Step | Hyp | Ref
| Expression |
1 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑧 = 𝑡 → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
2 | 1 | 2rexbidv 3228 |
. . . . . . 7
⊢ (𝑧 = 𝑡 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
3 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑢 → (𝐴 · 𝑥) = (𝐴 · 𝑢)) |
4 | 3 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑦))) |
5 | 4 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → (𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑦)))) |
6 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → (𝐵 · 𝑦) = (𝐵 · 𝑣)) |
7 | 6 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → ((𝐴 · 𝑢) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
8 | 7 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → (𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑦)) ↔ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) |
9 | 5, 8 | cbvrex2vw 3386 |
. . . . . . 7
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ 𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))) |
10 | 2, 9 | bitrdi 286 |
. . . . . 6
⊢ (𝑧 = 𝑡 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))) |
11 | 10 | cbvrabv 3416 |
. . . . 5
⊢ {𝑧 ∈ ℕ ∣
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℤ
𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} = {𝑡 ∈ ℕ ∣ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))} |
12 | | simpll 763 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℤ) |
13 | | simplr 765 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → 𝐵 ∈ ℤ) |
14 | | eqid 2738 |
. . . . 5
⊢
inf({𝑧 ∈
ℕ ∣ ∃𝑥
∈ ℤ ∃𝑦
∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}, ℝ, < ) = inf({𝑧 ∈ ℕ ∣
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℤ
𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}, ℝ, < ) |
15 | | simpr 484 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
16 | 11, 12, 13, 14, 15 | bezoutlem4 16178 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}) |
17 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑧 = (𝐴 gcd 𝐵) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
18 | 17 | 2rexbidv 3228 |
. . . . . 6
⊢ (𝑧 = (𝐴 gcd 𝐵) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
19 | 18 | elrab 3617 |
. . . . 5
⊢ ((𝐴 gcd 𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} ↔ ((𝐴 gcd 𝐵) ∈ ℕ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
20 | 19 | simprbi 496 |
. . . 4
⊢ ((𝐴 gcd 𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
21 | 16, 20 | syl 17 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
22 | 21 | ex 412 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬
(𝐴 = 0 ∧ 𝐵 = 0) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))) |
23 | | 0z 12260 |
. . . 4
⊢ 0 ∈
ℤ |
24 | | 00id 11080 |
. . . . 5
⊢ (0 + 0) =
0 |
25 | | 0cn 10898 |
. . . . . . 7
⊢ 0 ∈
ℂ |
26 | 25 | mul01i 11095 |
. . . . . 6
⊢ (0
· 0) = 0 |
27 | 26, 26 | oveq12i 7267 |
. . . . 5
⊢ ((0
· 0) + (0 · 0)) = (0 + 0) |
28 | | gcd0val 16132 |
. . . . 5
⊢ (0 gcd 0)
= 0 |
29 | 24, 27, 28 | 3eqtr4ri 2777 |
. . . 4
⊢ (0 gcd 0)
= ((0 · 0) + (0 · 0)) |
30 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑥 = 0 → (0 · 𝑥) = (0 ·
0)) |
31 | 30 | oveq1d 7270 |
. . . . . 6
⊢ (𝑥 = 0 → ((0 · 𝑥) + (0 · 𝑦)) = ((0 · 0) + (0
· 𝑦))) |
32 | 31 | eqeq2d 2749 |
. . . . 5
⊢ (𝑥 = 0 → ((0 gcd 0) = ((0
· 𝑥) + (0 ·
𝑦)) ↔ (0 gcd 0) = ((0
· 0) + (0 · 𝑦)))) |
33 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑦 = 0 → (0 · 𝑦) = (0 ·
0)) |
34 | 33 | oveq2d 7271 |
. . . . . 6
⊢ (𝑦 = 0 → ((0 · 0) + (0
· 𝑦)) = ((0 ·
0) + (0 · 0))) |
35 | 34 | eqeq2d 2749 |
. . . . 5
⊢ (𝑦 = 0 → ((0 gcd 0) = ((0
· 0) + (0 · 𝑦)) ↔ (0 gcd 0) = ((0 · 0) + (0
· 0)))) |
36 | 32, 35 | rspc2ev 3564 |
. . . 4
⊢ ((0
∈ ℤ ∧ 0 ∈ ℤ ∧ (0 gcd 0) = ((0 · 0) + (0
· 0))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (0 gcd 0) = ((0 ·
𝑥) + (0 · 𝑦))) |
37 | 23, 23, 29, 36 | mp3an 1459 |
. . 3
⊢
∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ (0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦)) |
38 | | oveq12 7264 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0)) |
39 | | oveq1 7262 |
. . . . . 6
⊢ (𝐴 = 0 → (𝐴 · 𝑥) = (0 · 𝑥)) |
40 | | oveq1 7262 |
. . . . . 6
⊢ (𝐵 = 0 → (𝐵 · 𝑦) = (0 · 𝑦)) |
41 | 39, 40 | oveqan12d 7274 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((0 · 𝑥) + (0 · 𝑦))) |
42 | 38, 41 | eqeq12d 2754 |
. . . 4
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦)))) |
43 | 42 | 2rexbidv 3228 |
. . 3
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (0 gcd 0) = ((0 ·
𝑥) + (0 · 𝑦)))) |
44 | 37, 43 | mpbiri 257 |
. 2
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |
45 | 22, 44 | pm2.61d2 181 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℤ
(𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) |