| Step | Hyp | Ref
| Expression |
| 1 | | simpll 766 |
. . 3
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) → 𝑅 ∈ Fin) |
| 2 | | simplr 768 |
. . 3
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) → 𝐹:ℕ⟶𝑅) |
| 3 | | oveq1 7417 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑤 → (𝑚 · 𝑑) = (𝑤 · 𝑑)) |
| 4 | 3 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑤 → (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑤 · 𝑑))) |
| 5 | 4 | eleq1d 2820 |
. . . . . . . . 9
⊢ (𝑚 = 𝑤 → ((𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ (𝑎 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢}))) |
| 6 | 5 | cbvralvw 3224 |
. . . . . . . 8
⊢
(∀𝑚 ∈
(0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑎 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
| 7 | | oveq1 7417 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑦 → (𝑎 + (𝑤 · 𝑑)) = (𝑦 + (𝑤 · 𝑑))) |
| 8 | 7 | eleq1d 2820 |
. . . . . . . . 9
⊢ (𝑎 = 𝑦 → ((𝑎 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ (𝑦 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢}))) |
| 9 | 8 | ralbidv 3164 |
. . . . . . . 8
⊢ (𝑎 = 𝑦 → (∀𝑤 ∈ (0...(𝑘 − 1))(𝑎 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢}))) |
| 10 | 6, 9 | bitrid 283 |
. . . . . . 7
⊢ (𝑎 = 𝑦 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢}))) |
| 11 | | oveq2 7418 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑧 → (𝑤 · 𝑑) = (𝑤 · 𝑧)) |
| 12 | 11 | oveq2d 7426 |
. . . . . . . . 9
⊢ (𝑑 = 𝑧 → (𝑦 + (𝑤 · 𝑑)) = (𝑦 + (𝑤 · 𝑧))) |
| 13 | 12 | eleq1d 2820 |
. . . . . . . 8
⊢ (𝑑 = 𝑧 → ((𝑦 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ (𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢}))) |
| 14 | 13 | ralbidv 3164 |
. . . . . . 7
⊢ (𝑑 = 𝑧 → (∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢}))) |
| 15 | 10, 14 | cbvrex2vw 3229 |
. . . . . 6
⊢
(∃𝑎 ∈
ℕ ∃𝑑 ∈
ℕ ∀𝑚 ∈
(0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢})) |
| 16 | | oveq1 7417 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → (𝑘 − 1) = (𝑥 − 1)) |
| 17 | 16 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → (0...(𝑘 − 1)) = (0...(𝑥 − 1))) |
| 18 | 17 | raleqdv 3309 |
. . . . . . 7
⊢ (𝑘 = 𝑥 → (∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢}))) |
| 19 | 18 | 2rexbidv 3210 |
. . . . . 6
⊢ (𝑘 = 𝑥 → (∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢}) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢}))) |
| 20 | 15, 19 | bitrid 283 |
. . . . 5
⊢ (𝑘 = 𝑥 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢}))) |
| 21 | 20 | notbid 318 |
. . . 4
⊢ (𝑘 = 𝑥 → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ¬ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢}))) |
| 22 | 21 | cbvrabv 3431 |
. . 3
⊢ {𝑘 ∈ ℕ ∣ ¬
∃𝑎 ∈ ℕ
∃𝑑 ∈ ℕ
∀𝑚 ∈
(0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})} = {𝑥 ∈ ℕ ∣ ¬ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢})} |
| 23 | | simpr 484 |
. . . . 5
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) → ¬ ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
| 24 | | sneq 4616 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑢 → {𝑐} = {𝑢}) |
| 25 | 24 | imaeq2d 6052 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑢 → (◡𝐹 “ {𝑐}) = (◡𝐹 “ {𝑢})) |
| 26 | 25 | eleq2d 2821 |
. . . . . . . . 9
⊢ (𝑐 = 𝑢 → ((𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}))) |
| 27 | 26 | ralbidv 3164 |
. . . . . . . 8
⊢ (𝑐 = 𝑢 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}))) |
| 28 | 27 | 2rexbidv 3210 |
. . . . . . 7
⊢ (𝑐 = 𝑢 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}))) |
| 29 | 28 | ralbidv 3164 |
. . . . . 6
⊢ (𝑐 = 𝑢 → (∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}) ↔ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}))) |
| 30 | 29 | cbvrexvw 3225 |
. . . . 5
⊢
(∃𝑐 ∈
𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}) ↔ ∃𝑢 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
| 31 | 23, 30 | sylnib 328 |
. . . 4
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) → ¬ ∃𝑢 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
| 32 | | rabn0 4369 |
. . . . . . 7
⊢ ({𝑘 ∈ ℕ ∣ ¬
∃𝑎 ∈ ℕ
∃𝑑 ∈ ℕ
∀𝑚 ∈
(0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})} ≠ ∅ ↔ ∃𝑘 ∈ ℕ ¬
∃𝑎 ∈ ℕ
∃𝑑 ∈ ℕ
∀𝑚 ∈
(0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
| 33 | | rexnal 3090 |
. . . . . . 7
⊢
(∃𝑘 ∈
ℕ ¬ ∃𝑎
∈ ℕ ∃𝑑
∈ ℕ ∀𝑚
∈ (0...(𝑘 −
1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ¬ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
| 34 | 32, 33 | bitri 275 |
. . . . . 6
⊢ ({𝑘 ∈ ℕ ∣ ¬
∃𝑎 ∈ ℕ
∃𝑑 ∈ ℕ
∀𝑚 ∈
(0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})} ≠ ∅ ↔ ¬ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
| 35 | 34 | ralbii 3083 |
. . . . 5
⊢
(∀𝑢 ∈
𝑅 {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})} ≠ ∅ ↔ ∀𝑢 ∈ 𝑅 ¬ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
| 36 | | ralnex 3063 |
. . . . 5
⊢
(∀𝑢 ∈
𝑅 ¬ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ¬ ∃𝑢 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
| 37 | 35, 36 | bitri 275 |
. . . 4
⊢
(∀𝑢 ∈
𝑅 {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})} ≠ ∅ ↔ ¬ ∃𝑢 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
| 38 | 31, 37 | sylibr 234 |
. . 3
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) → ∀𝑢 ∈ 𝑅 {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})} ≠ ∅) |
| 39 | 1, 2, 22, 38 | vdwnnlem3 17022 |
. 2
⊢ ¬
((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
| 40 | | iman 401 |
. 2
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) → ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) ↔ ¬ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
| 41 | 39, 40 | mpbir 231 |
1
⊢ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) → ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |