Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imagesset Structured version   Visualization version   GIF version

Theorem imagesset 32649
Description: The Image functor applied to the converse of the subset relationship yields a subset of the subset relationship. (Contributed by Scott Fenton, 14-Apr-2018.)
Assertion
Ref Expression
imagesset Image SSet SSet

Proof of Theorem imagesset
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3841 . . . . . . . 8 𝑦𝑦
2 sseq2 3845 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑦𝑧𝑦𝑦))
32rspcev 3510 . . . . . . . 8 ((𝑦𝑥𝑦𝑦) → ∃𝑧𝑥 𝑦𝑧)
41, 3mpan2 681 . . . . . . 7 (𝑦𝑥 → ∃𝑧𝑥 𝑦𝑧)
5 vex 3400 . . . . . . . . 9 𝑦 ∈ V
65elima 5725 . . . . . . . 8 (𝑦 ∈ ( SSet 𝑥) ↔ ∃𝑧𝑥 𝑧 SSet 𝑦)
7 vex 3400 . . . . . . . . . . 11 𝑧 ∈ V
87, 5brcnv 5550 . . . . . . . . . 10 (𝑧 SSet 𝑦𝑦 SSet 𝑧)
97brsset 32585 . . . . . . . . . 10 (𝑦 SSet 𝑧𝑦𝑧)
108, 9bitri 267 . . . . . . . . 9 (𝑧 SSet 𝑦𝑦𝑧)
1110rexbii 3223 . . . . . . . 8 (∃𝑧𝑥 𝑧 SSet 𝑦 ↔ ∃𝑧𝑥 𝑦𝑧)
126, 11bitri 267 . . . . . . 7 (𝑦 ∈ ( SSet 𝑥) ↔ ∃𝑧𝑥 𝑦𝑧)
134, 12sylibr 226 . . . . . 6 (𝑦𝑥𝑦 ∈ ( SSet 𝑥))
1413ssriv 3824 . . . . 5 𝑥 ⊆ ( SSet 𝑥)
15 sseq2 3845 . . . . 5 (𝑦 = ( SSet 𝑥) → (𝑥𝑦𝑥 ⊆ ( SSet 𝑥)))
1614, 15mpbiri 250 . . . 4 (𝑦 = ( SSet 𝑥) → 𝑥𝑦)
17 vex 3400 . . . . . 6 𝑥 ∈ V
1817, 5brimage 32622 . . . . 5 (𝑥Image SSet 𝑦𝑦 = ( SSet 𝑥))
19 df-br 4887 . . . . 5 (𝑥Image SSet 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ Image SSet )
2018, 19bitr3i 269 . . . 4 (𝑦 = ( SSet 𝑥) ↔ ⟨𝑥, 𝑦⟩ ∈ Image SSet )
215brsset 32585 . . . . 5 (𝑥 SSet 𝑦𝑥𝑦)
22 df-br 4887 . . . . 5 (𝑥 SSet 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ SSet )
2321, 22bitr3i 269 . . . 4 (𝑥𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ SSet )
2416, 20, 233imtr3i 283 . . 3 (⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet )
2524gen2 1840 . 2 𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet )
26 funimage 32624 . . 3 Fun Image SSet
27 funrel 6152 . . 3 (Fun Image SSet → Rel Image SSet )
28 ssrel 5455 . . 3 (Rel Image SSet → (Image SSet SSet ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet )))
2926, 27, 28mp2b 10 . 2 (Image SSet SSet ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ Image SSet → ⟨𝑥, 𝑦⟩ ∈ SSet ))
3025, 29mpbir 223 1 Image SSet SSet
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wal 1599   = wceq 1601  wcel 2106  wrex 3090  wss 3791  cop 4403   class class class wbr 4886  ccnv 5354  cima 5358  Rel wrel 5360  Fun wfun 6129   SSet csset 32528  Imagecimage 32536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-symdif 4066  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-eprel 5266  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fo 6141  df-fv 6143  df-1st 7445  df-2nd 7446  df-txp 32550  df-sset 32552  df-image 32560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator