MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutlem4 Structured version   Visualization version   GIF version

Theorem bezoutlem4 15889
Description: Lemma for bezout 15890. (Contributed by Mario Carneiro, 22-Feb-2014.)
Hypotheses
Ref Expression
bezout.1 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
bezout.3 (𝜑𝐴 ∈ ℤ)
bezout.4 (𝜑𝐵 ∈ ℤ)
bezout.2 𝐺 = inf(𝑀, ℝ, < )
bezout.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlem4 (𝜑 → (𝐴 gcd 𝐵) ∈ 𝑀)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑀,𝑦
Allowed substitution hint:   𝑀(𝑧)

Proof of Theorem bezoutlem4
Dummy variables 𝑡 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezout.3 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
2 bezout.4 . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
3 gcddvds 15851 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
41, 2, 3syl2anc 586 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
54simpld 497 . . . . . 6 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐴)
61, 2gcdcld 15856 . . . . . . . 8 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ0)
76nn0zd 12084 . . . . . . 7 (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ)
8 divides 15608 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴))
97, 1, 8syl2anc 586 . . . . . 6 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴))
105, 9mpbid 234 . . . . 5 (𝜑 → ∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴)
114simprd 498 . . . . . 6 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐵)
12 divides 15608 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵))
137, 2, 12syl2anc 586 . . . . . 6 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵))
1411, 13mpbid 234 . . . . 5 (𝜑 → ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵)
15 reeanv 3367 . . . . . 6 (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ ((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) ↔ (∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵))
16 bezout.1 . . . . . . . . . . 11 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
17 bezout.2 . . . . . . . . . . 11 𝐺 = inf(𝑀, ℝ, < )
18 bezout.5 . . . . . . . . . . 11 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1916, 1, 2, 17, 18bezoutlem2 15887 . . . . . . . . . 10 (𝜑𝐺𝑀)
20 oveq2 7163 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (𝐴 · 𝑥) = (𝐴 · 𝑢))
2120oveq1d 7170 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑦)))
2221eqeq2d 2832 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑦))))
23 oveq2 7163 . . . . . . . . . . . . . . 15 (𝑦 = 𝑣 → (𝐵 · 𝑦) = (𝐵 · 𝑣))
2423oveq2d 7171 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → ((𝐴 · 𝑢) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
2524eqeq2d 2832 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → (𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
2622, 25cbvrex2vw 3462 . . . . . . . . . . . 12 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
27 eqeq1 2825 . . . . . . . . . . . . 13 (𝑧 = 𝐺 → (𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
28272rexbidv 3300 . . . . . . . . . . . 12 (𝑧 = 𝐺 → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
2926, 28syl5bb 285 . . . . . . . . . . 11 (𝑧 = 𝐺 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3029, 16elrab2 3682 . . . . . . . . . 10 (𝐺𝑀 ↔ (𝐺 ∈ ℕ ∧ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3119, 30sylib 220 . . . . . . . . 9 (𝜑 → (𝐺 ∈ ℕ ∧ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3231simprd 498 . . . . . . . 8 (𝜑 → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
33 simprrl 779 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑠 ∈ ℤ)
34 simprll 777 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑢 ∈ ℤ)
3533, 34zmulcld 12092 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝑠 · 𝑢) ∈ ℤ)
36 simprrr 780 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑡 ∈ ℤ)
37 simprlr 778 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑣 ∈ ℤ)
3836, 37zmulcld 12092 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝑡 · 𝑣) ∈ ℤ)
3935, 38zaddcld 12090 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → ((𝑠 · 𝑢) + (𝑡 · 𝑣)) ∈ ℤ)
407adantr 483 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐴 gcd 𝐵) ∈ ℤ)
41 dvdsmul2 15631 . . . . . . . . . . . . . . 15 ((((𝑠 · 𝑢) + (𝑡 · 𝑣)) ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℤ) → (𝐴 gcd 𝐵) ∥ (((𝑠 · 𝑢) + (𝑡 · 𝑣)) · (𝐴 gcd 𝐵)))
4239, 40, 41syl2anc 586 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐴 gcd 𝐵) ∥ (((𝑠 · 𝑢) + (𝑡 · 𝑣)) · (𝐴 gcd 𝐵)))
4335zcnd 12087 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝑠 · 𝑢) ∈ ℂ)
4440zcnd 12087 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐴 gcd 𝐵) ∈ ℂ)
4538zcnd 12087 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝑡 · 𝑣) ∈ ℂ)
4633zcnd 12087 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑠 ∈ ℂ)
4734zcnd 12087 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑢 ∈ ℂ)
4846, 47, 44mul32d 10849 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → ((𝑠 · 𝑢) · (𝐴 gcd 𝐵)) = ((𝑠 · (𝐴 gcd 𝐵)) · 𝑢))
4936zcnd 12087 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑡 ∈ ℂ)
5037zcnd 12087 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑣 ∈ ℂ)
5149, 50, 44mul32d 10849 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → ((𝑡 · 𝑣) · (𝐴 gcd 𝐵)) = ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣))
5248, 51oveq12d 7173 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (((𝑠 · 𝑢) · (𝐴 gcd 𝐵)) + ((𝑡 · 𝑣) · (𝐴 gcd 𝐵))) = (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)))
5343, 44, 45, 52joinlmuladdmuld 10667 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (((𝑠 · 𝑢) + (𝑡 · 𝑣)) · (𝐴 gcd 𝐵)) = (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)))
5442, 53breqtrd 5091 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐴 gcd 𝐵) ∥ (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)))
55 oveq1 7162 . . . . . . . . . . . . . . 15 ((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) = (𝐴 · 𝑢))
56 oveq1 7162 . . . . . . . . . . . . . . 15 ((𝑡 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣) = (𝐵 · 𝑣))
5755, 56oveqan12d 7174 . . . . . . . . . . . . . 14 (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
5857breq2d 5077 . . . . . . . . . . . . 13 (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → ((𝐴 gcd 𝐵) ∥ (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)) ↔ (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
5954, 58syl5ibcom 247 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
60 breq2 5069 . . . . . . . . . . . . 13 (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → ((𝐴 gcd 𝐵) ∥ 𝐺 ↔ (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
6160imbi2d 343 . . . . . . . . . . . 12 (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → ((((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺) ↔ (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑢) + (𝐵 · 𝑣)))))
6259, 61syl5ibrcom 249 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺)))
6362expr 459 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))))
6463com23 86 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))))
6564rexlimdvva 3294 . . . . . . . 8 (𝜑 → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))))
6632, 65mpd 15 . . . . . . 7 (𝜑 → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺)))
6766rexlimdvv 3293 . . . . . 6 (𝜑 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ ((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))
6815, 67syl5bir 245 . . . . 5 (𝜑 → ((∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))
6910, 14, 68mp2and 697 . . . 4 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐺)
7031simpld 497 . . . . 5 (𝜑𝐺 ∈ ℕ)
71 dvdsle 15659 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐺 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐺 → (𝐴 gcd 𝐵) ≤ 𝐺))
727, 70, 71syl2anc 586 . . . 4 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐺 → (𝐴 gcd 𝐵) ≤ 𝐺))
7369, 72mpd 15 . . 3 (𝜑 → (𝐴 gcd 𝐵) ≤ 𝐺)
74 breq2 5069 . . . . 5 (𝐴 = 0 → (𝐺𝐴𝐺 ∥ 0))
7516, 1, 2bezoutlem1 15886 . . . . . . . 8 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀))
7616, 1, 2, 17, 18bezoutlem3 15888 . . . . . . . 8 (𝜑 → ((abs‘𝐴) ∈ 𝑀𝐺 ∥ (abs‘𝐴)))
7775, 76syld 47 . . . . . . 7 (𝜑 → (𝐴 ≠ 0 → 𝐺 ∥ (abs‘𝐴)))
7870nnzd 12085 . . . . . . . 8 (𝜑𝐺 ∈ ℤ)
79 dvdsabsb 15628 . . . . . . . 8 ((𝐺 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐺𝐴𝐺 ∥ (abs‘𝐴)))
8078, 1, 79syl2anc 586 . . . . . . 7 (𝜑 → (𝐺𝐴𝐺 ∥ (abs‘𝐴)))
8177, 80sylibrd 261 . . . . . 6 (𝜑 → (𝐴 ≠ 0 → 𝐺𝐴))
8281imp 409 . . . . 5 ((𝜑𝐴 ≠ 0) → 𝐺𝐴)
83 dvds0 15624 . . . . . 6 (𝐺 ∈ ℤ → 𝐺 ∥ 0)
8478, 83syl 17 . . . . 5 (𝜑𝐺 ∥ 0)
8574, 82, 84pm2.61ne 3102 . . . 4 (𝜑𝐺𝐴)
86 breq2 5069 . . . . 5 (𝐵 = 0 → (𝐺𝐵𝐺 ∥ 0))
87 eqid 2821 . . . . . . . . . 10 {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}
8887, 2, 1bezoutlem1 15886 . . . . . . . . 9 (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}))
89 rexcom 3355 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
901zcnd 12087 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℂ)
9190adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐴 ∈ ℂ)
92 zcn 11985 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
9392ad2antll 727 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑥 ∈ ℂ)
9491, 93mulcld 10660 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐴 · 𝑥) ∈ ℂ)
952zcnd 12087 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℂ)
9695adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐵 ∈ ℂ)
97 zcn 11985 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
9897ad2antrl 726 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑦 ∈ ℂ)
9996, 98mulcld 10660 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐵 · 𝑦) ∈ ℂ)
10094, 99addcomd 10841 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))
101100eqeq2d 2832 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))))
1021012rexbidva 3299 . . . . . . . . . . . . 13 (𝜑 → (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))))
10389, 102syl5bb 285 . . . . . . . . . . . 12 (𝜑 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))))
104103rabbidv 3480 . . . . . . . . . . 11 (𝜑 → {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})
10516, 104syl5eq 2868 . . . . . . . . . 10 (𝜑𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})
106105eleq2d 2898 . . . . . . . . 9 (𝜑 → ((abs‘𝐵) ∈ 𝑀 ↔ (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}))
10788, 106sylibrd 261 . . . . . . . 8 (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ 𝑀))
10816, 1, 2, 17, 18bezoutlem3 15888 . . . . . . . 8 (𝜑 → ((abs‘𝐵) ∈ 𝑀𝐺 ∥ (abs‘𝐵)))
109107, 108syld 47 . . . . . . 7 (𝜑 → (𝐵 ≠ 0 → 𝐺 ∥ (abs‘𝐵)))
110 dvdsabsb 15628 . . . . . . . 8 ((𝐺 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐺𝐵𝐺 ∥ (abs‘𝐵)))
11178, 2, 110syl2anc 586 . . . . . . 7 (𝜑 → (𝐺𝐵𝐺 ∥ (abs‘𝐵)))
112109, 111sylibrd 261 . . . . . 6 (𝜑 → (𝐵 ≠ 0 → 𝐺𝐵))
113112imp 409 . . . . 5 ((𝜑𝐵 ≠ 0) → 𝐺𝐵)
11486, 113, 84pm2.61ne 3102 . . . 4 (𝜑𝐺𝐵)
115 dvdslegcd 15852 . . . . 5 (((𝐺 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐺𝐴𝐺𝐵) → 𝐺 ≤ (𝐴 gcd 𝐵)))
11678, 1, 2, 18, 115syl31anc 1369 . . . 4 (𝜑 → ((𝐺𝐴𝐺𝐵) → 𝐺 ≤ (𝐴 gcd 𝐵)))
11785, 114, 116mp2and 697 . . 3 (𝜑𝐺 ≤ (𝐴 gcd 𝐵))
1186nn0red 11955 . . . 4 (𝜑 → (𝐴 gcd 𝐵) ∈ ℝ)
11970nnred 11652 . . . 4 (𝜑𝐺 ∈ ℝ)
120118, 119letri3d 10781 . . 3 (𝜑 → ((𝐴 gcd 𝐵) = 𝐺 ↔ ((𝐴 gcd 𝐵) ≤ 𝐺𝐺 ≤ (𝐴 gcd 𝐵))))
12173, 117, 120mpbir2and 711 . 2 (𝜑 → (𝐴 gcd 𝐵) = 𝐺)
122121, 19eqeltrd 2913 1 (𝜑 → (𝐴 gcd 𝐵) ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wrex 3139  {crab 3142   class class class wbr 5065  cfv 6354  (class class class)co 7155  infcinf 8904  cc 10534  cr 10535  0cc0 10536   + caddc 10539   · cmul 10541   < clt 10674  cle 10675  cn 11637  cz 11980  abscabs 14592  cdvds 15606   gcd cgcd 15842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-dvds 15607  df-gcd 15843
This theorem is referenced by:  bezout  15890
  Copyright terms: Public domain W3C validator