MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem9 Structured version   Visualization version   GIF version

Theorem 2sqlem9 26480
Description: Lemma for 2sq 26483. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2sqlem9.5 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
2sqlem9.7 (𝜑𝑀𝑁)
2sqlem9.6 (𝜑𝑀 ∈ ℕ)
2sqlem9.4 (𝜑𝑁𝑌)
Assertion
Ref Expression
2sqlem9 (𝜑𝑀𝑆)
Distinct variable groups:   𝑎,𝑏,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦   𝑀,𝑎,𝑏,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑥,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑌,𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑎,𝑏)   𝑆(𝑤)   𝑀(𝑤)   𝑁(𝑤,𝑎,𝑏)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem9
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem9.4 . . 3 (𝜑𝑁𝑌)
2 eqeq1 2742 . . . . . . . 8 (𝑧 = 𝑁 → (𝑧 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑁 = ((𝑥↑2) + (𝑦↑2))))
32anbi2d 628 . . . . . . 7 (𝑧 = 𝑁 → (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑥 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑥↑2) + (𝑦↑2)))))
432rexbidv 3228 . . . . . 6 (𝑧 = 𝑁 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑥↑2) + (𝑦↑2)))))
5 oveq1 7262 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 gcd 𝑦) = (𝑢 gcd 𝑦))
65eqeq1d 2740 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 gcd 𝑦) = 1 ↔ (𝑢 gcd 𝑦) = 1))
7 oveq1 7262 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑥↑2) = (𝑢↑2))
87oveq1d 7270 . . . . . . . . 9 (𝑥 = 𝑢 → ((𝑥↑2) + (𝑦↑2)) = ((𝑢↑2) + (𝑦↑2)))
98eqeq2d 2749 . . . . . . . 8 (𝑥 = 𝑢 → (𝑁 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑁 = ((𝑢↑2) + (𝑦↑2))))
106, 9anbi12d 630 . . . . . . 7 (𝑥 = 𝑢 → (((𝑥 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑢 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑦↑2)))))
11 oveq2 7263 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑢 gcd 𝑦) = (𝑢 gcd 𝑣))
1211eqeq1d 2740 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑢 gcd 𝑦) = 1 ↔ (𝑢 gcd 𝑣) = 1))
13 oveq1 7262 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝑦↑2) = (𝑣↑2))
1413oveq2d 7271 . . . . . . . . 9 (𝑦 = 𝑣 → ((𝑢↑2) + (𝑦↑2)) = ((𝑢↑2) + (𝑣↑2)))
1514eqeq2d 2749 . . . . . . . 8 (𝑦 = 𝑣 → (𝑁 = ((𝑢↑2) + (𝑦↑2)) ↔ 𝑁 = ((𝑢↑2) + (𝑣↑2))))
1612, 15anbi12d 630 . . . . . . 7 (𝑦 = 𝑣 → (((𝑢 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑦↑2))) ↔ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))))
1710, 16cbvrex2vw 3386 . . . . . 6 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))))
184, 17bitrdi 286 . . . . 5 (𝑧 = 𝑁 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))))
19 2sqlem7.2 . . . . 5 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2018, 19elab2g 3604 . . . 4 (𝑁𝑌 → (𝑁𝑌 ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))))
2120ibi 266 . . 3 (𝑁𝑌 → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))))
221, 21syl 17 . 2 (𝜑 → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))))
23 simpr 484 . . . . . 6 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))) ∧ 𝑀 = 1) → 𝑀 = 1)
24 1z 12280 . . . . . . . . 9 1 ∈ ℤ
25 zgz 16562 . . . . . . . . 9 (1 ∈ ℤ → 1 ∈ ℤ[i])
2624, 25ax-mp 5 . . . . . . . 8 1 ∈ ℤ[i]
27 sq1 13840 . . . . . . . . 9 (1↑2) = 1
2827eqcomi 2747 . . . . . . . 8 1 = (1↑2)
29 fveq2 6756 . . . . . . . . . . 11 (𝑥 = 1 → (abs‘𝑥) = (abs‘1))
30 abs1 14937 . . . . . . . . . . 11 (abs‘1) = 1
3129, 30eqtrdi 2795 . . . . . . . . . 10 (𝑥 = 1 → (abs‘𝑥) = 1)
3231oveq1d 7270 . . . . . . . . 9 (𝑥 = 1 → ((abs‘𝑥)↑2) = (1↑2))
3332rspceeqv 3567 . . . . . . . 8 ((1 ∈ ℤ[i] ∧ 1 = (1↑2)) → ∃𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2))
3426, 28, 33mp2an 688 . . . . . . 7 𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2)
35 2sq.1 . . . . . . . 8 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
36352sqlem1 26470 . . . . . . 7 (1 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2))
3734, 36mpbir 230 . . . . . 6 1 ∈ 𝑆
3823, 37eqeltrdi 2847 . . . . 5 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))) ∧ 𝑀 = 1) → 𝑀𝑆)
39 2sqlem9.5 . . . . . . . 8 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
4039ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
41 2sqlem9.7 . . . . . . . 8 (𝜑𝑀𝑁)
4241ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑀𝑁)
4335, 192sqlem7 26477 . . . . . . . . . 10 𝑌 ⊆ (𝑆 ∩ ℕ)
44 inss2 4160 . . . . . . . . . 10 (𝑆 ∩ ℕ) ⊆ ℕ
4543, 44sstri 3926 . . . . . . . . 9 𝑌 ⊆ ℕ
4645, 1sselid 3915 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
4746ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑁 ∈ ℕ)
48 2sqlem9.6 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
4948ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑀 ∈ ℕ)
50 simprr 769 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑀 ≠ 1)
51 eluz2b3 12591 . . . . . . . 8 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
5249, 50, 51sylanbrc 582 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑀 ∈ (ℤ‘2))
53 simplrl 773 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑢 ∈ ℤ)
54 simplrr 774 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑣 ∈ ℤ)
55 simprll 775 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → (𝑢 gcd 𝑣) = 1)
56 simprlr 776 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑁 = ((𝑢↑2) + (𝑣↑2)))
57 eqid 2738 . . . . . . 7 (((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
58 eqid 2738 . . . . . . 7 (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
59 eqid 2738 . . . . . . 7 ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) / ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) gcd (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)))) = ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) / ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) gcd (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))))
60 eqid 2738 . . . . . . 7 ((((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) / ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) gcd (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)))) = ((((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) / ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) gcd (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))))
6135, 19, 40, 42, 47, 52, 53, 54, 55, 56, 57, 58, 59, 602sqlem8 26479 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑀𝑆)
6261anassrs 467 . . . . 5 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))) ∧ 𝑀 ≠ 1) → 𝑀𝑆)
6338, 62pm2.61dane 3031 . . . 4 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))) → 𝑀𝑆)
6463ex 412 . . 3 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) → 𝑀𝑆))
6564rexlimdvva 3222 . 2 (𝜑 → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) → 𝑀𝑆))
6622, 65mpd 15 1 (𝜑𝑀𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  cin 3882   class class class wbr 5070  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  cz 12249  cuz 12511  ...cfz 13168   mod cmo 13517  cexp 13710  abscabs 14873  cdvds 15891   gcd cgcd 16129  ℤ[i]cgz 16558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-prm 16305  df-gz 16559
This theorem is referenced by:  2sqlem10  26481
  Copyright terms: Public domain W3C validator