| Step | Hyp | Ref
| Expression |
| 1 | | eqeq1 2738 |
. . . . . . . 8
⊢ (𝑧 = 𝑡 → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
| 2 | 1 | 2rexbidv 3209 |
. . . . . . 7
⊢ (𝑧 = 𝑡 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
| 3 | | oveq2 7421 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → (𝐴 · 𝑥) = (𝐴 · 𝑢)) |
| 4 | 3 | oveq1d 7428 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑦))) |
| 5 | 4 | eqeq2d 2745 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → (𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑦)))) |
| 6 | | oveq2 7421 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → (𝐵 · 𝑦) = (𝐵 · 𝑣)) |
| 7 | 6 | oveq2d 7429 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → ((𝐴 · 𝑢) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
| 8 | 7 | eqeq2d 2745 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → (𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑦)) ↔ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) |
| 9 | 5, 8 | cbvrex2vw 3228 |
. . . . . . 7
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ 𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
| 10 | 2, 9 | bitrdi 287 |
. . . . . 6
⊢ (𝑧 = 𝑡 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) |
| 11 | 10 | cbvrabv 3430 |
. . . . 5
⊢ {𝑧 ∈ ℕ ∣
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℤ
𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} = {𝑡 ∈ ℕ ∣ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))} |
| 12 | | simpll 766 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℤ) |
| 13 | | simplr 768 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → 𝐵 ∈ ℤ) |
| 14 | | eqid 2734 |
. . . . 5
⊢
inf({𝑧 ∈
ℕ ∣ ∃𝑥
∈ ℤ ∃𝑦
∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}, ℝ, < ) = inf({𝑧 ∈ ℕ ∣
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℤ
𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}, ℝ, < ) |
| 15 | | simpr 484 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
| 16 | 11, 12, 13, 14, 15 | bezoutlem4 16562 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}) |
| 17 | | eqeq1 2738 |
. . . . . . 7
⊢ (𝑧 = (𝐴 gcd 𝐵) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
| 18 | 17 | 2rexbidv 3209 |
. . . . . 6
⊢ (𝑧 = (𝐴 gcd 𝐵) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
| 19 | 18 | elrab 3675 |
. . . . 5
⊢ ((𝐴 gcd 𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} ↔ ((𝐴 gcd 𝐵) ∈ ℕ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
| 20 | 19 | simprbi 496 |
. . . 4
⊢ ((𝐴 gcd 𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
| 21 | 16, 20 | syl 17 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
| 22 | 21 | ex 412 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬
(𝐴 = 0 ∧ 𝐵 = 0) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
| 23 | | 0z 12607 |
. . . 4
⊢ 0 ∈
ℤ |
| 24 | | 00id 11418 |
. . . . 5
⊢ (0 + 0) =
0 |
| 25 | | 0cn 11235 |
. . . . . . 7
⊢ 0 ∈
ℂ |
| 26 | 25 | mul01i 11433 |
. . . . . 6
⊢ (0
· 0) = 0 |
| 27 | 26, 26 | oveq12i 7425 |
. . . . 5
⊢ ((0
· 0) + (0 · 0)) = (0 + 0) |
| 28 | | gcd0val 16517 |
. . . . 5
⊢ (0 gcd 0)
= 0 |
| 29 | 24, 27, 28 | 3eqtr4ri 2768 |
. . . 4
⊢ (0 gcd 0)
= ((0 · 0) + (0 · 0)) |
| 30 | | oveq2 7421 |
. . . . . . 7
⊢ (𝑥 = 0 → (0 · 𝑥) = (0 ·
0)) |
| 31 | 30 | oveq1d 7428 |
. . . . . 6
⊢ (𝑥 = 0 → ((0 · 𝑥) + (0 · 𝑦)) = ((0 · 0) + (0
· 𝑦))) |
| 32 | 31 | eqeq2d 2745 |
. . . . 5
⊢ (𝑥 = 0 → ((0 gcd 0) = ((0
· 𝑥) + (0 ·
𝑦)) ↔ (0 gcd 0) = ((0
· 0) + (0 · 𝑦)))) |
| 33 | | oveq2 7421 |
. . . . . . 7
⊢ (𝑦 = 0 → (0 · 𝑦) = (0 ·
0)) |
| 34 | 33 | oveq2d 7429 |
. . . . . 6
⊢ (𝑦 = 0 → ((0 · 0) + (0
· 𝑦)) = ((0 ·
0) + (0 · 0))) |
| 35 | 34 | eqeq2d 2745 |
. . . . 5
⊢ (𝑦 = 0 → ((0 gcd 0) = ((0
· 0) + (0 · 𝑦)) ↔ (0 gcd 0) = ((0 · 0) + (0
· 0)))) |
| 36 | 32, 35 | rspc2ev 3618 |
. . . 4
⊢ ((0
∈ ℤ ∧ 0 ∈ ℤ ∧ (0 gcd 0) = ((0 · 0) + (0
· 0))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (0 gcd 0) = ((0 ·
𝑥) + (0 · 𝑦))) |
| 37 | 23, 23, 29, 36 | mp3an 1462 |
. . 3
⊢
∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ (0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦)) |
| 38 | | oveq12 7422 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0)) |
| 39 | | oveq1 7420 |
. . . . . 6
⊢ (𝐴 = 0 → (𝐴 · 𝑥) = (0 · 𝑥)) |
| 40 | | oveq1 7420 |
. . . . . 6
⊢ (𝐵 = 0 → (𝐵 · 𝑦) = (0 · 𝑦)) |
| 41 | 39, 40 | oveqan12d 7432 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((0 · 𝑥) + (0 · 𝑦))) |
| 42 | 38, 41 | eqeq12d 2750 |
. . . 4
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦)))) |
| 43 | 42 | 2rexbidv 3209 |
. . 3
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (0 gcd 0) = ((0 ·
𝑥) + (0 · 𝑦)))) |
| 44 | 37, 43 | mpbiri 258 |
. 2
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
| 45 | 22, 44 | pm2.61d2 181 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℤ
(𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |