MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutlem4 Structured version   Visualization version   GIF version

Theorem bezoutlem4 15665
Description: Lemma for bezout 15666. (Contributed by Mario Carneiro, 22-Feb-2014.)
Hypotheses
Ref Expression
bezout.1 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
bezout.3 (𝜑𝐴 ∈ ℤ)
bezout.4 (𝜑𝐵 ∈ ℤ)
bezout.2 𝐺 = inf(𝑀, ℝ, < )
bezout.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlem4 (𝜑 → (𝐴 gcd 𝐵) ∈ 𝑀)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑀,𝑦
Allowed substitution hint:   𝑀(𝑧)

Proof of Theorem bezoutlem4
Dummy variables 𝑡 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezout.3 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
2 bezout.4 . . . . . . . 8 (𝜑𝐵 ∈ ℤ)
3 gcddvds 15631 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
41, 2, 3syl2anc 579 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
54simpld 490 . . . . . 6 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐴)
61, 2gcdcld 15636 . . . . . . . 8 (𝜑 → (𝐴 gcd 𝐵) ∈ ℕ0)
76nn0zd 11832 . . . . . . 7 (𝜑 → (𝐴 gcd 𝐵) ∈ ℤ)
8 divides 15389 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴))
97, 1, 8syl2anc 579 . . . . . 6 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴))
105, 9mpbid 224 . . . . 5 (𝜑 → ∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴)
114simprd 491 . . . . . 6 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐵)
12 divides 15389 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵))
137, 2, 12syl2anc 579 . . . . . 6 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵))
1411, 13mpbid 224 . . . . 5 (𝜑 → ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵)
15 reeanv 3293 . . . . . 6 (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ ((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) ↔ (∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵))
16 bezout.1 . . . . . . . . . . 11 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
17 bezout.2 . . . . . . . . . . 11 𝐺 = inf(𝑀, ℝ, < )
18 bezout.5 . . . . . . . . . . 11 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1916, 1, 2, 17, 18bezoutlem2 15663 . . . . . . . . . 10 (𝜑𝐺𝑀)
20 oveq2 6930 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → (𝐴 · 𝑥) = (𝐴 · 𝑢))
2120oveq1d 6937 . . . . . . . . . . . . . 14 (𝑥 = 𝑢 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑦)))
2221eqeq2d 2788 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑦))))
23 oveq2 6930 . . . . . . . . . . . . . . 15 (𝑦 = 𝑣 → (𝐵 · 𝑦) = (𝐵 · 𝑣))
2423oveq2d 6938 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → ((𝐴 · 𝑢) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
2524eqeq2d 2788 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → (𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
2622, 25cbvrex2v 3376 . . . . . . . . . . . 12 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
27 eqeq1 2782 . . . . . . . . . . . . 13 (𝑧 = 𝐺 → (𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
28272rexbidv 3242 . . . . . . . . . . . 12 (𝑧 = 𝐺 → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑧 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
2926, 28syl5bb 275 . . . . . . . . . . 11 (𝑧 = 𝐺 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3029, 16elrab2 3576 . . . . . . . . . 10 (𝐺𝑀 ↔ (𝐺 ∈ ℕ ∧ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3119, 30sylib 210 . . . . . . . . 9 (𝜑 → (𝐺 ∈ ℕ ∧ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
3231simprd 491 . . . . . . . 8 (𝜑 → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
33 simprrl 771 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑠 ∈ ℤ)
34 simprll 769 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑢 ∈ ℤ)
3533, 34zmulcld 11840 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝑠 · 𝑢) ∈ ℤ)
36 simprrr 772 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑡 ∈ ℤ)
37 simprlr 770 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑣 ∈ ℤ)
3836, 37zmulcld 11840 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝑡 · 𝑣) ∈ ℤ)
3935, 38zaddcld 11838 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → ((𝑠 · 𝑢) + (𝑡 · 𝑣)) ∈ ℤ)
407adantr 474 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐴 gcd 𝐵) ∈ ℤ)
41 dvdsmul2 15411 . . . . . . . . . . . . . . 15 ((((𝑠 · 𝑢) + (𝑡 · 𝑣)) ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℤ) → (𝐴 gcd 𝐵) ∥ (((𝑠 · 𝑢) + (𝑡 · 𝑣)) · (𝐴 gcd 𝐵)))
4239, 40, 41syl2anc 579 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐴 gcd 𝐵) ∥ (((𝑠 · 𝑢) + (𝑡 · 𝑣)) · (𝐴 gcd 𝐵)))
4335zcnd 11835 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝑠 · 𝑢) ∈ ℂ)
4440zcnd 11835 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐴 gcd 𝐵) ∈ ℂ)
4538zcnd 11835 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝑡 · 𝑣) ∈ ℂ)
4633zcnd 11835 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑠 ∈ ℂ)
4734zcnd 11835 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑢 ∈ ℂ)
4846, 47, 44mul32d 10586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → ((𝑠 · 𝑢) · (𝐴 gcd 𝐵)) = ((𝑠 · (𝐴 gcd 𝐵)) · 𝑢))
4936zcnd 11835 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑡 ∈ ℂ)
5037zcnd 11835 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → 𝑣 ∈ ℂ)
5149, 50, 44mul32d 10586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → ((𝑡 · 𝑣) · (𝐴 gcd 𝐵)) = ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣))
5248, 51oveq12d 6940 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (((𝑠 · 𝑢) · (𝐴 gcd 𝐵)) + ((𝑡 · 𝑣) · (𝐴 gcd 𝐵))) = (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)))
5343, 44, 45, 52joinlmuladdmuld 10404 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (((𝑠 · 𝑢) + (𝑡 · 𝑣)) · (𝐴 gcd 𝐵)) = (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)))
5442, 53breqtrd 4912 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐴 gcd 𝐵) ∥ (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)))
55 oveq1 6929 . . . . . . . . . . . . . . 15 ((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) = (𝐴 · 𝑢))
56 oveq1 6929 . . . . . . . . . . . . . . 15 ((𝑡 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣) = (𝐵 · 𝑣))
5755, 56oveqan12d 6941 . . . . . . . . . . . . . 14 (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
5857breq2d 4898 . . . . . . . . . . . . 13 (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → ((𝐴 gcd 𝐵) ∥ (((𝑠 · (𝐴 gcd 𝐵)) · 𝑢) + ((𝑡 · (𝐴 gcd 𝐵)) · 𝑣)) ↔ (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
5954, 58syl5ibcom 237 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
60 breq2 4890 . . . . . . . . . . . . 13 (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → ((𝐴 gcd 𝐵) ∥ 𝐺 ↔ (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
6160imbi2d 332 . . . . . . . . . . . 12 (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → ((((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺) ↔ (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑢) + (𝐵 · 𝑣)))))
6259, 61syl5ibrcom 239 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ) ∧ (𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ))) → (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺)))
6362expr 450 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))))
6463com23 86 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))))
6564rexlimdvva 3221 . . . . . . . 8 (𝜑 → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝐺 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)) → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))))
6632, 65mpd 15 . . . . . . 7 (𝜑 → ((𝑠 ∈ ℤ ∧ 𝑡 ∈ ℤ) → (((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺)))
6766rexlimdvv 3220 . . . . . 6 (𝜑 → (∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ ((𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))
6815, 67syl5bir 235 . . . . 5 (𝜑 → ((∃𝑠 ∈ ℤ (𝑠 · (𝐴 gcd 𝐵)) = 𝐴 ∧ ∃𝑡 ∈ ℤ (𝑡 · (𝐴 gcd 𝐵)) = 𝐵) → (𝐴 gcd 𝐵) ∥ 𝐺))
6910, 14, 68mp2and 689 . . . 4 (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐺)
7031simpld 490 . . . . 5 (𝜑𝐺 ∈ ℕ)
71 dvdsle 15439 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐺 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐺 → (𝐴 gcd 𝐵) ≤ 𝐺))
727, 70, 71syl2anc 579 . . . 4 (𝜑 → ((𝐴 gcd 𝐵) ∥ 𝐺 → (𝐴 gcd 𝐵) ≤ 𝐺))
7369, 72mpd 15 . . 3 (𝜑 → (𝐴 gcd 𝐵) ≤ 𝐺)
74 breq2 4890 . . . . 5 (𝐴 = 0 → (𝐺𝐴𝐺 ∥ 0))
7516, 1, 2bezoutlem1 15662 . . . . . . . 8 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀))
7616, 1, 2, 17, 18bezoutlem3 15664 . . . . . . . 8 (𝜑 → ((abs‘𝐴) ∈ 𝑀𝐺 ∥ (abs‘𝐴)))
7775, 76syld 47 . . . . . . 7 (𝜑 → (𝐴 ≠ 0 → 𝐺 ∥ (abs‘𝐴)))
7870nnzd 11833 . . . . . . . 8 (𝜑𝐺 ∈ ℤ)
79 dvdsabsb 15408 . . . . . . . 8 ((𝐺 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐺𝐴𝐺 ∥ (abs‘𝐴)))
8078, 1, 79syl2anc 579 . . . . . . 7 (𝜑 → (𝐺𝐴𝐺 ∥ (abs‘𝐴)))
8177, 80sylibrd 251 . . . . . 6 (𝜑 → (𝐴 ≠ 0 → 𝐺𝐴))
8281imp 397 . . . . 5 ((𝜑𝐴 ≠ 0) → 𝐺𝐴)
83 dvds0 15404 . . . . . 6 (𝐺 ∈ ℤ → 𝐺 ∥ 0)
8478, 83syl 17 . . . . 5 (𝜑𝐺 ∥ 0)
8574, 82, 84pm2.61ne 3055 . . . 4 (𝜑𝐺𝐴)
86 breq2 4890 . . . . 5 (𝐵 = 0 → (𝐺𝐵𝐺 ∥ 0))
87 eqid 2778 . . . . . . . . . 10 {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}
8887, 2, 1bezoutlem1 15662 . . . . . . . . 9 (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}))
89 rexcom 3285 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
901zcnd 11835 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℂ)
9190adantr 474 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐴 ∈ ℂ)
92 zcn 11733 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
9392ad2antll 719 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑥 ∈ ℂ)
9491, 93mulcld 10397 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐴 · 𝑥) ∈ ℂ)
952zcnd 11835 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℂ)
9695adantr 474 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝐵 ∈ ℂ)
97 zcn 11733 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
9897ad2antrl 718 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → 𝑦 ∈ ℂ)
9996, 98mulcld 10397 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝐵 · 𝑦) ∈ ℂ)
10094, 99addcomd 10578 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐵 · 𝑦) + (𝐴 · 𝑥)))
101100eqeq2d 2788 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ)) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))))
1021012rexbidva 3241 . . . . . . . . . . . . 13 (𝜑 → (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))))
10389, 102syl5bb 275 . . . . . . . . . . . 12 (𝜑 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))))
104103rabbidv 3386 . . . . . . . . . . 11 (𝜑 → {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})
10516, 104syl5eq 2826 . . . . . . . . . 10 (𝜑𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))})
106105eleq2d 2845 . . . . . . . . 9 (𝜑 → ((abs‘𝐵) ∈ 𝑀 ↔ (abs‘𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℤ 𝑧 = ((𝐵 · 𝑦) + (𝐴 · 𝑥))}))
10788, 106sylibrd 251 . . . . . . . 8 (𝜑 → (𝐵 ≠ 0 → (abs‘𝐵) ∈ 𝑀))
10816, 1, 2, 17, 18bezoutlem3 15664 . . . . . . . 8 (𝜑 → ((abs‘𝐵) ∈ 𝑀𝐺 ∥ (abs‘𝐵)))
109107, 108syld 47 . . . . . . 7 (𝜑 → (𝐵 ≠ 0 → 𝐺 ∥ (abs‘𝐵)))
110 dvdsabsb 15408 . . . . . . . 8 ((𝐺 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐺𝐵𝐺 ∥ (abs‘𝐵)))
11178, 2, 110syl2anc 579 . . . . . . 7 (𝜑 → (𝐺𝐵𝐺 ∥ (abs‘𝐵)))
112109, 111sylibrd 251 . . . . . 6 (𝜑 → (𝐵 ≠ 0 → 𝐺𝐵))
113112imp 397 . . . . 5 ((𝜑𝐵 ≠ 0) → 𝐺𝐵)
11486, 113, 84pm2.61ne 3055 . . . 4 (𝜑𝐺𝐵)
115 dvdslegcd 15632 . . . . 5 (((𝐺 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐺𝐴𝐺𝐵) → 𝐺 ≤ (𝐴 gcd 𝐵)))
11678, 1, 2, 18, 115syl31anc 1441 . . . 4 (𝜑 → ((𝐺𝐴𝐺𝐵) → 𝐺 ≤ (𝐴 gcd 𝐵)))
11785, 114, 116mp2and 689 . . 3 (𝜑𝐺 ≤ (𝐴 gcd 𝐵))
1186nn0red 11703 . . . 4 (𝜑 → (𝐴 gcd 𝐵) ∈ ℝ)
11970nnred 11391 . . . 4 (𝜑𝐺 ∈ ℝ)
120118, 119letri3d 10518 . . 3 (𝜑 → ((𝐴 gcd 𝐵) = 𝐺 ↔ ((𝐴 gcd 𝐵) ≤ 𝐺𝐺 ≤ (𝐴 gcd 𝐵))))
12173, 117, 120mpbir2and 703 . 2 (𝜑 → (𝐴 gcd 𝐵) = 𝐺)
122121, 19eqeltrd 2859 1 (𝜑 → (𝐴 gcd 𝐵) ∈ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wne 2969  wrex 3091  {crab 3094   class class class wbr 4886  cfv 6135  (class class class)co 6922  infcinf 8635  cc 10270  cr 10271  0cc0 10272   + caddc 10275   · cmul 10277   < clt 10411  cle 10412  cn 11374  cz 11728  abscabs 14381  cdvds 15387   gcd cgcd 15622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-dvds 15388  df-gcd 15623
This theorem is referenced by:  bezout  15666
  Copyright terms: Public domain W3C validator