Step | Hyp | Ref
| Expression |
1 | | funopab 6453 |
. . 3
⊢ (Fun
{〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})} ↔ ∀𝑥∃*𝑦∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})) |
2 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑘 → (𝑖∈𝑔𝑗) = (𝑘∈𝑔𝑗)) |
3 | 2 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑖 = 𝑘 → (𝑥 = (𝑖∈𝑔𝑗) ↔ 𝑥 = (𝑘∈𝑔𝑗))) |
4 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → (𝑓‘𝑖) = (𝑓‘𝑘)) |
5 | 4 | breq1d 5080 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑘 → ((𝑓‘𝑖)𝐸(𝑓‘𝑗) ↔ (𝑓‘𝑘)𝐸(𝑓‘𝑗))) |
6 | 5 | rabbidv 3404 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑘 → {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑗)}) |
7 | 6 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑖 = 𝑘 → (𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} ↔ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑗)})) |
8 | 3, 7 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑖 = 𝑘 → ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ↔ (𝑥 = (𝑘∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑗)}))) |
9 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑙 → (𝑘∈𝑔𝑗) = (𝑘∈𝑔𝑙)) |
10 | 9 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑗 = 𝑙 → (𝑥 = (𝑘∈𝑔𝑗) ↔ 𝑥 = (𝑘∈𝑔𝑙))) |
11 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑙 → (𝑓‘𝑗) = (𝑓‘𝑙)) |
12 | 11 | breq2d 5082 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑙 → ((𝑓‘𝑘)𝐸(𝑓‘𝑗) ↔ (𝑓‘𝑘)𝐸(𝑓‘𝑙))) |
13 | 12 | rabbidv 3404 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑙 → {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑗)} = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)}) |
14 | 13 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑗 = 𝑙 → (𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑗)} ↔ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)})) |
15 | 10, 14 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑗 = 𝑙 → ((𝑥 = (𝑘∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑗)}) ↔ (𝑥 = (𝑘∈𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)}))) |
16 | 8, 15 | cbvrex2vw 3386 |
. . . . . . 7
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = (𝑘∈𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)})) |
17 | | eqtr2 2762 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑥 = (𝑘∈𝑔𝑙)) → (𝑖∈𝑔𝑗) = (𝑘∈𝑔𝑙)) |
18 | | goeleq12bg 33211 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖∈𝑔𝑗) = (𝑘∈𝑔𝑙) ↔ (𝑖 = 𝑘 ∧ 𝑗 = 𝑙))) |
19 | 4 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → (𝑓‘𝑖) = (𝑓‘𝑘)) |
20 | 19 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → (𝑓‘𝑘) = (𝑓‘𝑖)) |
21 | 11 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → (𝑓‘𝑗) = (𝑓‘𝑙)) |
22 | 21 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → (𝑓‘𝑙) = (𝑓‘𝑗)) |
23 | 20, 22 | breq12d 5083 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → ((𝑓‘𝑘)𝐸(𝑓‘𝑙) ↔ (𝑓‘𝑖)𝐸(𝑓‘𝑗))) |
24 | 23 | rabbidv 3404 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)} = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) |
25 | | eqeq12 2755 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)} ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → (𝑦 = 𝑧 ↔ {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)} = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})) |
26 | 24, 25 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → ((𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)} ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → 𝑦 = 𝑧)) |
27 | 26 | expd 415 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → (𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)} → (𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} → 𝑦 = 𝑧))) |
28 | 18, 27 | syl6bi 252 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖∈𝑔𝑗) = (𝑘∈𝑔𝑙) → (𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)} → (𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} → 𝑦 = 𝑧)))) |
29 | 17, 28 | syl5 34 |
. . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑥 = (𝑘∈𝑔𝑙)) → (𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)} → (𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} → 𝑦 = 𝑧)))) |
30 | 29 | expd 415 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖∈𝑔𝑗) → (𝑥 = (𝑘∈𝑔𝑙) → (𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)} → (𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} → 𝑦 = 𝑧))))) |
31 | 30 | imp4a 422 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖∈𝑔𝑗) → ((𝑥 = (𝑘∈𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)}) → (𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} → 𝑦 = 𝑧)))) |
32 | 31 | com34 91 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖∈𝑔𝑗) → (𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} → ((𝑥 = (𝑘∈𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)}) → 𝑦 = 𝑧)))) |
33 | 32 | impd 410 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → ((𝑥 = (𝑘∈𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)}) → 𝑦 = 𝑧))) |
34 | 33 | rexlimdvva 3222 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ω ∧ 𝑙 ∈ ω) →
(∃𝑖 ∈ ω
∃𝑗 ∈ ω
(𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → ((𝑥 = (𝑘∈𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)}) → 𝑦 = 𝑧))) |
35 | 34 | com23 86 |
. . . . . . . 8
⊢ ((𝑘 ∈ ω ∧ 𝑙 ∈ ω) → ((𝑥 = (𝑘∈𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → 𝑦 = 𝑧))) |
36 | 35 | rexlimivv 3220 |
. . . . . . 7
⊢
(∃𝑘 ∈
ω ∃𝑙 ∈
ω (𝑥 = (𝑘∈𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → 𝑦 = 𝑧)) |
37 | 16, 36 | sylbi 216 |
. . . . . 6
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → 𝑦 = 𝑧)) |
38 | 37 | imp 406 |
. . . . 5
⊢
((∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})) → 𝑦 = 𝑧) |
39 | 38 | gen2 1800 |
. . . 4
⊢
∀𝑦∀𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})) → 𝑦 = 𝑧) |
40 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} ↔ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})) |
41 | 40 | anbi2d 628 |
. . . . . 6
⊢ (𝑦 = 𝑧 → ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ↔ (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}))) |
42 | 41 | 2rexbidv 3228 |
. . . . 5
⊢ (𝑦 = 𝑧 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}))) |
43 | 42 | mo4 2566 |
. . . 4
⊢
(∃*𝑦∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ↔ ∀𝑦∀𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})) → 𝑦 = 𝑧)) |
44 | 39, 43 | mpbir 230 |
. . 3
⊢
∃*𝑦∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) |
45 | 1, 44 | mpgbir 1803 |
. 2
⊢ Fun
{〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})} |
46 | | eqid 2738 |
. . . 4
⊢ (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸) |
47 | 46 | satfv0 33220 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘∅) = {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})}) |
48 | 47 | funeqd 6440 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (Fun ((𝑀 Sat 𝐸)‘∅) ↔ Fun {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})})) |
49 | 45, 48 | mpbiri 257 |
1
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘∅)) |