Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupref Structured version   Visualization version   GIF version

Theorem limsupref 43226
Description: If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupref.j 𝑗𝐹
limsupref.a (𝜑𝐴 ⊆ ℝ)
limsupref.s (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
limsupref.f (𝜑𝐹:𝐴⟶ℝ)
limsupref.b (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
Assertion
Ref Expression
limsupref (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Distinct variable groups:   𝐴,𝑏,𝑗,𝑘   𝐹,𝑏,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘,𝑏)   𝐹(𝑗)

Proof of Theorem limsupref
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupref.a . 2 (𝜑𝐴 ⊆ ℝ)
2 limsupref.s . 2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
3 limsupref.f . 2 (𝜑𝐹:𝐴⟶ℝ)
4 limsupref.b . . 3 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
5 breq2 5078 . . . . . 6 (𝑏 = 𝑦 → ((abs‘(𝐹𝑗)) ≤ 𝑏 ↔ (abs‘(𝐹𝑗)) ≤ 𝑦))
65imbi2d 341 . . . . 5 (𝑏 = 𝑦 → ((𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ↔ (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
76ralbidv 3112 . . . 4 (𝑏 = 𝑦 → (∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ↔ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
8 breq1 5077 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
98imbi1d 342 . . . . . 6 (𝑘 = 𝑖 → ((𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
109ralbidv 3112 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑗𝐴 (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
11 nfv 1917 . . . . . . 7 𝑥(𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)
12 nfv 1917 . . . . . . . 8 𝑗 𝑖𝑥
13 nfcv 2907 . . . . . . . . . 10 𝑗abs
14 limsupref.j . . . . . . . . . . 11 𝑗𝐹
15 nfcv 2907 . . . . . . . . . . 11 𝑗𝑥
1614, 15nffv 6784 . . . . . . . . . 10 𝑗(𝐹𝑥)
1713, 16nffv 6784 . . . . . . . . 9 𝑗(abs‘(𝐹𝑥))
18 nfcv 2907 . . . . . . . . 9 𝑗
19 nfcv 2907 . . . . . . . . 9 𝑗𝑦
2017, 18, 19nfbr 5121 . . . . . . . 8 𝑗(abs‘(𝐹𝑥)) ≤ 𝑦
2112, 20nfim 1899 . . . . . . 7 𝑗(𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)
22 breq2 5078 . . . . . . . 8 (𝑗 = 𝑥 → (𝑖𝑗𝑖𝑥))
23 2fveq3 6779 . . . . . . . . 9 (𝑗 = 𝑥 → (abs‘(𝐹𝑗)) = (abs‘(𝐹𝑥)))
2423breq1d 5084 . . . . . . . 8 (𝑗 = 𝑥 → ((abs‘(𝐹𝑗)) ≤ 𝑦 ↔ (abs‘(𝐹𝑥)) ≤ 𝑦))
2522, 24imbi12d 345 . . . . . . 7 (𝑗 = 𝑥 → ((𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)))
2611, 21, 25cbvralw 3373 . . . . . 6 (∀𝑗𝐴 (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦))
2726a1i 11 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐴 (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)))
2810, 27bitrd 278 . . . 4 (𝑘 = 𝑖 → (∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)))
297, 28cbvrex2vw 3397 . . 3 (∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ↔ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦))
304, 29sylib 217 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦))
311, 2, 3, 30limsupre 43182 1 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wnfc 2887  wral 3064  wrex 3065  wss 3887   class class class wbr 5074  wf 6429  cfv 6433  supcsup 9199  cr 10870  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010  abscabs 14945  lim supclsp 15179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator