| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupref | Structured version Visualization version GIF version | ||
| Description: If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsupref.j | ⊢ Ⅎ𝑗𝐹 |
| limsupref.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| limsupref.s | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
| limsupref.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| limsupref.b | ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) |
| Ref | Expression |
|---|---|
| limsupref | ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupref.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | limsupref.s | . 2 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
| 3 | limsupref.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 4 | limsupref.b | . . 3 ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) | |
| 5 | breq2 5111 | . . . . . 6 ⊢ (𝑏 = 𝑦 → ((abs‘(𝐹‘𝑗)) ≤ 𝑏 ↔ (abs‘(𝐹‘𝑗)) ≤ 𝑦)) | |
| 6 | 5 | imbi2d 340 | . . . . 5 ⊢ (𝑏 = 𝑦 → ((𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) ↔ (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
| 7 | 6 | ralbidv 3156 | . . . 4 ⊢ (𝑏 = 𝑦 → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
| 8 | breq1 5110 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝑗 ↔ 𝑖 ≤ 𝑗)) | |
| 9 | 8 | imbi1d 341 | . . . . . 6 ⊢ (𝑘 = 𝑖 → ((𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ (𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
| 10 | 9 | ralbidv 3156 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∀𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
| 11 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) | |
| 12 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑖 ≤ 𝑥 | |
| 13 | nfcv 2891 | . . . . . . . . . 10 ⊢ Ⅎ𝑗abs | |
| 14 | limsupref.j | . . . . . . . . . . 11 ⊢ Ⅎ𝑗𝐹 | |
| 15 | nfcv 2891 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗𝑥 | |
| 16 | 14, 15 | nffv 6868 | . . . . . . . . . 10 ⊢ Ⅎ𝑗(𝐹‘𝑥) |
| 17 | 13, 16 | nffv 6868 | . . . . . . . . 9 ⊢ Ⅎ𝑗(abs‘(𝐹‘𝑥)) |
| 18 | nfcv 2891 | . . . . . . . . 9 ⊢ Ⅎ𝑗 ≤ | |
| 19 | nfcv 2891 | . . . . . . . . 9 ⊢ Ⅎ𝑗𝑦 | |
| 20 | 17, 18, 19 | nfbr 5154 | . . . . . . . 8 ⊢ Ⅎ𝑗(abs‘(𝐹‘𝑥)) ≤ 𝑦 |
| 21 | 12, 20 | nfim 1896 | . . . . . . 7 ⊢ Ⅎ𝑗(𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦) |
| 22 | breq2 5111 | . . . . . . . 8 ⊢ (𝑗 = 𝑥 → (𝑖 ≤ 𝑗 ↔ 𝑖 ≤ 𝑥)) | |
| 23 | 2fveq3 6863 | . . . . . . . . 9 ⊢ (𝑗 = 𝑥 → (abs‘(𝐹‘𝑗)) = (abs‘(𝐹‘𝑥))) | |
| 24 | 23 | breq1d 5117 | . . . . . . . 8 ⊢ (𝑗 = 𝑥 → ((abs‘(𝐹‘𝑗)) ≤ 𝑦 ↔ (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
| 25 | 22, 24 | imbi12d 344 | . . . . . . 7 ⊢ (𝑗 = 𝑥 → ((𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦))) |
| 26 | 11, 21, 25 | cbvralw 3280 | . . . . . 6 ⊢ (∀𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
| 27 | 26 | a1i 11 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦))) |
| 28 | 10, 27 | bitrd 279 | . . . 4 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦))) |
| 29 | 7, 28 | cbvrex2vw 3220 | . . 3 ⊢ (∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) ↔ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
| 30 | 4, 29 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
| 31 | 1, 2, 3, 30 | limsupre 45639 | 1 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 supcsup 9391 ℝcr 11067 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 abscabs 15200 lim supclsp 15436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ico 13312 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |