| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ltweuz 14003 | . . . . 5
⊢  < We
(ℤ≥‘0) | 
| 2 | 1 | a1i 11 | . . . 4
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → < We
(ℤ≥‘0)) | 
| 3 |  | nn0ex 12534 | . . . . . 6
⊢
ℕ0 ∈ V | 
| 4 | 3 | rabex 5338 | . . . . 5
⊢ {𝑛 ∈ ℕ0
∣ ∃𝑧 ∈
𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ∈ V | 
| 5 | 4 | a1i 11 | . . . 4
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ∈ V) | 
| 6 |  | ssrab2 4079 | . . . . . 6
⊢ {𝑛 ∈ ℕ0
∣ ∃𝑧 ∈
𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆
ℕ0 | 
| 7 |  | nn0uz 12921 | . . . . . 6
⊢
ℕ0 = (ℤ≥‘0) | 
| 8 | 6, 7 | sseqtri 4031 | . . . . 5
⊢ {𝑛 ∈ ℕ0
∣ ∃𝑧 ∈
𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆
(ℤ≥‘0) | 
| 9 | 8 | a1i 11 | . . . 4
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆
(ℤ≥‘0)) | 
| 10 |  | id 22 | . . . . . . 7
⊢ (𝐴 ≠ ∅ → 𝐴 ≠ ∅) | 
| 11 |  | dyadmbl.1 | . . . . . . . . . . . 12
⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) | 
| 12 | 11 | dyadf 25627 | . . . . . . . . . . 11
⊢ 𝐹:(ℤ ×
ℕ0)⟶( ≤ ∩ (ℝ ×
ℝ)) | 
| 13 |  | ffn 6735 | . . . . . . . . . . 11
⊢ (𝐹:(ℤ ×
ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) →
𝐹 Fn (ℤ ×
ℕ0)) | 
| 14 |  | ovelrn 7610 | . . . . . . . . . . 11
⊢ (𝐹 Fn (ℤ ×
ℕ0) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑎 ∈ ℤ ∃𝑛 ∈ ℕ0 𝑧 = (𝑎𝐹𝑛))) | 
| 15 | 12, 13, 14 | mp2b 10 | . . . . . . . . . 10
⊢ (𝑧 ∈ ran 𝐹 ↔ ∃𝑎 ∈ ℤ ∃𝑛 ∈ ℕ0 𝑧 = (𝑎𝐹𝑛)) | 
| 16 |  | rexcom 3289 | . . . . . . . . . 10
⊢
(∃𝑎 ∈
ℤ ∃𝑛 ∈
ℕ0 𝑧 =
(𝑎𝐹𝑛) ↔ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) | 
| 17 | 15, 16 | sylbb 219 | . . . . . . . . 9
⊢ (𝑧 ∈ ran 𝐹 → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) | 
| 18 | 17 | rgen 3062 | . . . . . . . 8
⊢
∀𝑧 ∈ ran
𝐹∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) | 
| 19 |  | ssralv 4051 | . . . . . . . 8
⊢ (𝐴 ⊆ ran 𝐹 → (∀𝑧 ∈ ran 𝐹∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) → ∀𝑧 ∈ 𝐴 ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))) | 
| 20 | 18, 19 | mpi 20 | . . . . . . 7
⊢ (𝐴 ⊆ ran 𝐹 → ∀𝑧 ∈ 𝐴 ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) | 
| 21 |  | r19.2z 4494 | . . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧
∀𝑧 ∈ 𝐴 ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) → ∃𝑧 ∈ 𝐴 ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) | 
| 22 | 10, 20, 21 | syl2anr 597 | . . . . . 6
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → ∃𝑧 ∈ 𝐴 ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) | 
| 23 |  | rexcom 3289 | . . . . . 6
⊢
(∃𝑧 ∈
𝐴 ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑛 ∈ ℕ0 ∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) | 
| 24 | 22, 23 | sylib 218 | . . . . 5
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → ∃𝑛 ∈ ℕ0
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) | 
| 25 |  | rabn0 4388 | . . . . 5
⊢ ({𝑛 ∈ ℕ0
∣ ∃𝑧 ∈
𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ≠ ∅ ↔ ∃𝑛 ∈ ℕ0
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) | 
| 26 | 24, 25 | sylibr 234 | . . . 4
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ≠ ∅) | 
| 27 |  | wereu 5680 | . . . 4
⊢ (( <
We (ℤ≥‘0) ∧ ({𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ∈ V ∧ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆ (ℤ≥‘0)
∧ {𝑛 ∈
ℕ0 ∣ ∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ≠ ∅)) → ∃!𝑐 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐) | 
| 28 | 2, 5, 9, 26, 27 | syl13anc 1373 | . . 3
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → ∃!𝑐 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐) | 
| 29 |  | reurex 3383 | . . 3
⊢
(∃!𝑐 ∈
{𝑛 ∈
ℕ0 ∣ ∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑐 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐) | 
| 30 | 28, 29 | syl 17 | . 2
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → ∃𝑐 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐) | 
| 31 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑛 = 𝑐 → (𝑎𝐹𝑛) = (𝑎𝐹𝑐)) | 
| 32 | 31 | eqeq2d 2747 | . . . . . 6
⊢ (𝑛 = 𝑐 → (𝑧 = (𝑎𝐹𝑛) ↔ 𝑧 = (𝑎𝐹𝑐))) | 
| 33 | 32 | 2rexbidv 3221 | . . . . 5
⊢ (𝑛 = 𝑐 → (∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐))) | 
| 34 | 33 | elrab 3691 | . . . 4
⊢ (𝑐 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ↔ (𝑐 ∈ ℕ0 ∧
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐))) | 
| 35 |  | eqeq1 2740 | . . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 = (𝑎𝐹𝑛) ↔ 𝑤 = (𝑎𝐹𝑛))) | 
| 36 |  | oveq1 7439 | . . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → (𝑎𝐹𝑛) = (𝑏𝐹𝑛)) | 
| 37 | 36 | eqeq2d 2747 | . . . . . . . . . 10
⊢ (𝑎 = 𝑏 → (𝑤 = (𝑎𝐹𝑛) ↔ 𝑤 = (𝑏𝐹𝑛))) | 
| 38 | 35, 37 | cbvrex2vw 3241 | . . . . . . . . 9
⊢
(∃𝑧 ∈
𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑛)) | 
| 39 |  | oveq2 7440 | . . . . . . . . . . 11
⊢ (𝑛 = 𝑑 → (𝑏𝐹𝑛) = (𝑏𝐹𝑑)) | 
| 40 | 39 | eqeq2d 2747 | . . . . . . . . . 10
⊢ (𝑛 = 𝑑 → (𝑤 = (𝑏𝐹𝑛) ↔ 𝑤 = (𝑏𝐹𝑑))) | 
| 41 | 40 | 2rexbidv 3221 | . . . . . . . . 9
⊢ (𝑛 = 𝑑 → (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑛) ↔ ∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))) | 
| 42 | 38, 41 | bitrid 283 | . . . . . . . 8
⊢ (𝑛 = 𝑑 → (∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))) | 
| 43 | 42 | ralrab 3698 | . . . . . . 7
⊢
(∀𝑑 ∈
{𝑛 ∈
ℕ0 ∣ ∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 ↔ ∀𝑑 ∈ ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) | 
| 44 |  | r19.23v 3182 | . . . . . . . . . . . . . . . . 17
⊢
(∀𝑤 ∈
𝐴 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) | 
| 45 | 44 | ralbii 3092 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
ℕ0 ∀𝑤 ∈ 𝐴 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ ∀𝑑 ∈ ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) | 
| 46 |  | ralcom 3288 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
ℕ0 ∀𝑤 ∈ 𝐴 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ ∀𝑤 ∈ 𝐴 ∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) | 
| 47 | 45, 46 | bitr3i 277 | . . . . . . . . . . . . . . 15
⊢
(∀𝑑 ∈
ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ ∀𝑤 ∈ 𝐴 ∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) | 
| 48 |  | simplll 774 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) → 𝐴 ⊆ ran 𝐹) | 
| 49 | 48 | sselda 3982 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ran 𝐹) | 
| 50 |  | ovelrn 7610 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 Fn (ℤ ×
ℕ0) → (𝑤 ∈ ran 𝐹 ↔ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑))) | 
| 51 | 12, 13, 50 | mp2b 10 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ ran 𝐹 ↔ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑)) | 
| 52 | 49, 51 | sylib 218 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) → ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑)) | 
| 53 |  | rexcom 3289 | . . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑏 ∈
ℤ ∃𝑑 ∈
ℕ0 𝑤 =
(𝑏𝐹𝑑) ↔ ∃𝑑 ∈ ℕ0 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) | 
| 54 |  | r19.29 3113 | . . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑑 ∈
ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑑 ∈ ℕ0 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))) | 
| 55 | 54 | expcom 413 | . . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑑 ∈
ℕ0 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)))) | 
| 56 | 53, 55 | sylbi 217 | . . . . . . . . . . . . . . . . . 18
⊢
(∃𝑏 ∈
ℤ ∃𝑑 ∈
ℕ0 𝑤 =
(𝑏𝐹𝑑) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)))) | 
| 57 | 52, 56 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)))) | 
| 58 |  | simplrr 777 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) → 𝑎 ∈ ℤ) | 
| 59 | 58 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) ∧ (¬
𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑎 ∈ ℤ) | 
| 60 |  | simplrr 777 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) ∧ (¬
𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑏 ∈ ℤ) | 
| 61 |  | simp-5r 785 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) ∧ (¬
𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑐 ∈ ℕ0) | 
| 62 |  | simplrl 776 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) ∧ (¬
𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑑 ∈ ℕ0) | 
| 63 |  | simprl 770 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) ∧ (¬
𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → ¬ 𝑑 < 𝑐) | 
| 64 |  | simprr 772 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) ∧ (¬
𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) | 
| 65 | 11, 59, 60, 61, 62, 63, 64 | dyadmaxlem 25633 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) ∧ (¬
𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → (𝑎 = 𝑏 ∧ 𝑐 = 𝑑)) | 
| 66 |  | oveq12 7441 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑎 = 𝑏 ∧ 𝑐 = 𝑑) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑)) | 
| 67 | 65, 66 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) ∧ (¬
𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑)) | 
| 68 | 67 | exp32 420 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) → (¬
𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑)))) | 
| 69 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 = (𝑏𝐹𝑑) → ([,]‘𝑤) = ([,]‘(𝑏𝐹𝑑))) | 
| 70 | 69 | sseq2d 4015 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = (𝑏𝐹𝑑) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) | 
| 71 |  | eqeq2 2748 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = (𝑏𝐹𝑑) → ((𝑎𝐹𝑐) = 𝑤 ↔ (𝑎𝐹𝑐) = (𝑏𝐹𝑑))) | 
| 72 | 70, 71 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = (𝑏𝐹𝑑) → ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑)))) | 
| 73 | 72 | imbi2d 340 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑏𝐹𝑑) → ((¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)) ↔ (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑))))) | 
| 74 | 68, 73 | syl5ibrcom 247 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) → (𝑤 = (𝑏𝐹𝑑) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))) | 
| 75 | 74 | anassrs 467 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ 𝑑 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) → (𝑤 = (𝑏𝐹𝑑) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))) | 
| 76 | 75 | rexlimdva 3154 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ 𝑑 ∈ ℕ0) →
(∃𝑏 ∈ ℤ
𝑤 = (𝑏𝐹𝑑) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))) | 
| 77 | 76 | a2d 29 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ 𝑑 ∈ ℕ0) →
((∃𝑏 ∈ ℤ
𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))) | 
| 78 | 77 | impd 410 | . . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ 𝑑 ∈ ℕ0) →
(((∃𝑏 ∈ ℤ
𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))) | 
| 79 | 78 | rexlimdva 3154 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) → (∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))) | 
| 80 | 57, 79 | syld 47 | . . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))) | 
| 81 | 80 | ralimdva 3166 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) → (∀𝑤 ∈ 𝐴 ∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∀𝑤 ∈ 𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))) | 
| 82 | 47, 81 | biimtrid 242 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) → (∀𝑑 ∈ ℕ0
(∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∀𝑤 ∈ 𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))) | 
| 83 | 82 | imp 406 | . . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ ∀𝑑 ∈ ℕ0
(∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) → ∀𝑤 ∈ 𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)) | 
| 84 | 83 | an32s 652 | . . . . . . . . . . . 12
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧
∀𝑑 ∈
ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) → ∀𝑤 ∈ 𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)) | 
| 85 |  | fveq2 6905 | . . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑎𝐹𝑐) → ([,]‘𝑧) = ([,]‘(𝑎𝐹𝑐))) | 
| 86 | 85 | sseq1d 4014 | . . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑎𝐹𝑐) → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤))) | 
| 87 |  | eqeq1 2740 | . . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑎𝐹𝑐) → (𝑧 = 𝑤 ↔ (𝑎𝐹𝑐) = 𝑤)) | 
| 88 | 86, 87 | imbi12d 344 | . . . . . . . . . . . . 13
⊢ (𝑧 = (𝑎𝐹𝑐) → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))) | 
| 89 | 88 | ralbidv 3177 | . . . . . . . . . . . 12
⊢ (𝑧 = (𝑎𝐹𝑐) → (∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤 ∈ 𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))) | 
| 90 | 84, 89 | syl5ibrcom 247 | . . . . . . . . . . 11
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧
∀𝑑 ∈
ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) → (𝑧 = (𝑎𝐹𝑐) → ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))) | 
| 91 | 90 | anassrs 467 | . . . . . . . . . 10
⊢
((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧
∀𝑑 ∈
ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑎 ∈ ℤ) → (𝑧 = (𝑎𝐹𝑐) → ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))) | 
| 92 | 91 | rexlimdva 3154 | . . . . . . . . 9
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧
∀𝑑 ∈
ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ 𝑧 ∈ 𝐴) → (∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))) | 
| 93 | 92 | reximdva 3167 | . . . . . . . 8
⊢ ((((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧
∀𝑑 ∈
ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) → (∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))) | 
| 94 | 93 | ex 412 | . . . . . . 7
⊢ (((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) →
(∀𝑑 ∈
ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → (∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))) | 
| 95 | 43, 94 | biimtrid 242 | . . . . . 6
⊢ (((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) →
(∀𝑑 ∈ {𝑛 ∈ ℕ0
∣ ∃𝑧 ∈
𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → (∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))) | 
| 96 | 95 | com23 86 | . . . . 5
⊢ (((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) →
(∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))) | 
| 97 | 96 | expimpd 453 | . . . 4
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → ((𝑐 ∈ ℕ0 ∧
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐)) → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))) | 
| 98 | 34, 97 | biimtrid 242 | . . 3
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → (𝑐 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))) | 
| 99 | 98 | rexlimdv 3152 | . 2
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → (∃𝑐 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))) | 
| 100 | 30, 99 | mpd 15 | 1
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)) |