Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfv0fun Structured version   Visualization version   GIF version

Theorem satfv0fun 32639
Description: The value of the satisfaction predicate as function over wff codes at is a function. (Contributed by AV, 15-Oct-2023.)
Assertion
Ref Expression
satfv0fun ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))

Proof of Theorem satfv0fun
Dummy variables 𝑓 𝑖 𝑗 𝑘 𝑙 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funopab 6383 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})} ↔ ∀𝑥∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}))
2 oveq1 7156 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑖𝑔𝑗) = (𝑘𝑔𝑗))
32eqeq2d 2831 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 = (𝑘𝑔𝑗)))
4 fveq2 6663 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝑓𝑖) = (𝑓𝑘))
54breq1d 5069 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((𝑓𝑖)𝐸(𝑓𝑗) ↔ (𝑓𝑘)𝐸(𝑓𝑗)))
65rabbidv 3477 . . . . . . . . . 10 (𝑖 = 𝑘 → {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)})
76eqeq2d 2831 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} ↔ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)}))
83, 7anbi12d 632 . . . . . . . 8 (𝑖 = 𝑘 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ (𝑥 = (𝑘𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)})))
9 oveq2 7157 . . . . . . . . . 10 (𝑗 = 𝑙 → (𝑘𝑔𝑗) = (𝑘𝑔𝑙))
109eqeq2d 2831 . . . . . . . . 9 (𝑗 = 𝑙 → (𝑥 = (𝑘𝑔𝑗) ↔ 𝑥 = (𝑘𝑔𝑙)))
11 fveq2 6663 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (𝑓𝑗) = (𝑓𝑙))
1211breq2d 5071 . . . . . . . . . . 11 (𝑗 = 𝑙 → ((𝑓𝑘)𝐸(𝑓𝑗) ↔ (𝑓𝑘)𝐸(𝑓𝑙)))
1312rabbidv 3477 . . . . . . . . . 10 (𝑗 = 𝑙 → {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)} = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)})
1413eqeq2d 2831 . . . . . . . . 9 (𝑗 = 𝑙 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)} ↔ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}))
1510, 14anbi12d 632 . . . . . . . 8 (𝑗 = 𝑙 → ((𝑥 = (𝑘𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)}) ↔ (𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)})))
168, 15cbvrex2vw 3459 . . . . . . 7 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}))
17 eqtr2 2841 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑥 = (𝑘𝑔𝑙)) → (𝑖𝑔𝑗) = (𝑘𝑔𝑙))
18 goeleq12bg 32617 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑘𝑔𝑙) ↔ (𝑖 = 𝑘𝑗 = 𝑙)))
194adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑓𝑖) = (𝑓𝑘))
2019eqcomd 2826 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑓𝑘) = (𝑓𝑖))
2111adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑓𝑗) = (𝑓𝑙))
2221eqcomd 2826 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑓𝑙) = (𝑓𝑗))
2320, 22breq12d 5072 . . . . . . . . . . . . . . . . . . 19 ((𝑖 = 𝑘𝑗 = 𝑙) → ((𝑓𝑘)𝐸(𝑓𝑙) ↔ (𝑓𝑖)𝐸(𝑓𝑗)))
2423rabbidv 3477 . . . . . . . . . . . . . . . . . 18 ((𝑖 = 𝑘𝑗 = 𝑙) → {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})
25 eqeq12 2834 . . . . . . . . . . . . . . . . . 18 ((𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → (𝑦 = 𝑧 ↔ {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}))
2624, 25syl5ibrcom 249 . . . . . . . . . . . . . . . . 17 ((𝑖 = 𝑘𝑗 = 𝑙) → ((𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑦 = 𝑧))
2726expd 418 . . . . . . . . . . . . . . . 16 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧)))
2818, 27syl6bi 255 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑘𝑔𝑙) → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧))))
2917, 28syl5 34 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑥 = (𝑘𝑔𝑙)) → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧))))
3029expd 418 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖𝑔𝑗) → (𝑥 = (𝑘𝑔𝑙) → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧)))))
3130imp4a 425 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖𝑔𝑗) → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧))))
3231com34 91 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖𝑔𝑗) → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → 𝑦 = 𝑧))))
3332impd 413 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → 𝑦 = 𝑧)))
3433rexlimdvva 3293 . . . . . . . . 9 ((𝑘 ∈ ω ∧ 𝑙 ∈ ω) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → 𝑦 = 𝑧)))
3534com23 86 . . . . . . . 8 ((𝑘 ∈ ω ∧ 𝑙 ∈ ω) → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑦 = 𝑧)))
3635rexlimivv 3291 . . . . . . 7 (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑦 = 𝑧))
3716, 36sylbi 219 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑦 = 𝑧))
3837imp 409 . . . . 5 ((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})) → 𝑦 = 𝑧)
3938gen2 1796 . . . 4 𝑦𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})) → 𝑦 = 𝑧)
40 eqeq1 2824 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} ↔ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}))
4140anbi2d 630 . . . . . 6 (𝑦 = 𝑧 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})))
42412rexbidv 3299 . . . . 5 (𝑦 = 𝑧 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})))
4342mo4 2649 . . . 4 (∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ ∀𝑦𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})) → 𝑦 = 𝑧))
4439, 43mpbir 233 . . 3 ∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})
451, 44mpgbir 1799 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})}
46 eqid 2820 . . . 4 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
4746satfv0 32626 . . 3 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})})
4847funeqd 6370 . 2 ((𝑀𝑉𝐸𝑊) → (Fun ((𝑀 Sat 𝐸)‘∅) ↔ Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})}))
4945, 48mpbiri 260 1 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1534   = wceq 1536  wcel 2113  ∃*wmo 2619  wrex 3138  {crab 3141  c0 4284   class class class wbr 5059  {copab 5121  Fun wfun 6342  cfv 6348  (class class class)co 7149  ωcom 7573  m cmap 8399  𝑔cgoe 32601   Sat csat 32604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-inf2 9097
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-goel 32608  df-sat 32611
This theorem is referenced by:  satffunlem1  32675  satffun  32677  satfv0fvfmla0  32681
  Copyright terms: Public domain W3C validator