Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfv0fun Structured version   Visualization version   GIF version

Theorem satfv0fun 33233
Description: The value of the satisfaction predicate as function over wff codes at is a function. (Contributed by AV, 15-Oct-2023.)
Assertion
Ref Expression
satfv0fun ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))

Proof of Theorem satfv0fun
Dummy variables 𝑓 𝑖 𝑗 𝑘 𝑙 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funopab 6453 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})} ↔ ∀𝑥∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}))
2 oveq1 7262 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑖𝑔𝑗) = (𝑘𝑔𝑗))
32eqeq2d 2749 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 = (𝑘𝑔𝑗)))
4 fveq2 6756 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝑓𝑖) = (𝑓𝑘))
54breq1d 5080 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((𝑓𝑖)𝐸(𝑓𝑗) ↔ (𝑓𝑘)𝐸(𝑓𝑗)))
65rabbidv 3404 . . . . . . . . . 10 (𝑖 = 𝑘 → {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)})
76eqeq2d 2749 . . . . . . . . 9 (𝑖 = 𝑘 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} ↔ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)}))
83, 7anbi12d 630 . . . . . . . 8 (𝑖 = 𝑘 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ (𝑥 = (𝑘𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)})))
9 oveq2 7263 . . . . . . . . . 10 (𝑗 = 𝑙 → (𝑘𝑔𝑗) = (𝑘𝑔𝑙))
109eqeq2d 2749 . . . . . . . . 9 (𝑗 = 𝑙 → (𝑥 = (𝑘𝑔𝑗) ↔ 𝑥 = (𝑘𝑔𝑙)))
11 fveq2 6756 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (𝑓𝑗) = (𝑓𝑙))
1211breq2d 5082 . . . . . . . . . . 11 (𝑗 = 𝑙 → ((𝑓𝑘)𝐸(𝑓𝑗) ↔ (𝑓𝑘)𝐸(𝑓𝑙)))
1312rabbidv 3404 . . . . . . . . . 10 (𝑗 = 𝑙 → {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)} = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)})
1413eqeq2d 2749 . . . . . . . . 9 (𝑗 = 𝑙 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)} ↔ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}))
1510, 14anbi12d 630 . . . . . . . 8 (𝑗 = 𝑙 → ((𝑥 = (𝑘𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑗)}) ↔ (𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)})))
168, 15cbvrex2vw 3386 . . . . . . 7 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ ∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}))
17 eqtr2 2762 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑥 = (𝑘𝑔𝑙)) → (𝑖𝑔𝑗) = (𝑘𝑔𝑙))
18 goeleq12bg 33211 . . . . . . . . . . . . . . . 16 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑘𝑔𝑙) ↔ (𝑖 = 𝑘𝑗 = 𝑙)))
194adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑓𝑖) = (𝑓𝑘))
2019eqcomd 2744 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑓𝑘) = (𝑓𝑖))
2111adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑓𝑗) = (𝑓𝑙))
2221eqcomd 2744 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑓𝑙) = (𝑓𝑗))
2320, 22breq12d 5083 . . . . . . . . . . . . . . . . . . 19 ((𝑖 = 𝑘𝑗 = 𝑙) → ((𝑓𝑘)𝐸(𝑓𝑙) ↔ (𝑓𝑖)𝐸(𝑓𝑗)))
2423rabbidv 3404 . . . . . . . . . . . . . . . . . 18 ((𝑖 = 𝑘𝑗 = 𝑙) → {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})
25 eqeq12 2755 . . . . . . . . . . . . . . . . . 18 ((𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → (𝑦 = 𝑧 ↔ {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}))
2624, 25syl5ibrcom 246 . . . . . . . . . . . . . . . . 17 ((𝑖 = 𝑘𝑗 = 𝑙) → ((𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑦 = 𝑧))
2726expd 415 . . . . . . . . . . . . . . . 16 ((𝑖 = 𝑘𝑗 = 𝑙) → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧)))
2818, 27syl6bi 252 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖𝑔𝑗) = (𝑘𝑔𝑙) → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧))))
2917, 28syl5 34 . . . . . . . . . . . . . 14 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑥 = (𝑘𝑔𝑙)) → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧))))
3029expd 415 . . . . . . . . . . . . 13 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖𝑔𝑗) → (𝑥 = (𝑘𝑔𝑙) → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)} → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧)))))
3130imp4a 422 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖𝑔𝑗) → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑦 = 𝑧))))
3231com34 91 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → (𝑥 = (𝑖𝑔𝑗) → (𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → 𝑦 = 𝑧))))
3332impd 410 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝑙 ∈ ω) ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → 𝑦 = 𝑧)))
3433rexlimdvva 3222 . . . . . . . . 9 ((𝑘 ∈ ω ∧ 𝑙 ∈ ω) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → 𝑦 = 𝑧)))
3534com23 86 . . . . . . . 8 ((𝑘 ∈ ω ∧ 𝑙 ∈ ω) → ((𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑦 = 𝑧)))
3635rexlimivv 3220 . . . . . . 7 (∃𝑘 ∈ ω ∃𝑙 ∈ ω (𝑥 = (𝑘𝑔𝑙) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑘)𝐸(𝑓𝑙)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑦 = 𝑧))
3716, 36sylbi 216 . . . . . 6 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑦 = 𝑧))
3837imp 406 . . . . 5 ((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})) → 𝑦 = 𝑧)
3938gen2 1800 . . . 4 𝑦𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})) → 𝑦 = 𝑧)
40 eqeq1 2742 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} ↔ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}))
4140anbi2d 628 . . . . . 6 (𝑦 = 𝑧 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})))
42412rexbidv 3228 . . . . 5 (𝑦 = 𝑧 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})))
4342mo4 2566 . . . 4 (∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ ∀𝑦𝑧((∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ∧ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑧 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})) → 𝑦 = 𝑧))
4439, 43mpbir 230 . . 3 ∃*𝑦𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})
451, 44mpgbir 1803 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})}
46 eqid 2738 . . . 4 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
4746satfv0 33220 . . 3 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})})
4847funeqd 6440 . 2 ((𝑀𝑉𝐸𝑊) → (Fun ((𝑀 Sat 𝐸)‘∅) ↔ Fun {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})}))
4945, 48mpbiri 257 1 ((𝑀𝑉𝐸𝑊) → Fun ((𝑀 Sat 𝐸)‘∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wcel 2108  ∃*wmo 2538  wrex 3064  {crab 3067  c0 4253   class class class wbr 5070  {copab 5132  Fun wfun 6412  cfv 6418  (class class class)co 7255  ωcom 7687  m cmap 8573  𝑔cgoe 33195   Sat csat 33198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-goel 33202  df-sat 33205
This theorem is referenced by:  satffunlem1  33269  satffun  33271  satfv0fvfmla0  33275
  Copyright terms: Public domain W3C validator