MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmax Structured version   Visualization version   GIF version

Theorem dyadmax 24762
Description: Any nonempty set of dyadic rational intervals has a maximal element. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyadmax ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))
Distinct variable groups:   𝑥,𝑦   𝑧,𝑤,𝑥,𝑦,𝐴   𝑤,𝐹,𝑥,𝑦,𝑧

Proof of Theorem dyadmax
Dummy variables 𝑐 𝑑 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltweuz 13681 . . . . 5 < We (ℤ‘0)
21a1i 11 . . . 4 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → < We (ℤ‘0))
3 nn0ex 12239 . . . . . 6 0 ∈ V
43rabex 5256 . . . . 5 {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ∈ V
54a1i 11 . . . 4 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ∈ V)
6 ssrab2 4013 . . . . . 6 {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆ ℕ0
7 nn0uz 12620 . . . . . 6 0 = (ℤ‘0)
86, 7sseqtri 3957 . . . . 5 {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆ (ℤ‘0)
98a1i 11 . . . 4 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆ (ℤ‘0))
10 id 22 . . . . . . 7 (𝐴 ≠ ∅ → 𝐴 ≠ ∅)
11 dyadmbl.1 . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
1211dyadf 24755 . . . . . . . . . . 11 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
13 ffn 6600 . . . . . . . . . . 11 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn (ℤ × ℕ0))
14 ovelrn 7448 . . . . . . . . . . 11 (𝐹 Fn (ℤ × ℕ0) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑎 ∈ ℤ ∃𝑛 ∈ ℕ0 𝑧 = (𝑎𝐹𝑛)))
1512, 13, 14mp2b 10 . . . . . . . . . 10 (𝑧 ∈ ran 𝐹 ↔ ∃𝑎 ∈ ℤ ∃𝑛 ∈ ℕ0 𝑧 = (𝑎𝐹𝑛))
16 rexcom 3234 . . . . . . . . . 10 (∃𝑎 ∈ ℤ ∃𝑛 ∈ ℕ0 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
1715, 16sylbb 218 . . . . . . . . 9 (𝑧 ∈ ran 𝐹 → ∃𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
1817rgen 3074 . . . . . . . 8 𝑧 ∈ ran 𝐹𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)
19 ssralv 3987 . . . . . . . 8 (𝐴 ⊆ ran 𝐹 → (∀𝑧 ∈ ran 𝐹𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) → ∀𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)))
2018, 19mpi 20 . . . . . . 7 (𝐴 ⊆ ran 𝐹 → ∀𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
21 r19.2z 4425 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) → ∃𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
2210, 20, 21syl2anr 597 . . . . . 6 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
23 rexcom 3234 . . . . . 6 (∃𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑛 ∈ ℕ0𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
2422, 23sylib 217 . . . . 5 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃𝑛 ∈ ℕ0𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
25 rabn0 4319 . . . . 5 ({𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ≠ ∅ ↔ ∃𝑛 ∈ ℕ0𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
2624, 25sylibr 233 . . . 4 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ≠ ∅)
27 wereu 5585 . . . 4 (( < We (ℤ‘0) ∧ ({𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ∈ V ∧ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆ (ℤ‘0) ∧ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ≠ ∅)) → ∃!𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐)
282, 5, 9, 26, 27syl13anc 1371 . . 3 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃!𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐)
29 reurex 3362 . . 3 (∃!𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐)
3028, 29syl 17 . 2 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐)
31 oveq2 7283 . . . . . . 7 (𝑛 = 𝑐 → (𝑎𝐹𝑛) = (𝑎𝐹𝑐))
3231eqeq2d 2749 . . . . . 6 (𝑛 = 𝑐 → (𝑧 = (𝑎𝐹𝑛) ↔ 𝑧 = (𝑎𝐹𝑐)))
33322rexbidv 3229 . . . . 5 (𝑛 = 𝑐 → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐)))
3433elrab 3624 . . . 4 (𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ↔ (𝑐 ∈ ℕ0 ∧ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐)))
35 eqeq1 2742 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧 = (𝑎𝐹𝑛) ↔ 𝑤 = (𝑎𝐹𝑛)))
36 oveq1 7282 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎𝐹𝑛) = (𝑏𝐹𝑛))
3736eqeq2d 2749 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑤 = (𝑎𝐹𝑛) ↔ 𝑤 = (𝑏𝐹𝑛)))
3835, 37cbvrex2vw 3397 . . . . . . . . 9 (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑛))
39 oveq2 7283 . . . . . . . . . . 11 (𝑛 = 𝑑 → (𝑏𝐹𝑛) = (𝑏𝐹𝑑))
4039eqeq2d 2749 . . . . . . . . . 10 (𝑛 = 𝑑 → (𝑤 = (𝑏𝐹𝑛) ↔ 𝑤 = (𝑏𝐹𝑑)))
41402rexbidv 3229 . . . . . . . . 9 (𝑛 = 𝑑 → (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑛) ↔ ∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)))
4238, 41bitrid 282 . . . . . . . 8 (𝑛 = 𝑑 → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)))
4342ralrab 3630 . . . . . . 7 (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 ↔ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐))
44 r19.23v 3208 . . . . . . . . . . . . . . . . 17 (∀𝑤𝐴 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐))
4544ralbii 3092 . . . . . . . . . . . . . . . 16 (∀𝑑 ∈ ℕ0𝑤𝐴 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐))
46 ralcom 3166 . . . . . . . . . . . . . . . 16 (∀𝑑 ∈ ℕ0𝑤𝐴 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ ∀𝑤𝐴𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐))
4745, 46bitr3i 276 . . . . . . . . . . . . . . 15 (∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ ∀𝑤𝐴𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐))
48 simplll 772 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) → 𝐴 ⊆ ran 𝐹)
4948sselda 3921 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → 𝑤 ∈ ran 𝐹)
50 ovelrn 7448 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn (ℤ × ℕ0) → (𝑤 ∈ ran 𝐹 ↔ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑)))
5112, 13, 50mp2b 10 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ran 𝐹 ↔ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑))
5249, 51sylib 217 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑))
53 rexcom 3234 . . . . . . . . . . . . . . . . . . 19 (∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑) ↔ ∃𝑑 ∈ ℕ0𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))
54 r19.29 3184 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑑 ∈ ℕ0𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)))
5554expcom 414 . . . . . . . . . . . . . . . . . . 19 (∃𝑑 ∈ ℕ0𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))))
5653, 55sylbi 216 . . . . . . . . . . . . . . . . . 18 (∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))))
5752, 56syl 17 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))))
58 simplrr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → 𝑎 ∈ ℤ)
5958ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑎 ∈ ℤ)
60 simplrr 775 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑏 ∈ ℤ)
61 simp-5r 783 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑐 ∈ ℕ0)
62 simplrl 774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑑 ∈ ℕ0)
63 simprl 768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → ¬ 𝑑 < 𝑐)
64 simprr 770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))
6511, 59, 60, 61, 62, 63, 64dyadmaxlem 24761 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → (𝑎 = 𝑏𝑐 = 𝑑))
66 oveq12 7284 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 = 𝑏𝑐 = 𝑑) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑))
6765, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑))
6867exp32 421 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑))))
69 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = (𝑏𝐹𝑑) → ([,]‘𝑤) = ([,]‘(𝑏𝐹𝑑)))
7069sseq2d 3953 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = (𝑏𝐹𝑑) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))))
71 eqeq2 2750 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = (𝑏𝐹𝑑) → ((𝑎𝐹𝑐) = 𝑤 ↔ (𝑎𝐹𝑐) = (𝑏𝐹𝑑)))
7270, 71imbi12d 345 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = (𝑏𝐹𝑑) → ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑))))
7372imbi2d 341 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑏𝐹𝑑) → ((¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)) ↔ (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑)))))
7468, 73syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) → (𝑤 = (𝑏𝐹𝑑) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))))
7574anassrs 468 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ 𝑑 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) → (𝑤 = (𝑏𝐹𝑑) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))))
7675rexlimdva 3213 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ 𝑑 ∈ ℕ0) → (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))))
7776a2d 29 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ 𝑑 ∈ ℕ0) → ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))))
7877impd 411 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ 𝑑 ∈ ℕ0) → (((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
7978rexlimdva 3213 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → (∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
8057, 79syld 47 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
8180ralimdva 3108 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) → (∀𝑤𝐴𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∀𝑤𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
8247, 81syl5bi 241 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) → (∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∀𝑤𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
8382imp 407 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) → ∀𝑤𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))
8483an32s 649 . . . . . . . . . . . 12 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ (𝑧𝐴𝑎 ∈ ℤ)) → ∀𝑤𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))
85 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑧 = (𝑎𝐹𝑐) → ([,]‘𝑧) = ([,]‘(𝑎𝐹𝑐)))
8685sseq1d 3952 . . . . . . . . . . . . . 14 (𝑧 = (𝑎𝐹𝑐) → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤)))
87 eqeq1 2742 . . . . . . . . . . . . . 14 (𝑧 = (𝑎𝐹𝑐) → (𝑧 = 𝑤 ↔ (𝑎𝐹𝑐) = 𝑤))
8886, 87imbi12d 345 . . . . . . . . . . . . 13 (𝑧 = (𝑎𝐹𝑐) → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
8988ralbidv 3112 . . . . . . . . . . . 12 (𝑧 = (𝑎𝐹𝑐) → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
9084, 89syl5ibrcom 246 . . . . . . . . . . 11 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ (𝑧𝐴𝑎 ∈ ℤ)) → (𝑧 = (𝑎𝐹𝑐) → ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))
9190anassrs 468 . . . . . . . . . 10 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ 𝑧𝐴) ∧ 𝑎 ∈ ℤ) → (𝑧 = (𝑎𝐹𝑐) → ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))
9291rexlimdva 3213 . . . . . . . . 9 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ 𝑧𝐴) → (∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))
9392reximdva 3203 . . . . . . . 8 ((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))
9493ex 413 . . . . . . 7 (((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) → (∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))))
9543, 94syl5bi 241 . . . . . 6 (((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))))
9695com23 86 . . . . 5 (((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))))
9796expimpd 454 . . . 4 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ((𝑐 ∈ ℕ0 ∧ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐)) → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))))
9834, 97syl5bi 241 . . 3 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → (𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))))
9998rexlimdv 3212 . 2 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → (∃𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))
10030, 99mpd 15 1 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  ∃!wreu 3066  {crab 3068  Vcvv 3432  cin 3886  wss 3887  c0 4256  cop 4567   class class class wbr 5074   We wwe 5543   × cxp 5587  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010   / cdiv 11632  2c2 12028  0cn0 12233  cz 12319  cuz 12582  [,]cicc 13082  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538  df-ovol 24628
This theorem is referenced by:  dyadmbllem  24763
  Copyright terms: Public domain W3C validator