Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfv0fun Structured version   Visualization version   GIF version

Theorem satfv0fun 34828
Description: The value of the satisfaction predicate as function over wff codes at is a function. (Contributed by AV, 15-Oct-2023.)
Assertion
Ref Expression
satfv0fun ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))

Proof of Theorem satfv0fun
Dummy variables 𝑓 𝑖 𝑗 𝑘 𝑙 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funopab 6583 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})} ↔ ∀𝑥∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}))
2 oveq1 7419 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑖𝑔𝑗) = (𝑘𝑔𝑗))
32eqeq2d 2742 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 = (𝑘𝑔𝑗)))
4 fveq2 6891 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝑓𝑖) = (𝑓𝑘))
54breq1d 5158 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((𝑓𝑖)𝐸(𝑓𝑗) ↔ (𝑓𝑘)𝐸(𝑓𝑗)))
65rabbidv 3439 . . . . . . . . . 10 (𝑖 = 𝑘 → {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)})
76eqeq2d 2742 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} ↔ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)}))
83, 7anbi12d 630 . . . . . . . 8 (𝑖 = 𝑘 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ (𝑥 = (𝑘𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)})))
9 oveq2 7420 . . . . . . . . . 10 (𝑗 = 𝑙 → (𝑘𝑔𝑗) = (𝑘𝑔𝑙))
109eqeq2d 2742 . . . . . . . . 9 (𝑗 = 𝑙 → (𝑥 = (𝑘𝑔𝑗) ↔ 𝑥 = (𝑘𝑔𝑙)))
11 fveq2 6891 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (𝑓𝑗) = (𝑓𝑙))
1211breq2d 5160 . . . . . . . . . . 11 (𝑗 = 𝑙 → ((𝑓𝑘)𝐸(𝑓𝑗) ↔ (𝑓𝑘)𝐸(𝑓𝑙)))
1312rabbidv 3439 . . . . . . . . . 10 (𝑗 = 𝑙 → {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)} = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)})
1413eqeq2d 2742 . . . . . . . . 9 (𝑗 = 𝑙 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)} ↔ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}))
1510, 14anbi12d 630 . . . . . . . 8 (𝑗 = 𝑙 → ((𝑥 = (𝑘𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)}) ↔ (𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)})))
168, 15cbvrex2vw 3238 . . . . . . 7 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}))
17 eqtr2 2755 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑥 = (𝑘𝑔𝑙)) → (𝑖𝑔𝑗) = (𝑘𝑔𝑙))
18 goeleq12bg 34806 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑘𝑔𝑙) ↔ (𝑖 = 𝑘𝑗 = 𝑙)))
194adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑓𝑖) = (𝑓𝑘))
2019eqcomd 2737 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑓𝑘) = (𝑓𝑖))
2111adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑓𝑗) = (𝑓𝑙))
2221eqcomd 2737 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑓𝑙) = (𝑓𝑗))
2320, 22breq12d 5161 . . . . . . . . . . . . . . . . . . 19 ((𝑖 = 𝑘𝑗 = 𝑙) → ((𝑓𝑘)𝐸(𝑓𝑙) ↔ (𝑓𝑖)𝐸(𝑓𝑗)))
2423rabbidv 3439 . . . . . . . . . . . . . . . . . 18 ((𝑖 = 𝑘𝑗 = 𝑙) → {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})
25 eqeq12 2748 . . . . . . . . . . . . . . . . . 18 ((𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → (𝑦 = 𝑧 ↔ {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}))
2624, 25syl5ibrcom 246 . . . . . . . . . . . . . . . . 17 ((𝑖 = 𝑘𝑗 = 𝑙) → ((𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑦 = 𝑧))
2726expd 415 . . . . . . . . . . . . . . . 16 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧)))
2818, 27syl6bi 253 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑘𝑔𝑙) → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧))))
2917, 28syl5 34 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑥 = (𝑘𝑔𝑙)) → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧))))
3029expd 415 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖𝑔𝑗) → (𝑥 = (𝑘𝑔𝑙) → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧)))))
3130imp4a 422 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖𝑔𝑗) → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧))))
3231com34 91 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖𝑔𝑗) → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → 𝑦 = 𝑧))))
3332impd 410 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → 𝑦 = 𝑧)))
3433rexlimdvva 3210 . . . . . . . . 9 ((𝑘 ∈ ω ∧ 𝑙 ∈ ω) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → 𝑦 = 𝑧)))
3534com23 86 . . . . . . . 8 ((𝑘 ∈ ω ∧ 𝑙 ∈ ω) → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑦 = 𝑧)))
3635rexlimivv 3198 . . . . . . 7 (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑦 = 𝑧))
3716, 36sylbi 216 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑦 = 𝑧))
3837imp 406 . . . . 5 ((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})) → 𝑦 = 𝑧)
3938gen2 1797 . . . 4 𝑦𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})) → 𝑦 = 𝑧)
40 eqeq1 2735 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} ↔ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}))
4140anbi2d 628 . . . . . 6 (𝑦 = 𝑧 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})))
42412rexbidv 3218 . . . . 5 (𝑦 = 𝑧 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})))
4342mo4 2559 . . . 4 (∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ ∀𝑦𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})) → 𝑦 = 𝑧))
4439, 43mpbir 230 . . 3 ∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})
451, 44mpgbir 1800 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})}
46 eqid 2731 . . . 4 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
4746satfv0 34815 . . 3 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})})
4847funeqd 6570 . 2 ((𝑀𝑉𝐸𝑊) → (Fun ((𝑀 Sat 𝐸)‘∅) ↔ Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})}))
4945, 48mpbiri 258 1 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2105  ∃*wmo 2531  wrex 3069  {crab 3431  c0 4322   class class class wbr 5148  {copab 5210  Fun wfun 6537  cfv 6543  (class class class)co 7412  ωcom 7859  m cmap 8826  𝑔cgoe 34790   Sat csat 34793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-goel 34797  df-sat 34800
This theorem is referenced by:  satffunlem1  34864  satffun  34866  satfv0fvfmla0  34870
  Copyright terms: Public domain W3C validator