Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imagesset Structured version   Visualization version   GIF version

Theorem imagesset 34182
Description: The Image functor applied to the converse of the subset relationship yields a subset of the subset relationship. (Contributed by Scott Fenton, 14-Apr-2018.)
Assertion
Ref Expression
imagesset Image SSet SSet

Proof of Theorem imagesset
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3939 . . . . . . . 8 𝑦𝑦
2 sseq2 3943 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑦𝑧𝑦𝑦))
32rspcev 3552 . . . . . . . 8 ((𝑦𝑥𝑦𝑦) → ∃𝑧𝑥 𝑦𝑧)
41, 3mpan2 687 . . . . . . 7 (𝑦𝑥 → ∃𝑧𝑥 𝑦𝑧)
5 vex 3426 . . . . . . . . 9 𝑦 ∈ V
65elima 5963 . . . . . . . 8 (𝑦 ∈ ( SSet 𝑥) ↔ ∃𝑧𝑥 𝑧 SSet 𝑦)
7 vex 3426 . . . . . . . . . . 11 𝑧 ∈ V
87, 5brcnv 5780 . . . . . . . . . 10 (𝑧 SSet 𝑦𝑦 SSet 𝑧)
97brsset 34118 . . . . . . . . . 10 (𝑦 SSet 𝑧𝑦𝑧)
108, 9bitri 274 . . . . . . . . 9 (𝑧 SSet 𝑦𝑦𝑧)
1110rexbii 3177 . . . . . . . 8 (∃𝑧𝑥 𝑧 SSet 𝑦 ↔ ∃𝑧𝑥 𝑦𝑧)
126, 11bitri 274 . . . . . . 7 (𝑦 ∈ ( SSet 𝑥) ↔ ∃𝑧𝑥 𝑦𝑧)
134, 12sylibr 233 . . . . . 6 (𝑦𝑥𝑦 ∈ ( SSet 𝑥))
1413ssriv 3921 . . . . 5 𝑥 ⊆ ( SSet 𝑥)
15 sseq2 3943 . . . . 5 (𝑦 = ( SSet 𝑥) → (𝑥𝑦𝑥 ⊆ ( SSet 𝑥)))
1614, 15mpbiri 257 . . . 4 (𝑦 = ( SSet 𝑥) → 𝑥𝑦)
17 vex 3426 . . . . . 6 𝑥 ∈ V
1817, 5brimage 34155 . . . . 5 (𝑥Image SSet 𝑦𝑦 = ( SSet 𝑥))
19 df-br 5071 . . . . 5 (𝑥Image SSet 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ Image SSet )
2018, 19bitr3i 276 . . . 4 (𝑦 = ( SSet 𝑥) ↔ ⟨𝑥, 𝑦⟩ ∈ Image SSet )
215brsset 34118 . . . . 5 (𝑥 SSet 𝑦𝑥𝑦)
22 df-br 5071 . . . . 5 (𝑥 SSet 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ SSet )
2321, 22bitr3i 276 . . . 4 (𝑥𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ SSet )
2416, 20, 233imtr3i 290 . . 3 (⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet )
2524gen2 1800 . 2 𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet )
26 funimage 34157 . . 3 Fun Image SSet
27 funrel 6435 . . 3 (Fun Image SSet → Rel Image SSet )
28 ssrel 5683 . . 3 (Rel Image SSet → (Image SSet SSet ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet )))
2926, 27, 28mp2b 10 . 2 (Image SSet SSet ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet ))
3025, 29mpbir 230 1 Image SSet SSet
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2108  wrex 3064  wss 3883  cop 4564   class class class wbr 5070  ccnv 5579  cima 5583  Rel wrel 5585  Fun wfun 6412   SSet csset 34061  Imagecimage 34069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-symdif 4173  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-txp 34083  df-sset 34085  df-image 34093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator