Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imagesset Structured version   Visualization version   GIF version

Theorem imagesset 36018
Description: The Image functor applied to the converse of the subset relationship yields a subset of the subset relationship. (Contributed by Scott Fenton, 14-Apr-2018.)
Assertion
Ref Expression
imagesset Image SSet SSet

Proof of Theorem imagesset
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3953 . . . . . . . 8 𝑦𝑦
2 sseq2 3957 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑦𝑧𝑦𝑦))
32rspcev 3573 . . . . . . . 8 ((𝑦𝑥𝑦𝑦) → ∃𝑧𝑥 𝑦𝑧)
41, 3mpan2 691 . . . . . . 7 (𝑦𝑥 → ∃𝑧𝑥 𝑦𝑧)
5 vex 3441 . . . . . . . . 9 𝑦 ∈ V
65elima 6018 . . . . . . . 8 (𝑦 ∈ ( SSet 𝑥) ↔ ∃𝑧𝑥 𝑧 SSet 𝑦)
7 vex 3441 . . . . . . . . . . 11 𝑧 ∈ V
87, 5brcnv 5826 . . . . . . . . . 10 (𝑧 SSet 𝑦𝑦 SSet 𝑧)
97brsset 35952 . . . . . . . . . 10 (𝑦 SSet 𝑧𝑦𝑧)
108, 9bitri 275 . . . . . . . . 9 (𝑧 SSet 𝑦𝑦𝑧)
1110rexbii 3080 . . . . . . . 8 (∃𝑧𝑥 𝑧 SSet 𝑦 ↔ ∃𝑧𝑥 𝑦𝑧)
126, 11bitri 275 . . . . . . 7 (𝑦 ∈ ( SSet 𝑥) ↔ ∃𝑧𝑥 𝑦𝑧)
134, 12sylibr 234 . . . . . 6 (𝑦𝑥𝑦 ∈ ( SSet 𝑥))
1413ssriv 3934 . . . . 5 𝑥 ⊆ ( SSet 𝑥)
15 sseq2 3957 . . . . 5 (𝑦 = ( SSet 𝑥) → (𝑥𝑦𝑥 ⊆ ( SSet 𝑥)))
1614, 15mpbiri 258 . . . 4 (𝑦 = ( SSet 𝑥) → 𝑥𝑦)
17 vex 3441 . . . . . 6 𝑥 ∈ V
1817, 5brimage 35989 . . . . 5 (𝑥Image SSet 𝑦𝑦 = ( SSet 𝑥))
19 df-br 5094 . . . . 5 (𝑥Image SSet 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ Image SSet )
2018, 19bitr3i 277 . . . 4 (𝑦 = ( SSet 𝑥) ↔ ⟨𝑥, 𝑦⟩ ∈ Image SSet )
215brsset 35952 . . . . 5 (𝑥 SSet 𝑦𝑥𝑦)
22 df-br 5094 . . . . 5 (𝑥 SSet 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ SSet )
2321, 22bitr3i 277 . . . 4 (𝑥𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ SSet )
2416, 20, 233imtr3i 291 . . 3 (⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet )
2524gen2 1797 . 2 𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet )
26 funimage 35991 . . 3 Fun Image SSet
27 funrel 6503 . . 3 (Fun Image SSet → Rel Image SSet )
28 ssrel 5727 . . 3 (Rel Image SSet → (Image SSet SSet ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet )))
2926, 27, 28mp2b 10 . 2 (Image SSet SSet ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet ))
3025, 29mpbir 231 1 Image SSet SSet
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  wcel 2113  wrex 3057  wss 3898  cop 4581   class class class wbr 5093  ccnv 5618  cima 5622  Rel wrel 5624  Fun wfun 6480   SSet csset 35895  Imagecimage 35903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-symdif 4202  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-1st 7927  df-2nd 7928  df-txp 35917  df-sset 35919  df-image 35927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator