MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmax Structured version   Visualization version   GIF version

Theorem dyadmax 25515
Description: Any nonempty set of dyadic rational intervals has a maximal element. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyadmax ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))
Distinct variable groups:   𝑥,𝑦   𝑧,𝑤,𝑥,𝑦,𝐴   𝑤,𝐹,𝑥,𝑦,𝑧

Proof of Theorem dyadmax
Dummy variables 𝑐 𝑑 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltweuz 13886 . . . . 5 < We (ℤ‘0)
21a1i 11 . . . 4 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → < We (ℤ‘0))
3 nn0ex 12408 . . . . . 6 0 ∈ V
43rabex 5281 . . . . 5 {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ∈ V
54a1i 11 . . . 4 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ∈ V)
6 ssrab2 4033 . . . . . 6 {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆ ℕ0
7 nn0uz 12795 . . . . . 6 0 = (ℤ‘0)
86, 7sseqtri 3986 . . . . 5 {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆ (ℤ‘0)
98a1i 11 . . . 4 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆ (ℤ‘0))
10 id 22 . . . . . . 7 (𝐴 ≠ ∅ → 𝐴 ≠ ∅)
11 dyadmbl.1 . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
1211dyadf 25508 . . . . . . . . . . 11 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
13 ffn 6656 . . . . . . . . . . 11 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn (ℤ × ℕ0))
14 ovelrn 7529 . . . . . . . . . . 11 (𝐹 Fn (ℤ × ℕ0) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑎 ∈ ℤ ∃𝑛 ∈ ℕ0 𝑧 = (𝑎𝐹𝑛)))
1512, 13, 14mp2b 10 . . . . . . . . . 10 (𝑧 ∈ ran 𝐹 ↔ ∃𝑎 ∈ ℤ ∃𝑛 ∈ ℕ0 𝑧 = (𝑎𝐹𝑛))
16 rexcom 3258 . . . . . . . . . 10 (∃𝑎 ∈ ℤ ∃𝑛 ∈ ℕ0 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
1715, 16sylbb 219 . . . . . . . . 9 (𝑧 ∈ ran 𝐹 → ∃𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
1817rgen 3046 . . . . . . . 8 𝑧 ∈ ran 𝐹𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)
19 ssralv 4006 . . . . . . . 8 (𝐴 ⊆ ran 𝐹 → (∀𝑧 ∈ ran 𝐹𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) → ∀𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)))
2018, 19mpi 20 . . . . . . 7 (𝐴 ⊆ ran 𝐹 → ∀𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
21 r19.2z 4448 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) → ∃𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
2210, 20, 21syl2anr 597 . . . . . 6 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
23 rexcom 3258 . . . . . 6 (∃𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑛 ∈ ℕ0𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
2422, 23sylib 218 . . . . 5 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃𝑛 ∈ ℕ0𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
25 rabn0 4342 . . . . 5 ({𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ≠ ∅ ↔ ∃𝑛 ∈ ℕ0𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
2624, 25sylibr 234 . . . 4 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ≠ ∅)
27 wereu 5619 . . . 4 (( < We (ℤ‘0) ∧ ({𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ∈ V ∧ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆ (ℤ‘0) ∧ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ≠ ∅)) → ∃!𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐)
282, 5, 9, 26, 27syl13anc 1374 . . 3 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃!𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐)
29 reurex 3349 . . 3 (∃!𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐)
3028, 29syl 17 . 2 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐)
31 oveq2 7361 . . . . . . 7 (𝑛 = 𝑐 → (𝑎𝐹𝑛) = (𝑎𝐹𝑐))
3231eqeq2d 2740 . . . . . 6 (𝑛 = 𝑐 → (𝑧 = (𝑎𝐹𝑛) ↔ 𝑧 = (𝑎𝐹𝑐)))
33322rexbidv 3194 . . . . 5 (𝑛 = 𝑐 → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐)))
3433elrab 3650 . . . 4 (𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ↔ (𝑐 ∈ ℕ0 ∧ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐)))
35 eqeq1 2733 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧 = (𝑎𝐹𝑛) ↔ 𝑤 = (𝑎𝐹𝑛)))
36 oveq1 7360 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎𝐹𝑛) = (𝑏𝐹𝑛))
3736eqeq2d 2740 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑤 = (𝑎𝐹𝑛) ↔ 𝑤 = (𝑏𝐹𝑛)))
3835, 37cbvrex2vw 3212 . . . . . . . . 9 (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑛))
39 oveq2 7361 . . . . . . . . . . 11 (𝑛 = 𝑑 → (𝑏𝐹𝑛) = (𝑏𝐹𝑑))
4039eqeq2d 2740 . . . . . . . . . 10 (𝑛 = 𝑑 → (𝑤 = (𝑏𝐹𝑛) ↔ 𝑤 = (𝑏𝐹𝑑)))
41402rexbidv 3194 . . . . . . . . 9 (𝑛 = 𝑑 → (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑛) ↔ ∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)))
4238, 41bitrid 283 . . . . . . . 8 (𝑛 = 𝑑 → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)))
4342ralrab 3656 . . . . . . 7 (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 ↔ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐))
44 r19.23v 3156 . . . . . . . . . . . . . . . . 17 (∀𝑤𝐴 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐))
4544ralbii 3075 . . . . . . . . . . . . . . . 16 (∀𝑑 ∈ ℕ0𝑤𝐴 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐))
46 ralcom 3257 . . . . . . . . . . . . . . . 16 (∀𝑑 ∈ ℕ0𝑤𝐴 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ ∀𝑤𝐴𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐))
4745, 46bitr3i 277 . . . . . . . . . . . . . . 15 (∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ ∀𝑤𝐴𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐))
48 simplll 774 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) → 𝐴 ⊆ ran 𝐹)
4948sselda 3937 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → 𝑤 ∈ ran 𝐹)
50 ovelrn 7529 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn (ℤ × ℕ0) → (𝑤 ∈ ran 𝐹 ↔ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑)))
5112, 13, 50mp2b 10 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ran 𝐹 ↔ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑))
5249, 51sylib 218 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑))
53 rexcom 3258 . . . . . . . . . . . . . . . . . . 19 (∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑) ↔ ∃𝑑 ∈ ℕ0𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))
54 r19.29 3092 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑑 ∈ ℕ0𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)))
5554expcom 413 . . . . . . . . . . . . . . . . . . 19 (∃𝑑 ∈ ℕ0𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))))
5653, 55sylbi 217 . . . . . . . . . . . . . . . . . 18 (∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))))
5752, 56syl 17 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))))
58 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → 𝑎 ∈ ℤ)
5958ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑎 ∈ ℤ)
60 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑏 ∈ ℤ)
61 simp-5r 785 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑐 ∈ ℕ0)
62 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑑 ∈ ℕ0)
63 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → ¬ 𝑑 < 𝑐)
64 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))
6511, 59, 60, 61, 62, 63, 64dyadmaxlem 25514 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → (𝑎 = 𝑏𝑐 = 𝑑))
66 oveq12 7362 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 = 𝑏𝑐 = 𝑑) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑))
6765, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑))
6867exp32 420 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑))))
69 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = (𝑏𝐹𝑑) → ([,]‘𝑤) = ([,]‘(𝑏𝐹𝑑)))
7069sseq2d 3970 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = (𝑏𝐹𝑑) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))))
71 eqeq2 2741 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = (𝑏𝐹𝑑) → ((𝑎𝐹𝑐) = 𝑤 ↔ (𝑎𝐹𝑐) = (𝑏𝐹𝑑)))
7270, 71imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = (𝑏𝐹𝑑) → ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑))))
7372imbi2d 340 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑏𝐹𝑑) → ((¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)) ↔ (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑)))))
7468, 73syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) → (𝑤 = (𝑏𝐹𝑑) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))))
7574anassrs 467 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ 𝑑 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) → (𝑤 = (𝑏𝐹𝑑) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))))
7675rexlimdva 3130 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ 𝑑 ∈ ℕ0) → (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))))
7776a2d 29 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ 𝑑 ∈ ℕ0) → ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))))
7877impd 410 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ 𝑑 ∈ ℕ0) → (((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
7978rexlimdva 3130 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → (∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
8057, 79syld 47 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
8180ralimdva 3141 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) → (∀𝑤𝐴𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∀𝑤𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
8247, 81biimtrid 242 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) → (∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∀𝑤𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
8382imp 406 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) → ∀𝑤𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))
8483an32s 652 . . . . . . . . . . . 12 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ (𝑧𝐴𝑎 ∈ ℤ)) → ∀𝑤𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))
85 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑧 = (𝑎𝐹𝑐) → ([,]‘𝑧) = ([,]‘(𝑎𝐹𝑐)))
8685sseq1d 3969 . . . . . . . . . . . . . 14 (𝑧 = (𝑎𝐹𝑐) → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤)))
87 eqeq1 2733 . . . . . . . . . . . . . 14 (𝑧 = (𝑎𝐹𝑐) → (𝑧 = 𝑤 ↔ (𝑎𝐹𝑐) = 𝑤))
8886, 87imbi12d 344 . . . . . . . . . . . . 13 (𝑧 = (𝑎𝐹𝑐) → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
8988ralbidv 3152 . . . . . . . . . . . 12 (𝑧 = (𝑎𝐹𝑐) → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
9084, 89syl5ibrcom 247 . . . . . . . . . . 11 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ (𝑧𝐴𝑎 ∈ ℤ)) → (𝑧 = (𝑎𝐹𝑐) → ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))
9190anassrs 467 . . . . . . . . . 10 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ 𝑧𝐴) ∧ 𝑎 ∈ ℤ) → (𝑧 = (𝑎𝐹𝑐) → ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))
9291rexlimdva 3130 . . . . . . . . 9 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ 𝑧𝐴) → (∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))
9392reximdva 3142 . . . . . . . 8 ((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))
9493ex 412 . . . . . . 7 (((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) → (∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))))
9543, 94biimtrid 242 . . . . . 6 (((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))))
9695com23 86 . . . . 5 (((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))))
9796expimpd 453 . . . 4 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ((𝑐 ∈ ℕ0 ∧ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐)) → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))))
9834, 97biimtrid 242 . . 3 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → (𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))))
9998rexlimdv 3128 . 2 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → (∃𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))
10030, 99mpd 15 1 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3343  {crab 3396  Vcvv 3438  cin 3904  wss 3905  c0 4286  cop 4585   class class class wbr 5095   We wwe 5575   × cxp 5621  ran crn 5624   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   < clt 11168  cle 11169   / cdiv 11795  2c2 12201  0cn0 12402  cz 12489  cuz 12753  [,]cicc 13269  cexp 13986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-rest 17344  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-bases 22849  df-cmp 23290  df-ovol 25381
This theorem is referenced by:  dyadmbllem  25516
  Copyright terms: Public domain W3C validator