MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwnn Structured version   Visualization version   GIF version

Theorem vdwnn 16870
Description: Van der Waerden's theorem, infinitary version. For any finite coloring 𝐹 of the positive integers, there is a color 𝑐 that contains arbitrarily long arithmetic progressions. (Contributed by Mario Carneiro, 13-Sep-2014.)
Assertion
Ref Expression
vdwnn ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) → ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
Distinct variable groups:   𝑎,𝑐,𝑑,𝑘,𝑚,𝐹   𝑅,𝑐
Allowed substitution hints:   𝑅(𝑘,𝑚,𝑎,𝑑)

Proof of Theorem vdwnn
Dummy variables 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . 3 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) → 𝑅 ∈ Fin)
2 simplr 767 . . 3 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) → 𝐹:ℕ⟶𝑅)
3 oveq1 7364 . . . . . . . . . . 11 (𝑚 = 𝑤 → (𝑚 · 𝑑) = (𝑤 · 𝑑))
43oveq2d 7373 . . . . . . . . . 10 (𝑚 = 𝑤 → (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑤 · 𝑑)))
54eleq1d 2822 . . . . . . . . 9 (𝑚 = 𝑤 → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ (𝑎 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢})))
65cbvralvw 3225 . . . . . . . 8 (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑎 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢}))
7 oveq1 7364 . . . . . . . . . 10 (𝑎 = 𝑦 → (𝑎 + (𝑤 · 𝑑)) = (𝑦 + (𝑤 · 𝑑)))
87eleq1d 2822 . . . . . . . . 9 (𝑎 = 𝑦 → ((𝑎 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ (𝑦 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢})))
98ralbidv 3174 . . . . . . . 8 (𝑎 = 𝑦 → (∀𝑤 ∈ (0...(𝑘 − 1))(𝑎 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢})))
106, 9bitrid 282 . . . . . . 7 (𝑎 = 𝑦 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢})))
11 oveq2 7365 . . . . . . . . . 10 (𝑑 = 𝑧 → (𝑤 · 𝑑) = (𝑤 · 𝑧))
1211oveq2d 7373 . . . . . . . . 9 (𝑑 = 𝑧 → (𝑦 + (𝑤 · 𝑑)) = (𝑦 + (𝑤 · 𝑧)))
1312eleq1d 2822 . . . . . . . 8 (𝑑 = 𝑧 → ((𝑦 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ (𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢})))
1413ralbidv 3174 . . . . . . 7 (𝑑 = 𝑧 → (∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢})))
1510, 14cbvrex2vw 3228 . . . . . 6 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢}))
16 oveq1 7364 . . . . . . . . 9 (𝑘 = 𝑥 → (𝑘 − 1) = (𝑥 − 1))
1716oveq2d 7373 . . . . . . . 8 (𝑘 = 𝑥 → (0...(𝑘 − 1)) = (0...(𝑥 − 1)))
1817raleqdv 3313 . . . . . . 7 (𝑘 = 𝑥 → (∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢}) ↔ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢})))
19182rexbidv 3213 . . . . . 6 (𝑘 = 𝑥 → (∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑘 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢}) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢})))
2015, 19bitrid 282 . . . . 5 (𝑘 = 𝑥 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢})))
2120notbid 317 . . . 4 (𝑘 = 𝑥 → (¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ¬ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢})))
2221cbvrabv 3417 . . 3 {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})} = {𝑥 ∈ ℕ ∣ ¬ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ ∀𝑤 ∈ (0...(𝑥 − 1))(𝑦 + (𝑤 · 𝑧)) ∈ (𝐹 “ {𝑢})}
23 simpr 485 . . . . 5 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) → ¬ ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
24 sneq 4596 . . . . . . . . . . 11 (𝑐 = 𝑢 → {𝑐} = {𝑢})
2524imaeq2d 6013 . . . . . . . . . 10 (𝑐 = 𝑢 → (𝐹 “ {𝑐}) = (𝐹 “ {𝑢}))
2625eleq2d 2823 . . . . . . . . 9 (𝑐 = 𝑢 → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})))
2726ralbidv 3174 . . . . . . . 8 (𝑐 = 𝑢 → (∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})))
28272rexbidv 3213 . . . . . . 7 (𝑐 = 𝑢 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})))
2928ralbidv 3174 . . . . . 6 (𝑐 = 𝑢 → (∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})))
3029cbvrexvw 3226 . . . . 5 (∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∃𝑢𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}))
3123, 30sylnib 327 . . . 4 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) → ¬ ∃𝑢𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}))
32 rabn0 4345 . . . . . . 7 ({𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})} ≠ ∅ ↔ ∃𝑘 ∈ ℕ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}))
33 rexnal 3103 . . . . . . 7 (∃𝑘 ∈ ℕ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ¬ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}))
3432, 33bitri 274 . . . . . 6 ({𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})} ≠ ∅ ↔ ¬ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}))
3534ralbii 3096 . . . . 5 (∀𝑢𝑅 {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})} ≠ ∅ ↔ ∀𝑢𝑅 ¬ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}))
36 ralnex 3075 . . . . 5 (∀𝑢𝑅 ¬ ∀𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}) ↔ ¬ ∃𝑢𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}))
3735, 36bitri 274 . . . 4 (∀𝑢𝑅 {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})} ≠ ∅ ↔ ¬ ∃𝑢𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢}))
3831, 37sylibr 233 . . 3 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) → ∀𝑢𝑅 {𝑘 ∈ ℕ ∣ ¬ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑢})} ≠ ∅)
391, 2, 22, 38vdwnnlem3 16869 . 2 ¬ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
40 iman 402 . 2 (((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) → ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})) ↔ ¬ ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) ∧ ¬ ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
4139, 40mpbir 230 1 ((𝑅 ∈ Fin ∧ 𝐹:ℕ⟶𝑅) → ∃𝑐𝑅𝑘 ∈ ℕ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝑘 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  c0 4282  {csn 4586  ccnv 5632  cima 5636  wf 6492  (class class class)co 7357  Fincfn 8883  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  cn 12153  ...cfz 13424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fl 13697  df-hash 14231  df-vdwap 16840  df-vdwmc 16841  df-vdwpc 16842
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator