| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | funopab 6601 | . . 3
⊢ (Fun
{〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})} ↔ ∀𝑥∃*𝑦∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})) | 
| 2 |  | oveq1 7438 | . . . . . . . . . 10
⊢ (𝑖 = 𝑘 → (𝑖∈𝑔𝑗) = (𝑘∈𝑔𝑗)) | 
| 3 | 2 | eqeq2d 2748 | . . . . . . . . 9
⊢ (𝑖 = 𝑘 → (𝑥 = (𝑖∈𝑔𝑗) ↔ 𝑥 = (𝑘∈𝑔𝑗))) | 
| 4 |  | fveq2 6906 | . . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → (𝑓‘𝑖) = (𝑓‘𝑘)) | 
| 5 | 4 | breq1d 5153 | . . . . . . . . . . 11
⊢ (𝑖 = 𝑘 → ((𝑓‘𝑖)𝐸(𝑓‘𝑗) ↔ (𝑓‘𝑘)𝐸(𝑓‘𝑗))) | 
| 6 | 5 | rabbidv 3444 | . . . . . . . . . 10
⊢ (𝑖 = 𝑘 → {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑗)}) | 
| 7 | 6 | eqeq2d 2748 | . . . . . . . . 9
⊢ (𝑖 = 𝑘 → (𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} ↔ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑗)})) | 
| 8 | 3, 7 | anbi12d 632 | . . . . . . . 8
⊢ (𝑖 = 𝑘 → ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ↔ (𝑥 = (𝑘∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑗)}))) | 
| 9 |  | oveq2 7439 | . . . . . . . . . 10
⊢ (𝑗 = 𝑙 → (𝑘∈𝑔𝑗) = (𝑘∈𝑔𝑙)) | 
| 10 | 9 | eqeq2d 2748 | . . . . . . . . 9
⊢ (𝑗 = 𝑙 → (𝑥 = (𝑘∈𝑔𝑗) ↔ 𝑥 = (𝑘∈𝑔𝑙))) | 
| 11 |  | fveq2 6906 | . . . . . . . . . . . 12
⊢ (𝑗 = 𝑙 → (𝑓‘𝑗) = (𝑓‘𝑙)) | 
| 12 | 11 | breq2d 5155 | . . . . . . . . . . 11
⊢ (𝑗 = 𝑙 → ((𝑓‘𝑘)𝐸(𝑓‘𝑗) ↔ (𝑓‘𝑘)𝐸(𝑓‘𝑙))) | 
| 13 | 12 | rabbidv 3444 | . . . . . . . . . 10
⊢ (𝑗 = 𝑙 → {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑗)} = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)}) | 
| 14 | 13 | eqeq2d 2748 | . . . . . . . . 9
⊢ (𝑗 = 𝑙 → (𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑗)} ↔ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)})) | 
| 15 | 10, 14 | anbi12d 632 | . . . . . . . 8
⊢ (𝑗 = 𝑙 → ((𝑥 = (𝑘∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑗)}) ↔ (𝑥 = (𝑘∈𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)}))) | 
| 16 | 8, 15 | cbvrex2vw 3242 | . . . . . . 7
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = (𝑘∈𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)})) | 
| 17 |  | eqtr2 2761 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑥 = (𝑘∈𝑔𝑙)) → (𝑖∈𝑔𝑗) = (𝑘∈𝑔𝑙)) | 
| 18 |  | goeleq12bg 35354 | . . . . . . . . . . . . . . . 16
⊢ (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖∈𝑔𝑗) = (𝑘∈𝑔𝑙) ↔ (𝑖 = 𝑘 ∧ 𝑗 = 𝑙))) | 
| 19 | 4 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → (𝑓‘𝑖) = (𝑓‘𝑘)) | 
| 20 | 19 | eqcomd 2743 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → (𝑓‘𝑘) = (𝑓‘𝑖)) | 
| 21 | 11 | adantl 481 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → (𝑓‘𝑗) = (𝑓‘𝑙)) | 
| 22 | 21 | eqcomd 2743 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → (𝑓‘𝑙) = (𝑓‘𝑗)) | 
| 23 | 20, 22 | breq12d 5156 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → ((𝑓‘𝑘)𝐸(𝑓‘𝑙) ↔ (𝑓‘𝑖)𝐸(𝑓‘𝑗))) | 
| 24 | 23 | rabbidv 3444 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)} = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) | 
| 25 |  | eqeq12 2754 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)} ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → (𝑦 = 𝑧 ↔ {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)} = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})) | 
| 26 | 24, 25 | syl5ibrcom 247 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → ((𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)} ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → 𝑦 = 𝑧)) | 
| 27 | 26 | expd 415 | . . . . . . . . . . . . . . . 16
⊢ ((𝑖 = 𝑘 ∧ 𝑗 = 𝑙) → (𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)} → (𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} → 𝑦 = 𝑧))) | 
| 28 | 18, 27 | biimtrdi 253 | . . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖∈𝑔𝑗) = (𝑘∈𝑔𝑙) → (𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)} → (𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} → 𝑦 = 𝑧)))) | 
| 29 | 17, 28 | syl5 34 | . . . . . . . . . . . . . 14
⊢ (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑥 = (𝑘∈𝑔𝑙)) → (𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)} → (𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} → 𝑦 = 𝑧)))) | 
| 30 | 29 | expd 415 | . . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖∈𝑔𝑗) → (𝑥 = (𝑘∈𝑔𝑙) → (𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)} → (𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} → 𝑦 = 𝑧))))) | 
| 31 | 30 | imp4a 422 | . . . . . . . . . . . 12
⊢ (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖∈𝑔𝑗) → ((𝑥 = (𝑘∈𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)}) → (𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} → 𝑦 = 𝑧)))) | 
| 32 | 31 | com34 91 | . . . . . . . . . . 11
⊢ (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖∈𝑔𝑗) → (𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} → ((𝑥 = (𝑘∈𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)}) → 𝑦 = 𝑧)))) | 
| 33 | 32 | impd 410 | . . . . . . . . . 10
⊢ (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → ((𝑥 = (𝑘∈𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)}) → 𝑦 = 𝑧))) | 
| 34 | 33 | rexlimdvva 3213 | . . . . . . . . 9
⊢ ((𝑘 ∈ ω ∧ 𝑙 ∈ ω) →
(∃𝑖 ∈ ω
∃𝑗 ∈ ω
(𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → ((𝑥 = (𝑘∈𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)}) → 𝑦 = 𝑧))) | 
| 35 | 34 | com23 86 | . . . . . . . 8
⊢ ((𝑘 ∈ ω ∧ 𝑙 ∈ ω) → ((𝑥 = (𝑘∈𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → 𝑦 = 𝑧))) | 
| 36 | 35 | rexlimivv 3201 | . . . . . . 7
⊢
(∃𝑘 ∈
ω ∃𝑙 ∈
ω (𝑥 = (𝑘∈𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑘)𝐸(𝑓‘𝑙)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → 𝑦 = 𝑧)) | 
| 37 | 16, 36 | sylbi 217 | . . . . . 6
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → 𝑦 = 𝑧)) | 
| 38 | 37 | imp 406 | . . . . 5
⊢
((∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})) → 𝑦 = 𝑧) | 
| 39 | 38 | gen2 1796 | . . . 4
⊢
∀𝑦∀𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})) → 𝑦 = 𝑧) | 
| 40 |  | eqeq1 2741 | . . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} ↔ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})) | 
| 41 | 40 | anbi2d 630 | . . . . . 6
⊢ (𝑦 = 𝑧 → ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ↔ (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}))) | 
| 42 | 41 | 2rexbidv 3222 | . . . . 5
⊢ (𝑦 = 𝑧 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}))) | 
| 43 | 42 | mo4 2566 | . . . 4
⊢
(∃*𝑦∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ↔ ∀𝑦∀𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})) → 𝑦 = 𝑧)) | 
| 44 | 39, 43 | mpbir 231 | . . 3
⊢
∃*𝑦∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) | 
| 45 | 1, 44 | mpgbir 1799 | . 2
⊢ Fun
{〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})} | 
| 46 |  | eqid 2737 | . . . 4
⊢ (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸) | 
| 47 | 46 | satfv0 35363 | . . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘∅) = {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})}) | 
| 48 | 47 | funeqd 6588 | . 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (Fun ((𝑀 Sat 𝐸)‘∅) ↔ Fun {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})})) | 
| 49 | 45, 48 | mpbiri 258 | 1
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → Fun ((𝑀 Sat 𝐸)‘∅)) |