Step | Hyp | Ref
| Expression |
1 | | simpll 764 |
. . 3
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) → 𝑅 ∈ Fin) |
2 | | simplr 766 |
. . 3
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) → 𝐹:ℕ⟶𝑅) |
3 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑤 → (𝑚 · 𝑑) = (𝑤 · 𝑑)) |
4 | 3 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑤 → (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑤 · 𝑑))) |
5 | 4 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑚 = 𝑤 → ((𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ (𝑎 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢}))) |
6 | 5 | cbvralvw 3383 |
. . . . . . . 8
⊢
(∀𝑚 ∈
(0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑎 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
7 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑦 → (𝑎 + (𝑤 · 𝑑)) = (𝑦 + (𝑤 · 𝑑))) |
8 | 7 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑎 = 𝑦 → ((𝑎 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ (𝑦 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢}))) |
9 | 8 | ralbidv 3112 |
. . . . . . . 8
⊢ (𝑎 = 𝑦 → (∀𝑤 ∈ (0...(𝑘 − 1))(𝑎 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢}))) |
10 | 6, 9 | bitrid 282 |
. . . . . . 7
⊢ (𝑎 = 𝑦 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢}))) |
11 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑧 → (𝑤 · 𝑑) = (𝑤 · 𝑧)) |
12 | 11 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑑 = 𝑧 → (𝑦 + (𝑤 · 𝑑)) = (𝑦 + (𝑤 · 𝑧))) |
13 | 12 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑑 = 𝑧 → ((𝑦 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ (𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢}))) |
14 | 13 | ralbidv 3112 |
. . . . . . 7
⊢ (𝑑 = 𝑧 → (∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢}))) |
15 | 10, 14 | cbvrex2vw 3397 |
. . . . . 6
⊢
(∃𝑎 ∈
ℕ ∃𝑑 ∈
ℕ ∀𝑚 ∈
(0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢})) |
16 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → (𝑘 − 1) = (𝑥 − 1)) |
17 | 16 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → (0...(𝑘 − 1)) = (0...(𝑥 − 1))) |
18 | 17 | raleqdv 3348 |
. . . . . . 7
⊢ (𝑘 = 𝑥 → (∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢}))) |
19 | 18 | 2rexbidv 3229 |
. . . . . 6
⊢ (𝑘 = 𝑥 → (∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢}) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢}))) |
20 | 15, 19 | bitrid 282 |
. . . . 5
⊢ (𝑘 = 𝑥 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢}))) |
21 | 20 | notbid 318 |
. . . 4
⊢ (𝑘 = 𝑥 → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ¬ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢}))) |
22 | 21 | cbvrabv 3426 |
. . 3
⊢ {𝑘 ∈ ℕ ∣ ¬
∃𝑎 ∈ ℕ
∃𝑑 ∈ ℕ
∀𝑚 ∈
(0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})} = {𝑥 ∈ ℕ ∣ ¬ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (◡𝐹 “ {𝑢})} |
23 | | simpr 485 |
. . . . 5
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) → ¬ ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
24 | | sneq 4571 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑢 → {𝑐} = {𝑢}) |
25 | 24 | imaeq2d 5969 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑢 → (◡𝐹 “ {𝑐}) = (◡𝐹 “ {𝑢})) |
26 | 25 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑐 = 𝑢 → ((𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}))) |
27 | 26 | ralbidv 3112 |
. . . . . . . 8
⊢ (𝑐 = 𝑢 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}))) |
28 | 27 | 2rexbidv 3229 |
. . . . . . 7
⊢ (𝑐 = 𝑢 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}))) |
29 | 28 | ralbidv 3112 |
. . . . . 6
⊢ (𝑐 = 𝑢 → (∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}) ↔ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}))) |
30 | 29 | cbvrexvw 3384 |
. . . . 5
⊢
(∃𝑐 ∈
𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}) ↔ ∃𝑢 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
31 | 23, 30 | sylnib 328 |
. . . 4
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) → ¬ ∃𝑢 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
32 | | rabn0 4319 |
. . . . . . 7
⊢ ({𝑘 ∈ ℕ ∣ ¬
∃𝑎 ∈ ℕ
∃𝑑 ∈ ℕ
∀𝑚 ∈
(0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})} ≠ ∅ ↔ ∃𝑘 ∈ ℕ ¬
∃𝑎 ∈ ℕ
∃𝑑 ∈ ℕ
∀𝑚 ∈
(0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
33 | | rexnal 3169 |
. . . . . . 7
⊢
(∃𝑘 ∈
ℕ ¬ ∃𝑎
∈ ℕ ∃𝑑
∈ ℕ ∀𝑚
∈ (0...(𝑘 −
1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ¬ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
34 | 32, 33 | bitri 274 |
. . . . . 6
⊢ ({𝑘 ∈ ℕ ∣ ¬
∃𝑎 ∈ ℕ
∃𝑑 ∈ ℕ
∀𝑚 ∈
(0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})} ≠ ∅ ↔ ¬ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
35 | 34 | ralbii 3092 |
. . . . 5
⊢
(∀𝑢 ∈
𝑅 {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})} ≠ ∅ ↔ ∀𝑢 ∈ 𝑅 ¬ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
36 | | ralnex 3167 |
. . . . 5
⊢
(∀𝑢 ∈
𝑅 ¬ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢}) ↔ ¬ ∃𝑢 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
37 | 35, 36 | bitri 274 |
. . . 4
⊢
(∀𝑢 ∈
𝑅 {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})} ≠ ∅ ↔ ¬ ∃𝑢 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})) |
38 | 31, 37 | sylibr 233 |
. . 3
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) → ∀𝑢 ∈ 𝑅 {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑢})} ≠ ∅) |
39 | 1, 2, 22, 38 | vdwnnlem3 16698 |
. 2
⊢ ¬
((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
40 | | iman 402 |
. 2
⊢ (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) → ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) ↔ ¬ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
41 | 39, 40 | mpbir 230 |
1
⊢ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) → ∃𝑐 ∈ 𝑅 ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |