Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfv0fun Structured version   Visualization version   GIF version

Theorem satfv0fun 35393
Description: The value of the satisfaction predicate as function over wff codes at is a function. (Contributed by AV, 15-Oct-2023.)
Assertion
Ref Expression
satfv0fun ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))

Proof of Theorem satfv0fun
Dummy variables 𝑓 𝑖 𝑗 𝑘 𝑙 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funopab 6571 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})} ↔ ∀𝑥∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}))
2 oveq1 7412 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑖𝑔𝑗) = (𝑘𝑔𝑗))
32eqeq2d 2746 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 = (𝑘𝑔𝑗)))
4 fveq2 6876 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝑓𝑖) = (𝑓𝑘))
54breq1d 5129 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((𝑓𝑖)𝐸(𝑓𝑗) ↔ (𝑓𝑘)𝐸(𝑓𝑗)))
65rabbidv 3423 . . . . . . . . . 10 (𝑖 = 𝑘 → {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)})
76eqeq2d 2746 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} ↔ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)}))
83, 7anbi12d 632 . . . . . . . 8 (𝑖 = 𝑘 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ (𝑥 = (𝑘𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)})))
9 oveq2 7413 . . . . . . . . . 10 (𝑗 = 𝑙 → (𝑘𝑔𝑗) = (𝑘𝑔𝑙))
109eqeq2d 2746 . . . . . . . . 9 (𝑗 = 𝑙 → (𝑥 = (𝑘𝑔𝑗) ↔ 𝑥 = (𝑘𝑔𝑙)))
11 fveq2 6876 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (𝑓𝑗) = (𝑓𝑙))
1211breq2d 5131 . . . . . . . . . . 11 (𝑗 = 𝑙 → ((𝑓𝑘)𝐸(𝑓𝑗) ↔ (𝑓𝑘)𝐸(𝑓𝑙)))
1312rabbidv 3423 . . . . . . . . . 10 (𝑗 = 𝑙 → {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)} = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)})
1413eqeq2d 2746 . . . . . . . . 9 (𝑗 = 𝑙 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)} ↔ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}))
1510, 14anbi12d 632 . . . . . . . 8 (𝑗 = 𝑙 → ((𝑥 = (𝑘𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)}) ↔ (𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)})))
168, 15cbvrex2vw 3225 . . . . . . 7 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}))
17 eqtr2 2756 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑥 = (𝑘𝑔𝑙)) → (𝑖𝑔𝑗) = (𝑘𝑔𝑙))
18 goeleq12bg 35371 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑘𝑔𝑙) ↔ (𝑖 = 𝑘𝑗 = 𝑙)))
194adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑓𝑖) = (𝑓𝑘))
2019eqcomd 2741 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑓𝑘) = (𝑓𝑖))
2111adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑓𝑗) = (𝑓𝑙))
2221eqcomd 2741 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑓𝑙) = (𝑓𝑗))
2320, 22breq12d 5132 . . . . . . . . . . . . . . . . . . 19 ((𝑖 = 𝑘𝑗 = 𝑙) → ((𝑓𝑘)𝐸(𝑓𝑙) ↔ (𝑓𝑖)𝐸(𝑓𝑗)))
2423rabbidv 3423 . . . . . . . . . . . . . . . . . 18 ((𝑖 = 𝑘𝑗 = 𝑙) → {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})
25 eqeq12 2752 . . . . . . . . . . . . . . . . . 18 ((𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → (𝑦 = 𝑧 ↔ {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}))
2624, 25syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 ((𝑖 = 𝑘𝑗 = 𝑙) → ((𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑦 = 𝑧))
2726expd 415 . . . . . . . . . . . . . . . 16 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧)))
2818, 27biimtrdi 253 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑘𝑔𝑙) → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧))))
2917, 28syl5 34 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑥 = (𝑘𝑔𝑙)) → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧))))
3029expd 415 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖𝑔𝑗) → (𝑥 = (𝑘𝑔𝑙) → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧)))))
3130imp4a 422 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖𝑔𝑗) → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧))))
3231com34 91 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖𝑔𝑗) → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → 𝑦 = 𝑧))))
3332impd 410 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → 𝑦 = 𝑧)))
3433rexlimdvva 3198 . . . . . . . . 9 ((𝑘 ∈ ω ∧ 𝑙 ∈ ω) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → 𝑦 = 𝑧)))
3534com23 86 . . . . . . . 8 ((𝑘 ∈ ω ∧ 𝑙 ∈ ω) → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑦 = 𝑧)))
3635rexlimivv 3186 . . . . . . 7 (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑦 = 𝑧))
3716, 36sylbi 217 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑦 = 𝑧))
3837imp 406 . . . . 5 ((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})) → 𝑦 = 𝑧)
3938gen2 1796 . . . 4 𝑦𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})) → 𝑦 = 𝑧)
40 eqeq1 2739 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} ↔ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}))
4140anbi2d 630 . . . . . 6 (𝑦 = 𝑧 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})))
42412rexbidv 3206 . . . . 5 (𝑦 = 𝑧 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})))
4342mo4 2565 . . . 4 (∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ ∀𝑦𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})) → 𝑦 = 𝑧))
4439, 43mpbir 231 . . 3 ∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})
451, 44mpgbir 1799 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})}
46 eqid 2735 . . . 4 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
4746satfv0 35380 . . 3 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})})
4847funeqd 6558 . 2 ((𝑀𝑉𝐸𝑊) → (Fun ((𝑀 Sat 𝐸)‘∅) ↔ Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})}))
4945, 48mpbiri 258 1 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2108  ∃*wmo 2537  wrex 3060  {crab 3415  c0 4308   class class class wbr 5119  {copab 5181  Fun wfun 6525  cfv 6531  (class class class)co 7405  ωcom 7861  m cmap 8840  𝑔cgoe 35355   Sat csat 35358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-goel 35362  df-sat 35365
This theorem is referenced by:  satffunlem1  35429  satffun  35431  satfv0fvfmla0  35435
  Copyright terms: Public domain W3C validator