MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezout Structured version   Visualization version   GIF version

Theorem bezout 16576
Description: Bézout's identity: For any integers 𝐴 and 𝐵, there are integers 𝑥, 𝑦 such that (𝐴 gcd 𝐵) = 𝐴 · 𝑥 + 𝐵 · 𝑦. This is Metamath 100 proof #60. (Contributed by Mario Carneiro, 22-Feb-2014.)
Assertion
Ref Expression
bezout ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem bezout
Dummy variables 𝑡 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2740 . . . . . . . 8 (𝑧 = 𝑡 → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
212rexbidv 3221 . . . . . . 7 (𝑧 = 𝑡 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3 oveq2 7437 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝐴 · 𝑥) = (𝐴 · 𝑢))
43oveq1d 7444 . . . . . . . . 9 (𝑥 = 𝑢 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑦)))
54eqeq2d 2747 . . . . . . . 8 (𝑥 = 𝑢 → (𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑦))))
6 oveq2 7437 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝐵 · 𝑦) = (𝐵 · 𝑣))
76oveq2d 7445 . . . . . . . . 9 (𝑦 = 𝑣 → ((𝐴 · 𝑢) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
87eqeq2d 2747 . . . . . . . 8 (𝑦 = 𝑣 → (𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑦)) ↔ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
95, 8cbvrex2vw 3241 . . . . . . 7 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
102, 9bitrdi 287 . . . . . 6 (𝑧 = 𝑡 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
1110cbvrabv 3446 . . . . 5 {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} = {𝑡 ∈ ℕ ∣ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))}
12 simpll 767 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℤ)
13 simplr 769 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐵 ∈ ℤ)
14 eqid 2736 . . . . 5 inf({𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}, ℝ, < ) = inf({𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}, ℝ, < )
15 simpr 484 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1611, 12, 13, 14, 15bezoutlem4 16575 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))})
17 eqeq1 2740 . . . . . . 7 (𝑧 = (𝐴 gcd 𝐵) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
18172rexbidv 3221 . . . . . 6 (𝑧 = (𝐴 gcd 𝐵) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
1918elrab 3691 . . . . 5 ((𝐴 gcd 𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} ↔ ((𝐴 gcd 𝐵) ∈ ℕ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2019simprbi 496 . . . 4 ((𝐴 gcd 𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
2116, 20syl 17 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
2221ex 412 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ (𝐴 = 0 ∧ 𝐵 = 0) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
23 0z 12620 . . . 4 0 ∈ ℤ
24 00id 11432 . . . . 5 (0 + 0) = 0
25 0cn 11249 . . . . . . 7 0 ∈ ℂ
2625mul01i 11447 . . . . . 6 (0 · 0) = 0
2726, 26oveq12i 7441 . . . . 5 ((0 · 0) + (0 · 0)) = (0 + 0)
28 gcd0val 16530 . . . . 5 (0 gcd 0) = 0
2924, 27, 283eqtr4ri 2775 . . . 4 (0 gcd 0) = ((0 · 0) + (0 · 0))
30 oveq2 7437 . . . . . . 7 (𝑥 = 0 → (0 · 𝑥) = (0 · 0))
3130oveq1d 7444 . . . . . 6 (𝑥 = 0 → ((0 · 𝑥) + (0 · 𝑦)) = ((0 · 0) + (0 · 𝑦)))
3231eqeq2d 2747 . . . . 5 (𝑥 = 0 → ((0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦)) ↔ (0 gcd 0) = ((0 · 0) + (0 · 𝑦))))
33 oveq2 7437 . . . . . . 7 (𝑦 = 0 → (0 · 𝑦) = (0 · 0))
3433oveq2d 7445 . . . . . 6 (𝑦 = 0 → ((0 · 0) + (0 · 𝑦)) = ((0 · 0) + (0 · 0)))
3534eqeq2d 2747 . . . . 5 (𝑦 = 0 → ((0 gcd 0) = ((0 · 0) + (0 · 𝑦)) ↔ (0 gcd 0) = ((0 · 0) + (0 · 0))))
3632, 35rspc2ev 3634 . . . 4 ((0 ∈ ℤ ∧ 0 ∈ ℤ ∧ (0 gcd 0) = ((0 · 0) + (0 · 0))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦)))
3723, 23, 29, 36mp3an 1463 . . 3 𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦))
38 oveq12 7438 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
39 oveq1 7436 . . . . . 6 (𝐴 = 0 → (𝐴 · 𝑥) = (0 · 𝑥))
40 oveq1 7436 . . . . . 6 (𝐵 = 0 → (𝐵 · 𝑦) = (0 · 𝑦))
4139, 40oveqan12d 7448 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((0 · 𝑥) + (0 · 𝑦)))
4238, 41eqeq12d 2752 . . . 4 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦))))
43422rexbidv 3221 . . 3 ((𝐴 = 0 ∧ 𝐵 = 0) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦))))
4437, 43mpbiri 258 . 2 ((𝐴 = 0 ∧ 𝐵 = 0) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
4522, 44pm2.61d2 181 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3069  {crab 3435  (class class class)co 7429  infcinf 9477  cr 11150  0cc0 11151   + caddc 11154   · cmul 11156   < clt 11291  cn 12262  cz 12609   gcd cgcd 16527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228  ax-pre-sup 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-er 8741  df-en 8982  df-dom 8983  df-sdom 8984  df-sup 9478  df-inf 9479  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-div 11917  df-nn 12263  df-2 12325  df-3 12326  df-n0 12523  df-z 12610  df-uz 12875  df-rp 13031  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-gcd 16528
This theorem is referenced by:  dvdsgcd  16577  dvdsmulgcd  16589  lcmgcdlem  16639  divgcdcoprm0  16698  odbezout  19572  ablfacrp  20082  pgpfac1lem3  20093  znunit  21574  2sqb  27466  ostth3  27672  primrootscoprmpow  42078  posbezout  42079
  Copyright terms: Public domain W3C validator