![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sq | Structured version Visualization version GIF version |
Description: All primes of the form 4𝑘 + 1 are sums of two squares. This is Metamath 100 proof #20. (Contributed by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
2sq | ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . 3 ⊢ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) | |
2 | oveq1 7409 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝑎 gcd 𝑏) = (𝑥 gcd 𝑏)) | |
3 | 2 | eqeq1d 2726 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ((𝑎 gcd 𝑏) = 1 ↔ (𝑥 gcd 𝑏) = 1)) |
4 | oveq1 7409 | . . . . . . . 8 ⊢ (𝑎 = 𝑥 → (𝑎↑2) = (𝑥↑2)) | |
5 | 4 | oveq1d 7417 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → ((𝑎↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑏↑2))) |
6 | 5 | eqeq2d 2735 | . . . . . 6 ⊢ (𝑎 = 𝑥 → (𝑧 = ((𝑎↑2) + (𝑏↑2)) ↔ 𝑧 = ((𝑥↑2) + (𝑏↑2)))) |
7 | 3, 6 | anbi12d 630 | . . . . 5 ⊢ (𝑎 = 𝑥 → (((𝑎 gcd 𝑏) = 1 ∧ 𝑧 = ((𝑎↑2) + (𝑏↑2))) ↔ ((𝑥 gcd 𝑏) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑏↑2))))) |
8 | oveq2 7410 | . . . . . . 7 ⊢ (𝑏 = 𝑦 → (𝑥 gcd 𝑏) = (𝑥 gcd 𝑦)) | |
9 | 8 | eqeq1d 2726 | . . . . . 6 ⊢ (𝑏 = 𝑦 → ((𝑥 gcd 𝑏) = 1 ↔ (𝑥 gcd 𝑦) = 1)) |
10 | oveq1 7409 | . . . . . . . 8 ⊢ (𝑏 = 𝑦 → (𝑏↑2) = (𝑦↑2)) | |
11 | 10 | oveq2d 7418 | . . . . . . 7 ⊢ (𝑏 = 𝑦 → ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) |
12 | 11 | eqeq2d 2735 | . . . . . 6 ⊢ (𝑏 = 𝑦 → (𝑧 = ((𝑥↑2) + (𝑏↑2)) ↔ 𝑧 = ((𝑥↑2) + (𝑦↑2)))) |
13 | 9, 12 | anbi12d 630 | . . . . 5 ⊢ (𝑏 = 𝑦 → (((𝑥 gcd 𝑏) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑏↑2))) ↔ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))))) |
14 | 7, 13 | cbvrex2vw 3231 | . . . 4 ⊢ (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 gcd 𝑏) = 1 ∧ 𝑧 = ((𝑎↑2) + (𝑏↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))) |
15 | 14 | abbii 2794 | . . 3 ⊢ {𝑧 ∣ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 gcd 𝑏) = 1 ∧ 𝑧 = ((𝑎↑2) + (𝑏↑2)))} = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} |
16 | 1, 15 | 2sqlem11 27281 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))) |
17 | 1 | 2sqlem2 27270 | . 2 ⊢ (𝑃 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) |
18 | 16, 17 | sylib 217 | 1 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2701 ∃wrex 3062 ↦ cmpt 5222 ran crn 5668 ‘cfv 6534 (class class class)co 7402 1c1 11108 + caddc 11110 2c2 12265 4c4 12267 ℤcz 12556 mod cmo 13832 ↑cexp 14025 abscabs 15179 gcd cgcd 16434 ℙcprime 16607 ℤ[i]cgz 16863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 ax-addf 11186 ax-mulf 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-ofr 7665 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-er 8700 df-ec 8702 df-qs 8706 df-map 8819 df-pm 8820 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-sup 9434 df-inf 9435 df-oi 9502 df-dju 9893 df-card 9931 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-5 12276 df-6 12277 df-7 12278 df-8 12279 df-9 12280 df-n0 12471 df-xnn0 12543 df-z 12557 df-dec 12676 df-uz 12821 df-q 12931 df-rp 12973 df-fz 13483 df-fzo 13626 df-fl 13755 df-mod 13833 df-seq 13965 df-exp 14026 df-hash 14289 df-cj 15044 df-re 15045 df-im 15046 df-sqrt 15180 df-abs 15181 df-dvds 16197 df-gcd 16435 df-prm 16608 df-phi 16700 df-pc 16771 df-gz 16864 df-struct 17081 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-ress 17175 df-plusg 17211 df-mulr 17212 df-starv 17213 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-unif 17221 df-hom 17222 df-cco 17223 df-0g 17388 df-gsum 17389 df-prds 17394 df-pws 17396 df-imas 17455 df-qus 17456 df-mre 17531 df-mrc 17532 df-acs 17534 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-submnd 18706 df-grp 18858 df-minusg 18859 df-sbg 18860 df-mulg 18988 df-subg 19042 df-nsg 19043 df-eqg 19044 df-ghm 19131 df-cntz 19225 df-cmn 19694 df-abl 19695 df-mgp 20032 df-rng 20050 df-ur 20079 df-srg 20084 df-ring 20132 df-cring 20133 df-oppr 20228 df-dvdsr 20251 df-unit 20252 df-invr 20282 df-dvr 20295 df-rhm 20366 df-nzr 20407 df-subrng 20438 df-subrg 20463 df-drng 20581 df-field 20582 df-lmod 20700 df-lss 20771 df-lsp 20811 df-sra 21013 df-rgmod 21014 df-lidl 21059 df-rsp 21060 df-2idl 21099 df-rlreg 21185 df-domn 21186 df-idom 21187 df-cnfld 21231 df-zring 21304 df-zrh 21360 df-zn 21363 df-assa 21718 df-asp 21719 df-ascl 21720 df-psr 21773 df-mvr 21774 df-mpl 21775 df-opsr 21777 df-evls 21947 df-evl 21948 df-psr1 22024 df-vr1 22025 df-ply1 22026 df-coe1 22027 df-evl1 22159 df-mdeg 25912 df-deg1 25913 df-mon1 25990 df-uc1p 25991 df-q1p 25992 df-r1p 25993 df-lgs 27147 |
This theorem is referenced by: 2sqb 27284 2sqnn0 27290 |
Copyright terms: Public domain | W3C validator |