![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sq | Structured version Visualization version GIF version |
Description: All primes of the form 4𝑘 + 1 are sums of two squares. This is Metamath 100 proof #20. (Contributed by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
2sq | ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) | |
2 | oveq1 7411 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → (𝑎 gcd 𝑏) = (𝑥 gcd 𝑏)) | |
3 | 2 | eqeq1d 2735 | . . . . . 6 ⊢ (𝑎 = 𝑥 → ((𝑎 gcd 𝑏) = 1 ↔ (𝑥 gcd 𝑏) = 1)) |
4 | oveq1 7411 | . . . . . . . 8 ⊢ (𝑎 = 𝑥 → (𝑎↑2) = (𝑥↑2)) | |
5 | 4 | oveq1d 7419 | . . . . . . 7 ⊢ (𝑎 = 𝑥 → ((𝑎↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑏↑2))) |
6 | 5 | eqeq2d 2744 | . . . . . 6 ⊢ (𝑎 = 𝑥 → (𝑧 = ((𝑎↑2) + (𝑏↑2)) ↔ 𝑧 = ((𝑥↑2) + (𝑏↑2)))) |
7 | 3, 6 | anbi12d 632 | . . . . 5 ⊢ (𝑎 = 𝑥 → (((𝑎 gcd 𝑏) = 1 ∧ 𝑧 = ((𝑎↑2) + (𝑏↑2))) ↔ ((𝑥 gcd 𝑏) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑏↑2))))) |
8 | oveq2 7412 | . . . . . . 7 ⊢ (𝑏 = 𝑦 → (𝑥 gcd 𝑏) = (𝑥 gcd 𝑦)) | |
9 | 8 | eqeq1d 2735 | . . . . . 6 ⊢ (𝑏 = 𝑦 → ((𝑥 gcd 𝑏) = 1 ↔ (𝑥 gcd 𝑦) = 1)) |
10 | oveq1 7411 | . . . . . . . 8 ⊢ (𝑏 = 𝑦 → (𝑏↑2) = (𝑦↑2)) | |
11 | 10 | oveq2d 7420 | . . . . . . 7 ⊢ (𝑏 = 𝑦 → ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) |
12 | 11 | eqeq2d 2744 | . . . . . 6 ⊢ (𝑏 = 𝑦 → (𝑧 = ((𝑥↑2) + (𝑏↑2)) ↔ 𝑧 = ((𝑥↑2) + (𝑦↑2)))) |
13 | 9, 12 | anbi12d 632 | . . . . 5 ⊢ (𝑏 = 𝑦 → (((𝑥 gcd 𝑏) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑏↑2))) ↔ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))))) |
14 | 7, 13 | cbvrex2vw 3240 | . . . 4 ⊢ (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 gcd 𝑏) = 1 ∧ 𝑧 = ((𝑎↑2) + (𝑏↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))) |
15 | 14 | abbii 2803 | . . 3 ⊢ {𝑧 ∣ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 gcd 𝑏) = 1 ∧ 𝑧 = ((𝑎↑2) + (𝑏↑2)))} = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))} |
16 | 1, 15 | 2sqlem11 26912 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → 𝑃 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))) |
17 | 1 | 2sqlem2 26901 | . 2 ⊢ (𝑃 ∈ ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) |
18 | 16, 17 | sylib 217 | 1 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑃 = ((𝑥↑2) + (𝑦↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2710 ∃wrex 3071 ↦ cmpt 5230 ran crn 5676 ‘cfv 6540 (class class class)co 7404 1c1 11107 + caddc 11109 2c2 12263 4c4 12265 ℤcz 12554 mod cmo 13830 ↑cexp 14023 abscabs 15177 gcd cgcd 16431 ℙcprime 16604 ℤ[i]cgz 16858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7665 df-ofr 7666 df-om 7851 df-1st 7970 df-2nd 7971 df-supp 8142 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-er 8699 df-ec 8701 df-qs 8705 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-xnn0 12541 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-dvds 16194 df-gcd 16432 df-prm 16605 df-phi 16695 df-pc 16766 df-gz 16859 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-imas 17450 df-qus 17451 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-nsg 18998 df-eqg 18999 df-ghm 19084 df-cntz 19175 df-cmn 19643 df-abl 19644 df-mgp 19980 df-ur 19997 df-srg 20001 df-ring 20049 df-cring 20050 df-oppr 20139 df-dvdsr 20160 df-unit 20161 df-invr 20191 df-dvr 20204 df-rnghom 20240 df-nzr 20281 df-drng 20306 df-field 20307 df-subrg 20349 df-lmod 20461 df-lss 20531 df-lsp 20571 df-sra 20773 df-rgmod 20774 df-lidl 20775 df-rsp 20776 df-2idl 20844 df-rlreg 20886 df-domn 20887 df-idom 20888 df-cnfld 20930 df-zring 21003 df-zrh 21037 df-zn 21040 df-assa 21392 df-asp 21393 df-ascl 21394 df-psr 21444 df-mvr 21445 df-mpl 21446 df-opsr 21448 df-evls 21617 df-evl 21618 df-psr1 21686 df-vr1 21687 df-ply1 21688 df-coe1 21689 df-evl1 21817 df-mdeg 25552 df-deg1 25553 df-mon1 25630 df-uc1p 25631 df-q1p 25632 df-r1p 25633 df-lgs 26778 |
This theorem is referenced by: 2sqb 26915 2sqnn0 26921 |
Copyright terms: Public domain | W3C validator |