Step | Hyp | Ref
| Expression |
1 | | ltweuz 13609 |
. . . . 5
⊢ < We
(ℤ≥‘0) |
2 | 1 | a1i 11 |
. . . 4
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → < We
(ℤ≥‘0)) |
3 | | nn0ex 12169 |
. . . . . 6
⊢
ℕ0 ∈ V |
4 | 3 | rabex 5251 |
. . . . 5
⊢ {𝑛 ∈ ℕ0
∣ ∃𝑧 ∈
𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ∈ V |
5 | 4 | a1i 11 |
. . . 4
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ∈ V) |
6 | | ssrab2 4009 |
. . . . . 6
⊢ {𝑛 ∈ ℕ0
∣ ∃𝑧 ∈
𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆
ℕ0 |
7 | | nn0uz 12549 |
. . . . . 6
⊢
ℕ0 = (ℤ≥‘0) |
8 | 6, 7 | sseqtri 3953 |
. . . . 5
⊢ {𝑛 ∈ ℕ0
∣ ∃𝑧 ∈
𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆
(ℤ≥‘0) |
9 | 8 | a1i 11 |
. . . 4
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆
(ℤ≥‘0)) |
10 | | id 22 |
. . . . . . 7
⊢ (𝐴 ≠ ∅ → 𝐴 ≠ ∅) |
11 | | dyadmbl.1 |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) |
12 | 11 | dyadf 24660 |
. . . . . . . . . . 11
⊢ 𝐹:(ℤ ×
ℕ0)⟶( ≤ ∩ (ℝ ×
ℝ)) |
13 | | ffn 6584 |
. . . . . . . . . . 11
⊢ (𝐹:(ℤ ×
ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) →
𝐹 Fn (ℤ ×
ℕ0)) |
14 | | ovelrn 7426 |
. . . . . . . . . . 11
⊢ (𝐹 Fn (ℤ ×
ℕ0) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑎 ∈ ℤ ∃𝑛 ∈ ℕ0 𝑧 = (𝑎𝐹𝑛))) |
15 | 12, 13, 14 | mp2b 10 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ran 𝐹 ↔ ∃𝑎 ∈ ℤ ∃𝑛 ∈ ℕ0 𝑧 = (𝑎𝐹𝑛)) |
16 | | rexcom 3281 |
. . . . . . . . . 10
⊢
(∃𝑎 ∈
ℤ ∃𝑛 ∈
ℕ0 𝑧 =
(𝑎𝐹𝑛) ↔ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) |
17 | 15, 16 | sylbb 218 |
. . . . . . . . 9
⊢ (𝑧 ∈ ran 𝐹 → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) |
18 | 17 | rgen 3073 |
. . . . . . . 8
⊢
∀𝑧 ∈ ran
𝐹∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) |
19 | | ssralv 3983 |
. . . . . . . 8
⊢ (𝐴 ⊆ ran 𝐹 → (∀𝑧 ∈ ran 𝐹∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) → ∀𝑧 ∈ 𝐴 ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛))) |
20 | 18, 19 | mpi 20 |
. . . . . . 7
⊢ (𝐴 ⊆ ran 𝐹 → ∀𝑧 ∈ 𝐴 ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) |
21 | | r19.2z 4422 |
. . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧
∀𝑧 ∈ 𝐴 ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) → ∃𝑧 ∈ 𝐴 ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) |
22 | 10, 20, 21 | syl2anr 596 |
. . . . . 6
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → ∃𝑧 ∈ 𝐴 ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) |
23 | | rexcom 3281 |
. . . . . 6
⊢
(∃𝑧 ∈
𝐴 ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑛 ∈ ℕ0 ∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) |
24 | 22, 23 | sylib 217 |
. . . . 5
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → ∃𝑛 ∈ ℕ0
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) |
25 | | rabn0 4316 |
. . . . 5
⊢ ({𝑛 ∈ ℕ0
∣ ∃𝑧 ∈
𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ≠ ∅ ↔ ∃𝑛 ∈ ℕ0
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)) |
26 | 24, 25 | sylibr 233 |
. . . 4
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ≠ ∅) |
27 | | wereu 5576 |
. . . 4
⊢ (( <
We (ℤ≥‘0) ∧ ({𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ∈ V ∧ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ⊆ (ℤ≥‘0)
∧ {𝑛 ∈
ℕ0 ∣ ∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ≠ ∅)) → ∃!𝑐 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐) |
28 | 2, 5, 9, 26, 27 | syl13anc 1370 |
. . 3
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → ∃!𝑐 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐) |
29 | | reurex 3352 |
. . 3
⊢
(∃!𝑐 ∈
{𝑛 ∈
ℕ0 ∣ ∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑐 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐) |
30 | 28, 29 | syl 17 |
. 2
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → ∃𝑐 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐) |
31 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑛 = 𝑐 → (𝑎𝐹𝑛) = (𝑎𝐹𝑐)) |
32 | 31 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑛 = 𝑐 → (𝑧 = (𝑎𝐹𝑛) ↔ 𝑧 = (𝑎𝐹𝑐))) |
33 | 32 | 2rexbidv 3228 |
. . . . 5
⊢ (𝑛 = 𝑐 → (∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐))) |
34 | 33 | elrab 3617 |
. . . 4
⊢ (𝑐 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ↔ (𝑐 ∈ ℕ0 ∧
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐))) |
35 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 = (𝑎𝐹𝑛) ↔ 𝑤 = (𝑎𝐹𝑛))) |
36 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → (𝑎𝐹𝑛) = (𝑏𝐹𝑛)) |
37 | 36 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → (𝑤 = (𝑎𝐹𝑛) ↔ 𝑤 = (𝑏𝐹𝑛))) |
38 | 35, 37 | cbvrex2vw 3386 |
. . . . . . . . 9
⊢
(∃𝑧 ∈
𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑛)) |
39 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑑 → (𝑏𝐹𝑛) = (𝑏𝐹𝑑)) |
40 | 39 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑑 → (𝑤 = (𝑏𝐹𝑛) ↔ 𝑤 = (𝑏𝐹𝑑))) |
41 | 40 | 2rexbidv 3228 |
. . . . . . . . 9
⊢ (𝑛 = 𝑑 → (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑛) ↔ ∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))) |
42 | 38, 41 | syl5bb 282 |
. . . . . . . 8
⊢ (𝑛 = 𝑑 → (∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛) ↔ ∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))) |
43 | 42 | ralrab 3623 |
. . . . . . 7
⊢
(∀𝑑 ∈
{𝑛 ∈
ℕ0 ∣ ∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 ↔ ∀𝑑 ∈ ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) |
44 | | r19.23v 3207 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑤 ∈
𝐴 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) |
45 | 44 | ralbii 3090 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
ℕ0 ∀𝑤 ∈ 𝐴 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ ∀𝑑 ∈ ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) |
46 | | ralcom 3280 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑑 ∈
ℕ0 ∀𝑤 ∈ 𝐴 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ ∀𝑤 ∈ 𝐴 ∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) |
47 | 45, 46 | bitr3i 276 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑑 ∈
ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ↔ ∀𝑤 ∈ 𝐴 ∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) |
48 | | simplll 771 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) → 𝐴 ⊆ ran 𝐹) |
49 | 48 | sselda 3917 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ran 𝐹) |
50 | | ovelrn 7426 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 Fn (ℤ ×
ℕ0) → (𝑤 ∈ ran 𝐹 ↔ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑))) |
51 | 12, 13, 50 | mp2b 10 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ ran 𝐹 ↔ ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑)) |
52 | 49, 51 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) → ∃𝑏 ∈ ℤ ∃𝑑 ∈ ℕ0 𝑤 = (𝑏𝐹𝑑)) |
53 | | rexcom 3281 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑏 ∈
ℤ ∃𝑑 ∈
ℕ0 𝑤 =
(𝑏𝐹𝑑) ↔ ∃𝑑 ∈ ℕ0 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) |
54 | | r19.29 3183 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑑 ∈
ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑑 ∈ ℕ0 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑))) |
55 | 54 | expcom 413 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑑 ∈
ℕ0 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)))) |
56 | 53, 55 | sylbi 216 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑏 ∈
ℤ ∃𝑑 ∈
ℕ0 𝑤 =
(𝑏𝐹𝑑) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)))) |
57 | 52, 56 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)))) |
58 | | simplrr 774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) → 𝑎 ∈ ℤ) |
59 | 58 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) ∧ (¬
𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑎 ∈ ℤ) |
60 | | simplrr 774 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) ∧ (¬
𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑏 ∈ ℤ) |
61 | | simp-5r 782 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) ∧ (¬
𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑐 ∈ ℕ0) |
62 | | simplrl 773 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) ∧ (¬
𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → 𝑑 ∈ ℕ0) |
63 | | simprl 767 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) ∧ (¬
𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → ¬ 𝑑 < 𝑐) |
64 | | simprr 769 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) ∧ (¬
𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑))) |
65 | 11, 59, 60, 61, 62, 63, 64 | dyadmaxlem 24666 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) ∧ (¬
𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → (𝑎 = 𝑏 ∧ 𝑐 = 𝑑)) |
66 | | oveq12 7264 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑎 = 𝑏 ∧ 𝑐 = 𝑑) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑)) |
67 | 65, 66 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) ∧ (¬
𝑑 < 𝑐 ∧ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑)) |
68 | 67 | exp32 420 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) → (¬
𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑)))) |
69 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 = (𝑏𝐹𝑑) → ([,]‘𝑤) = ([,]‘(𝑏𝐹𝑑))) |
70 | 69 | sseq2d 3949 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = (𝑏𝐹𝑑) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)))) |
71 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = (𝑏𝐹𝑑) → ((𝑎𝐹𝑐) = 𝑤 ↔ (𝑎𝐹𝑐) = (𝑏𝐹𝑑))) |
72 | 70, 71 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = (𝑏𝐹𝑑) → ((([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑)))) |
73 | 72 | imbi2d 340 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = (𝑏𝐹𝑑) → ((¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)) ↔ (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘(𝑏𝐹𝑑)) → (𝑎𝐹𝑐) = (𝑏𝐹𝑑))))) |
74 | 68, 73 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ (𝑑 ∈ ℕ0 ∧ 𝑏 ∈ ℤ)) → (𝑤 = (𝑏𝐹𝑑) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))) |
75 | 74 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ 𝑑 ∈ ℕ0) ∧ 𝑏 ∈ ℤ) → (𝑤 = (𝑏𝐹𝑑) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))) |
76 | 75 | rexlimdva 3212 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ 𝑑 ∈ ℕ0) →
(∃𝑏 ∈ ℤ
𝑤 = (𝑏𝐹𝑑) → (¬ 𝑑 < 𝑐 → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))) |
77 | 76 | a2d 29 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ 𝑑 ∈ ℕ0) →
((∃𝑏 ∈ ℤ
𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)))) |
78 | 77 | impd 410 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) ∧ 𝑑 ∈ ℕ0) →
(((∃𝑏 ∈ ℤ
𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))) |
79 | 78 | rexlimdva 3212 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) → (∃𝑑 ∈ ℕ0 ((∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) ∧ ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑)) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))) |
80 | 57, 79 | syld 47 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ 𝑤 ∈ 𝐴) → (∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))) |
81 | 80 | ralimdva 3102 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) → (∀𝑤 ∈ 𝐴 ∀𝑑 ∈ ℕ0 (∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∀𝑤 ∈ 𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))) |
82 | 47, 81 | syl5bi 241 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) → (∀𝑑 ∈ ℕ0
(∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → ∀𝑤 ∈ 𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))) |
83 | 82 | imp 406 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) ∧ ∀𝑑 ∈ ℕ0
(∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) → ∀𝑤 ∈ 𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)) |
84 | 83 | an32s 648 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧
∀𝑑 ∈
ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) → ∀𝑤 ∈ 𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤)) |
85 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝑎𝐹𝑐) → ([,]‘𝑧) = ([,]‘(𝑎𝐹𝑐))) |
86 | 85 | sseq1d 3948 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑎𝐹𝑐) → (([,]‘𝑧) ⊆ ([,]‘𝑤) ↔ ([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤))) |
87 | | eqeq1 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑎𝐹𝑐) → (𝑧 = 𝑤 ↔ (𝑎𝐹𝑐) = 𝑤)) |
88 | 86, 87 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝑎𝐹𝑐) → ((([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))) |
89 | 88 | ralbidv 3120 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑎𝐹𝑐) → (∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤) ↔ ∀𝑤 ∈ 𝐴 (([,]‘(𝑎𝐹𝑐)) ⊆ ([,]‘𝑤) → (𝑎𝐹𝑐) = 𝑤))) |
90 | 84, 89 | syl5ibrcom 246 |
. . . . . . . . . . 11
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧
∀𝑑 ∈
ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ (𝑧 ∈ 𝐴 ∧ 𝑎 ∈ ℤ)) → (𝑧 = (𝑎𝐹𝑐) → ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))) |
91 | 90 | anassrs 467 |
. . . . . . . . . 10
⊢
((((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧
∀𝑑 ∈
ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ 𝑧 ∈ 𝐴) ∧ 𝑎 ∈ ℤ) → (𝑧 = (𝑎𝐹𝑐) → ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))) |
92 | 91 | rexlimdva 3212 |
. . . . . . . . 9
⊢
(((((𝐴 ⊆ ran
𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧
∀𝑑 ∈
ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) ∧ 𝑧 ∈ 𝐴) → (∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))) |
93 | 92 | reximdva 3202 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) ∧
∀𝑑 ∈
ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐)) → (∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))) |
94 | 93 | ex 412 |
. . . . . . 7
⊢ (((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) →
(∀𝑑 ∈
ℕ0 (∃𝑤 ∈ 𝐴 ∃𝑏 ∈ ℤ 𝑤 = (𝑏𝐹𝑑) → ¬ 𝑑 < 𝑐) → (∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))) |
95 | 43, 94 | syl5bi 241 |
. . . . . 6
⊢ (((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) →
(∀𝑑 ∈ {𝑛 ∈ ℕ0
∣ ∃𝑧 ∈
𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → (∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))) |
96 | 95 | com23 86 |
. . . . 5
⊢ (((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) ∧ 𝑐 ∈ ℕ0) →
(∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐) → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))) |
97 | 96 | expimpd 453 |
. . . 4
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → ((𝑐 ∈ ℕ0 ∧
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑐)) → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))) |
98 | 34, 97 | syl5bi 241 |
. . 3
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → (𝑐 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} → (∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)))) |
99 | 98 | rexlimdv 3211 |
. 2
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → (∃𝑐 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)}∀𝑑 ∈ {𝑛 ∈ ℕ0 ∣
∃𝑧 ∈ 𝐴 ∃𝑎 ∈ ℤ 𝑧 = (𝑎𝐹𝑛)} ¬ 𝑑 < 𝑐 → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤))) |
100 | 30, 99 | mpd 15 |
1
⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)) |