . . . . 8 (∃𝑧𝑥 𝑧 SSet 𝑦 ↔ ∃𝑧𝑥 𝑦𝑧)
126, 11bitri 274 . . . . . . 7 (𝑦 ∈ ( SSet 𝑥) ↔ ∃𝑧𝑥 𝑦𝑧)
134, 12sylibr 233 . . . . . 6 (𝑦𝑥𝑦 ∈ ( SSet 𝑥))
1413ssriv 3985 . . . . 5 𝑥 ⊆ ( SSet 𝑥)
15 sseq2 4007 . . . . 5 (𝑦 = ( SSet 𝑥) → (𝑥𝑦𝑥 ⊆ ( SSet 𝑥)))
1614, 15mpbiri 257 . . . 4 (𝑦 = ( SSet 𝑥) → 𝑥𝑦)
17 vex 3478 . . . . . 6 𝑥 ∈ V
1817, 5brimage 34886 . . . . 5 (𝑥Image SSet 𝑦𝑦 = ( SSet 𝑥))
19 df-br 5148 . . . . 5 (𝑥Image SSet 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ Image SSet )
2018, 19bitr3i 276 . . . 4 (𝑦 = ( SSet 𝑥) ↔ ⟨𝑥, 𝑦⟩ ∈ Image SSet )
215brsset 34849 . . . . 5 (𝑥 SSet 𝑦𝑥𝑦)
22 df-br 5148 . . . . 5 (𝑥 SSet 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ SSet )
2321, 22bitr3i 276 . . . 4 (𝑥𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ SSet )
2416, 20, 233imtr3i 290 . . 3 (⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet )
2524gen2 1798 . 2 𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet )
26 funimage 34888 . . 3 Fun Image SSet
27 funrel 6562 . . 3 (Fun Image SSet → Rel Image SSet )
28 ssrel 5780 . . 3 (Rel Image SSet → (Image SSet SSet ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet )))
2926, 27, 28mp2b 10 . 2 (Image SSet SSet ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet ))
3025, 29mpbir 230 1 Image SSet SSet
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539   = wceq 1541  wcel 2106  wrex 3070  wss 3947  cop 4633   class class class wbr 5147  ccnv 5674  cima 5678  Rel wrel 5680  Fun wfun 6534   SSet csset 34792  Imagecimage 34800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-symdif 4241  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-eprel 5579  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-1st 7971  df-2nd 7972  df-txp 34814  df-sset 34816  df-image 34824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator