MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqlem9 Structured version   Visualization version   GIF version

Theorem 2sqlem9 27345
Description: Lemma for 2sq 27348. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
2sqlem7.2 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2sqlem9.5 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
2sqlem9.7 (𝜑𝑀𝑁)
2sqlem9.6 (𝜑𝑀 ∈ ℕ)
2sqlem9.4 (𝜑𝑁𝑌)
Assertion
Ref Expression
2sqlem9 (𝜑𝑀𝑆)
Distinct variable groups:   𝑎,𝑏,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦   𝑀,𝑎,𝑏,𝑥,𝑦,𝑧   𝑆,𝑎,𝑏,𝑥,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑌,𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑎,𝑏)   𝑆(𝑤)   𝑀(𝑤)   𝑁(𝑤,𝑎,𝑏)   𝑌(𝑧,𝑤)

Proof of Theorem 2sqlem9
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem9.4 . . 3 (𝜑𝑁𝑌)
2 eqeq1 2734 . . . . . . . 8 (𝑧 = 𝑁 → (𝑧 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑁 = ((𝑥↑2) + (𝑦↑2))))
32anbi2d 630 . . . . . . 7 (𝑧 = 𝑁 → (((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑥 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑥↑2) + (𝑦↑2)))))
432rexbidv 3203 . . . . . 6 (𝑧 = 𝑁 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑥↑2) + (𝑦↑2)))))
5 oveq1 7397 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 gcd 𝑦) = (𝑢 gcd 𝑦))
65eqeq1d 2732 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 gcd 𝑦) = 1 ↔ (𝑢 gcd 𝑦) = 1))
7 oveq1 7397 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑥↑2) = (𝑢↑2))
87oveq1d 7405 . . . . . . . . 9 (𝑥 = 𝑢 → ((𝑥↑2) + (𝑦↑2)) = ((𝑢↑2) + (𝑦↑2)))
98eqeq2d 2741 . . . . . . . 8 (𝑥 = 𝑢 → (𝑁 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑁 = ((𝑢↑2) + (𝑦↑2))))
106, 9anbi12d 632 . . . . . . 7 (𝑥 = 𝑢 → (((𝑥 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑥↑2) + (𝑦↑2))) ↔ ((𝑢 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑦↑2)))))
11 oveq2 7398 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑢 gcd 𝑦) = (𝑢 gcd 𝑣))
1211eqeq1d 2732 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑢 gcd 𝑦) = 1 ↔ (𝑢 gcd 𝑣) = 1))
13 oveq1 7397 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝑦↑2) = (𝑣↑2))
1413oveq2d 7406 . . . . . . . . 9 (𝑦 = 𝑣 → ((𝑢↑2) + (𝑦↑2)) = ((𝑢↑2) + (𝑣↑2)))
1514eqeq2d 2741 . . . . . . . 8 (𝑦 = 𝑣 → (𝑁 = ((𝑢↑2) + (𝑦↑2)) ↔ 𝑁 = ((𝑢↑2) + (𝑣↑2))))
1612, 15anbi12d 632 . . . . . . 7 (𝑦 = 𝑣 → (((𝑢 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑦↑2))) ↔ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))))
1710, 16cbvrex2vw 3221 . . . . . 6 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑁 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))))
184, 17bitrdi 287 . . . . 5 (𝑧 = 𝑁 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))))
19 2sqlem7.2 . . . . 5 𝑌 = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 gcd 𝑦) = 1 ∧ 𝑧 = ((𝑥↑2) + (𝑦↑2)))}
2018, 19elab2g 3650 . . . 4 (𝑁𝑌 → (𝑁𝑌 ↔ ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))))
2120ibi 267 . . 3 (𝑁𝑌 → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))))
221, 21syl 17 . 2 (𝜑 → ∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))))
23 simpr 484 . . . . . 6 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))) ∧ 𝑀 = 1) → 𝑀 = 1)
24 1z 12570 . . . . . . . . 9 1 ∈ ℤ
25 zgz 16911 . . . . . . . . 9 (1 ∈ ℤ → 1 ∈ ℤ[i])
2624, 25ax-mp 5 . . . . . . . 8 1 ∈ ℤ[i]
27 sq1 14167 . . . . . . . . 9 (1↑2) = 1
2827eqcomi 2739 . . . . . . . 8 1 = (1↑2)
29 fveq2 6861 . . . . . . . . . . 11 (𝑥 = 1 → (abs‘𝑥) = (abs‘1))
30 abs1 15270 . . . . . . . . . . 11 (abs‘1) = 1
3129, 30eqtrdi 2781 . . . . . . . . . 10 (𝑥 = 1 → (abs‘𝑥) = 1)
3231oveq1d 7405 . . . . . . . . 9 (𝑥 = 1 → ((abs‘𝑥)↑2) = (1↑2))
3332rspceeqv 3614 . . . . . . . 8 ((1 ∈ ℤ[i] ∧ 1 = (1↑2)) → ∃𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2))
3426, 28, 33mp2an 692 . . . . . . 7 𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2)
35 2sq.1 . . . . . . . 8 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2))
36352sqlem1 27335 . . . . . . 7 (1 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 1 = ((abs‘𝑥)↑2))
3734, 36mpbir 231 . . . . . 6 1 ∈ 𝑆
3823, 37eqeltrdi 2837 . . . . 5 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))) ∧ 𝑀 = 1) → 𝑀𝑆)
39 2sqlem9.5 . . . . . . . 8 (𝜑 → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
4039ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → ∀𝑏 ∈ (1...(𝑀 − 1))∀𝑎𝑌 (𝑏𝑎𝑏𝑆))
41 2sqlem9.7 . . . . . . . 8 (𝜑𝑀𝑁)
4241ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑀𝑁)
4335, 192sqlem7 27342 . . . . . . . . . 10 𝑌 ⊆ (𝑆 ∩ ℕ)
44 inss2 4204 . . . . . . . . . 10 (𝑆 ∩ ℕ) ⊆ ℕ
4543, 44sstri 3959 . . . . . . . . 9 𝑌 ⊆ ℕ
4645, 1sselid 3947 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
4746ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑁 ∈ ℕ)
48 2sqlem9.6 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
4948ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑀 ∈ ℕ)
50 simprr 772 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑀 ≠ 1)
51 eluz2b3 12888 . . . . . . . 8 (𝑀 ∈ (ℤ‘2) ↔ (𝑀 ∈ ℕ ∧ 𝑀 ≠ 1))
5249, 50, 51sylanbrc 583 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑀 ∈ (ℤ‘2))
53 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑢 ∈ ℤ)
54 simplrr 777 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑣 ∈ ℤ)
55 simprll 778 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → (𝑢 gcd 𝑣) = 1)
56 simprlr 779 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑁 = ((𝑢↑2) + (𝑣↑2)))
57 eqid 2730 . . . . . . 7 (((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
58 eqid 2730 . . . . . . 7 (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
59 eqid 2730 . . . . . . 7 ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) / ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) gcd (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)))) = ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) / ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) gcd (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))))
60 eqid 2730 . . . . . . 7 ((((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) / ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) gcd (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)))) = ((((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) / ((((𝑢 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) gcd (((𝑣 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))))
6135, 19, 40, 42, 47, 52, 53, 54, 55, 56, 57, 58, 59, 602sqlem8 27344 . . . . . 6 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) ∧ 𝑀 ≠ 1)) → 𝑀𝑆)
6261anassrs 467 . . . . 5 ((((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))) ∧ 𝑀 ≠ 1) → 𝑀𝑆)
6338, 62pm2.61dane 3013 . . . 4 (((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) ∧ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2)))) → 𝑀𝑆)
6463ex 412 . . 3 ((𝜑 ∧ (𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ)) → (((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) → 𝑀𝑆))
6564rexlimdvva 3195 . 2 (𝜑 → (∃𝑢 ∈ ℤ ∃𝑣 ∈ ℤ ((𝑢 gcd 𝑣) = 1 ∧ 𝑁 = ((𝑢↑2) + (𝑣↑2))) → 𝑀𝑆))
6622, 65mpd 15 1 (𝜑𝑀𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  cin 3916   class class class wbr 5110  cmpt 5191  ran crn 5642  cfv 6514  (class class class)co 7390  1c1 11076   + caddc 11078  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  cz 12536  cuz 12800  ...cfz 13475   mod cmo 13838  cexp 14033  abscabs 15207  cdvds 16229   gcd cgcd 16471  ℤ[i]cgz 16907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649  df-gz 16908
This theorem is referenced by:  2sqlem10  27346
  Copyright terms: Public domain W3C validator