MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezout Structured version   Visualization version   GIF version

Theorem bezout 15467
Description: Bézout's identity: For any integers 𝐴 and 𝐵, there are integers 𝑥, 𝑦 such that (𝐴 gcd 𝐵) = 𝐴 · 𝑥 + 𝐵 · 𝑦. This is Metamath 100 proof #60. (Contributed by Mario Carneiro, 22-Feb-2014.)
Assertion
Ref Expression
bezout ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem bezout
Dummy variables 𝑡 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2775 . . . . . . . 8 (𝑧 = 𝑡 → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
212rexbidv 3205 . . . . . . 7 (𝑧 = 𝑡 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
3 oveq2 6803 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝐴 · 𝑥) = (𝐴 · 𝑢))
43oveq1d 6810 . . . . . . . . 9 (𝑥 = 𝑢 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑦)))
54eqeq2d 2781 . . . . . . . 8 (𝑥 = 𝑢 → (𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑦))))
6 oveq2 6803 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝐵 · 𝑦) = (𝐵 · 𝑣))
76oveq2d 6811 . . . . . . . . 9 (𝑦 = 𝑣 → ((𝐴 · 𝑢) + (𝐵 · 𝑦)) = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
87eqeq2d 2781 . . . . . . . 8 (𝑦 = 𝑣 → (𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑦)) ↔ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
95, 8cbvrex2v 3329 . . . . . . 7 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑡 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣)))
102, 9syl6bb 276 . . . . . 6 (𝑧 = 𝑡 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))))
1110cbvrabv 3349 . . . . 5 {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} = {𝑡 ∈ ℕ ∣ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ 𝑡 = ((𝐴 · 𝑢) + (𝐵 · 𝑣))}
12 simpll 750 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℤ)
13 simplr 752 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐵 ∈ ℤ)
14 eqid 2771 . . . . 5 inf({𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}, ℝ, < ) = inf({𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}, ℝ, < )
15 simpr 471 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1611, 12, 13, 14, 15bezoutlem4 15466 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))})
17 eqeq1 2775 . . . . . . 7 (𝑧 = (𝐴 gcd 𝐵) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
18172rexbidv 3205 . . . . . 6 (𝑧 = (𝐴 gcd 𝐵) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
1918elrab 3515 . . . . 5 ((𝐴 gcd 𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} ↔ ((𝐴 gcd 𝐵) ∈ ℕ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
2019simprbi 484 . . . 4 ((𝐴 gcd 𝐵) ∈ {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
2116, 20syl 17 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
2221ex 397 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ (𝐴 = 0 ∧ 𝐵 = 0) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
23 0z 11594 . . . 4 0 ∈ ℤ
24 00id 10416 . . . . 5 (0 + 0) = 0
25 0cn 10237 . . . . . . 7 0 ∈ ℂ
2625mul01i 10431 . . . . . 6 (0 · 0) = 0
2726, 26oveq12i 6807 . . . . 5 ((0 · 0) + (0 · 0)) = (0 + 0)
28 gcd0val 15426 . . . . 5 (0 gcd 0) = 0
2924, 27, 283eqtr4ri 2804 . . . 4 (0 gcd 0) = ((0 · 0) + (0 · 0))
30 oveq2 6803 . . . . . . 7 (𝑥 = 0 → (0 · 𝑥) = (0 · 0))
3130oveq1d 6810 . . . . . 6 (𝑥 = 0 → ((0 · 𝑥) + (0 · 𝑦)) = ((0 · 0) + (0 · 𝑦)))
3231eqeq2d 2781 . . . . 5 (𝑥 = 0 → ((0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦)) ↔ (0 gcd 0) = ((0 · 0) + (0 · 𝑦))))
33 oveq2 6803 . . . . . . 7 (𝑦 = 0 → (0 · 𝑦) = (0 · 0))
3433oveq2d 6811 . . . . . 6 (𝑦 = 0 → ((0 · 0) + (0 · 𝑦)) = ((0 · 0) + (0 · 0)))
3534eqeq2d 2781 . . . . 5 (𝑦 = 0 → ((0 gcd 0) = ((0 · 0) + (0 · 𝑦)) ↔ (0 gcd 0) = ((0 · 0) + (0 · 0))))
3632, 35rspc2ev 3474 . . . 4 ((0 ∈ ℤ ∧ 0 ∈ ℤ ∧ (0 gcd 0) = ((0 · 0) + (0 · 0))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦)))
3723, 23, 29, 36mp3an 1572 . . 3 𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦))
38 oveq12 6804 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
39 oveq1 6802 . . . . . 6 (𝐴 = 0 → (𝐴 · 𝑥) = (0 · 𝑥))
40 oveq1 6802 . . . . . 6 (𝐵 = 0 → (𝐵 · 𝑦) = (0 · 𝑦))
4139, 40oveqan12d 6814 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((0 · 𝑥) + (0 · 𝑦)))
4238, 41eqeq12d 2786 . . . 4 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦))))
43422rexbidv 3205 . . 3 ((𝐴 = 0 ∧ 𝐵 = 0) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (0 gcd 0) = ((0 · 𝑥) + (0 · 𝑦))))
4437, 43mpbiri 248 . 2 ((𝐴 = 0 ∧ 𝐵 = 0) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
4522, 44pm2.61d2 173 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wcel 2145  wrex 3062  {crab 3065  (class class class)co 6795  infcinf 8506  cr 10140  0cc0 10141   + caddc 10144   · cmul 10146   < clt 10279  cn 11225  cz 11583   gcd cgcd 15423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-er 7899  df-en 8113  df-dom 8114  df-sdom 8115  df-sup 8507  df-inf 8508  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-n0 11499  df-z 11584  df-uz 11893  df-rp 12035  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-dvds 15189  df-gcd 15424
This theorem is referenced by:  dvdsgcd  15468  dvdsmulgcd  15481  lcmgcdlem  15526  divgcdcoprm0  15585  odbezout  18181  ablfacrp  18672  pgpfac1lem3  18683  znunit  20126  2sqb  25377  ostth3  25547
  Copyright terms: Public domain W3C validator