MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyadmax Structured version   Visualization version   GIF version

Theorem dyadmax 24667
Description: Any nonempty set of dyadic rational intervals has a maximal element. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyadmax ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))
Distinct variable groups:   𝑥,𝑦   𝑧,𝑤,𝑥,𝑦,𝐴   𝑤,𝐹,𝑥,𝑦,𝑧

Proof of Theorem dyadmax
Dummy variables 𝑐 𝑑 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltweuz 13609 . . . . 5 < We (ℤ‘0)
21a1i 11 . . . 4 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → < We (ℤ‘0))
3 nn0ex 12169 . . . . . 6 0 ∈ V
43rabex 5251 . . . . 5 {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ∈ V
54a1i 11 . . . 4 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ∈ V)
6 ssrab2 4009 . . . . . 6 {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆ ℕ0
7 nn0uz 12549 . . . . . 6 0 = (ℤ‘0)
86, 7sseqtri 3953 . . . . 5 {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆ (ℤ‘0)
98a1i 11 . . . 4 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆ (ℤ‘0))
10 id 22 . . . . . . 7 (𝐴 ≠ ∅ → 𝐴 ≠ ∅)
11 dyadmbl.1 . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
1211dyadf 24660 . . . . . . . . . . 11 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
13 ffn 6584 . . . . . . . . . . 11 (𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn (ℤ × ℕ0))
14 ovelrn 7426 . . . . . . . . . . 11 (𝐹 Fn (ℤ × ℕ0) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑎 ∈ ℤ ∃𝑛 ∈ ℕ0 𝑧 = (𝑎𝐹𝑛)))
1512, 13, 14mp2b 10 . . . . . . . . . 10 (𝑧 ∈ ran 𝐹 ↔ ∃𝑎 ∈ ℤ ∃𝑛 ∈ ℕ0 𝑧 = (𝑎𝐹𝑛))
16 rexcom 3281 . . . . . . . . . 10 (∃𝑎 ∈ ℤ ∃𝑛 ∈ ℕ0 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
1715, 16sylbb 218 . . . . . . . . 9 (𝑧 ∈ ran 𝐹 → ∃𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
1817rgen 3073 . . . . . . . 8 𝑧 ∈ ran 𝐹𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)
19 ssralv 3983 . . . . . . . 8 (𝐴 ⊆ ran 𝐹 → (∀𝑧 ∈ ran 𝐹𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) → ∀𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)))
2018, 19mpi 20 . . . . . . 7 (𝐴 ⊆ ran 𝐹 → ∀𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
21 r19.2z 4422 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) → ∃𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
2210, 20, 21syl2anr 596 . . . . . 6 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
23 rexcom 3281 . . . . . 6 (∃𝑧𝐴𝑛 ∈ ℕ0𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑛 ∈ ℕ0𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
2422, 23sylib 217 . . . . 5 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃𝑛 ∈ ℕ0𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
25 rabn0 4316 . . . . 5 ({𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ≠ ∅ ↔ ∃𝑛 ∈ ℕ0𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))
2624, 25sylibr 233 . . . 4 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ≠ ∅)
27 wereu 5576 . . . 4 (( < We (ℤ‘0) ∧ ({𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ∈ V ∧ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆ (ℤ‘0) ∧ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ≠ ∅)) → ∃!𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐)
282, 5, 9, 26, 27syl13anc 1370 . . 3 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃!𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐)
29 reurex 3352 . . 3 (∃!𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐)
3028, 29syl 17 . 2 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐)
31 oveq2 7263 . . . . . . 7 (𝑛 = 𝑐 → (𝑎𝐹𝑛) = (𝑎𝐹𝑐))
3231eqeq2d 2749 . . . . . 6 (𝑛 = 𝑐 → (𝑧 = (𝑎𝐹𝑛) ↔ 𝑧 = (𝑎𝐹𝑐)))
33322rexbidv 3228 . . . . 5 (𝑛 = 𝑐 → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐)))
3433elrab 3617 . . . 4 (𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ↔ (𝑐 ∈ ℕ0 ∧ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐)))
35 eqeq1 2742 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧 = (𝑎𝐹𝑛) ↔ 𝑤 = (𝑎𝐹𝑛)))
36 oveq1 7262 . . . . . . . . . . 11 (𝑎 = 𝑏 → (𝑎𝐹𝑛) = (𝑏𝐹𝑛))
3736eqeq2d 2749 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑤 = (𝑎𝐹𝑛) ↔ 𝑤 = (𝑏𝐹𝑛)))
3835, 37cbvrex2vw 3386 . . . . . . . . 9 (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑛))
39 oveq2 7263 . . . . . . . . . . 11 (𝑛 = 𝑑 → (𝑏𝐹𝑛) = (𝑏𝐹𝑑))
4039eqeq2d 2749 . . . . . . . . . 10 (𝑛 = 𝑑 → (𝑤 = (𝑏𝐹𝑛) ↔ 𝑤 = (𝑏𝐹𝑑)))
41402rexbidv 3228 . . . . . . . . 9 (𝑛 = 𝑑 → (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑛) ↔ ∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)))
4238, 41syl5bb 282 . . . . . . . 8 (𝑛 = 𝑑 → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)))
4342ralrab 3623 . . . . . . 7 (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 ↔ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐))
44 r19.23v 3207 . . . . . . . . . . . . . . . . 17 (∀𝑤𝐴 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐))
4544ralbii 3090 . . . . . . . . . . . . . . . 16 (∀𝑑 ∈ ℕ0𝑤𝐴 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐))
46 ralcom 3280 . . . . . . . . . . . . . . . 16 (∀𝑑 ∈ ℕ0𝑤𝐴 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ ∀𝑤𝐴𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐))
4745, 46bitr3i 276 . . . . . . . . . . . . . . 15 (∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ ∀𝑤𝐴𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐))
48 simplll 771 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) → 𝐴 ⊆ ran 𝐹)
4948sselda 3917 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → 𝑤 ∈ ran 𝐹)
50 ovelrn 7426 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn (ℤ × ℕ0) → (𝑤 ∈ ran 𝐹 ↔ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑)))
5112, 13, 50mp2b 10 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ran 𝐹 ↔ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑))
5249, 51sylib 217 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑))
53 rexcom 3281 . . . . . . . . . . . . . . . . . . 19 (∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑) ↔ ∃𝑑 ∈ ℕ0𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))
54 r19.29 3183 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑑 ∈ ℕ0𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)))
5554expcom 413 . . . . . . . . . . . . . . . . . . 19 (∃𝑑 ∈ ℕ0𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))))
5653, 55sylbi 216 . . . . . . . . . . . . . . . . . 18 (∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))))
5752, 56syl 17 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))))
58 simplrr 774 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → 𝑎 ∈ ℤ)
5958ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑎 ∈ ℤ)
60 simplrr 774 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑏 ∈ ℤ)
61 simp-5r 782 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑐 ∈ ℕ0)
62 simplrl 773 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑑 ∈ ℕ0)
63 simprl 767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → ¬ 𝑑 < 𝑐)
64 simprr 769 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))
6511, 59, 60, 61, 62, 63, 64dyadmaxlem 24666 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → (𝑎 = 𝑏𝑐 = 𝑑))
66 oveq12 7264 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎 = 𝑏𝑐 = 𝑑) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑))
6765, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) ∧ (¬ 𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑))
6867exp32 420 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑))))
69 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = (𝑏𝐹𝑑) → ([,]‘𝑤) = ([,]‘(𝑏𝐹𝑑)))
7069sseq2d 3949 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = (𝑏𝐹𝑑) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))))
71 eqeq2 2750 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = (𝑏𝐹𝑑) → ((𝑎𝐹𝑐) = 𝑤 ↔ (𝑎𝐹𝑐) = (𝑏𝐹𝑑)))
7270, 71imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = (𝑏𝐹𝑑) → ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑))))
7372imbi2d 340 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑏𝐹𝑑) → ((¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)) ↔ (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑)))))
7468, 73syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ (𝑑 ∈ ℕ0𝑏 ∈ ℤ)) → (𝑤 = (𝑏𝐹𝑑) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))))
7574anassrs 467 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ 𝑑 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) → (𝑤 = (𝑏𝐹𝑑) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))))
7675rexlimdva 3212 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ 𝑑 ∈ ℕ0) → (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))))
7776a2d 29 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ 𝑑 ∈ ℕ0) → ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))))
7877impd 410 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) ∧ 𝑑 ∈ ℕ0) → (((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
7978rexlimdva 3212 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → (∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
8057, 79syld 47 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ 𝑤𝐴) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
8180ralimdva 3102 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) → (∀𝑤𝐴𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∀𝑤𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
8247, 81syl5bi 241 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) → (∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∀𝑤𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
8382imp 406 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧𝐴𝑎 ∈ ℤ)) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) → ∀𝑤𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))
8483an32s 648 . . . . . . . . . . . 12 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ (𝑧𝐴𝑎 ∈ ℤ)) → ∀𝑤𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))
85 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑧 = (𝑎𝐹𝑐) → ([,]‘𝑧) = ([,]‘(𝑎𝐹𝑐)))
8685sseq1d 3948 . . . . . . . . . . . . . 14 (𝑧 = (𝑎𝐹𝑐) → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤)))
87 eqeq1 2742 . . . . . . . . . . . . . 14 (𝑧 = (𝑎𝐹𝑐) → (𝑧 = 𝑤 ↔ (𝑎𝐹𝑐) = 𝑤))
8886, 87imbi12d 344 . . . . . . . . . . . . 13 (𝑧 = (𝑎𝐹𝑐) → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
8988ralbidv 3120 . . . . . . . . . . . 12 (𝑧 = (𝑎𝐹𝑐) → (∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))
9084, 89syl5ibrcom 246 . . . . . . . . . . 11 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ (𝑧𝐴𝑎 ∈ ℤ)) → (𝑧 = (𝑎𝐹𝑐) → ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))
9190anassrs 467 . . . . . . . . . 10 ((((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ 𝑧𝐴) ∧ 𝑎 ∈ ℤ) → (𝑧 = (𝑎𝐹𝑐) → ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))
9291rexlimdva 3212 . . . . . . . . 9 (((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ 𝑧𝐴) → (∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∀𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))
9392reximdva 3202 . . . . . . . 8 ((((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ ∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))
9493ex 412 . . . . . . 7 (((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) → (∀𝑑 ∈ ℕ0 (∃𝑤𝐴𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))))
9543, 94syl5bi 241 . . . . . 6 (((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))))
9695com23 86 . . . . 5 (((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) → (∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))))
9796expimpd 453 . . . 4 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ((𝑐 ∈ ℕ0 ∧ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐)) → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))))
9834, 97syl5bi 241 . . 3 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → (𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))))
9998rexlimdv 3211 . 2 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → (∃𝑐 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣ ∃𝑧𝐴𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))
10030, 99mpd 15 1 ((𝐴 ⊆ ran 𝐹𝐴 ≠ ∅) → ∃𝑧𝐴𝑤𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  ∃!wreu 3065  {crab 3067  Vcvv 3422  cin 3882  wss 3883  c0 4253  cop 4564   class class class wbr 5070   We wwe 5534   × cxp 5578  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941   / cdiv 11562  2c2 11958  0cn0 12163  cz 12249  cuz 12511  [,]cicc 13011  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533
This theorem is referenced by:  dyadmbllem  24668
  Copyright terms: Public domain W3C validator