Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupref Structured version   Visualization version   GIF version

Theorem limsupref 45656
Description: If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupref.j 𝑗𝐹
limsupref.a (𝜑𝐴 ⊆ ℝ)
limsupref.s (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
limsupref.f (𝜑𝐹:𝐴⟶ℝ)
limsupref.b (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
Assertion
Ref Expression
limsupref (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Distinct variable groups:   𝐴,𝑏,𝑗,𝑘   𝐹,𝑏,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘,𝑏)   𝐹(𝑗)

Proof of Theorem limsupref
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupref.a . 2 (𝜑𝐴 ⊆ ℝ)
2 limsupref.s . 2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
3 limsupref.f . 2 (𝜑𝐹:𝐴⟶ℝ)
4 limsupref.b . . 3 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
5 breq2 5119 . . . . . 6 (𝑏 = 𝑦 → ((abs‘(𝐹𝑗)) ≤ 𝑏 ↔ (abs‘(𝐹𝑗)) ≤ 𝑦))
65imbi2d 340 . . . . 5 (𝑏 = 𝑦 → ((𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ↔ (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
76ralbidv 3158 . . . 4 (𝑏 = 𝑦 → (∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ↔ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
8 breq1 5118 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
98imbi1d 341 . . . . . 6 (𝑘 = 𝑖 → ((𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
109ralbidv 3158 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑗𝐴 (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
11 nfv 1914 . . . . . . 7 𝑥(𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)
12 nfv 1914 . . . . . . . 8 𝑗 𝑖𝑥
13 nfcv 2893 . . . . . . . . . 10 𝑗abs
14 limsupref.j . . . . . . . . . . 11 𝑗𝐹
15 nfcv 2893 . . . . . . . . . . 11 𝑗𝑥
1614, 15nffv 6875 . . . . . . . . . 10 𝑗(𝐹𝑥)
1713, 16nffv 6875 . . . . . . . . 9 𝑗(abs‘(𝐹𝑥))
18 nfcv 2893 . . . . . . . . 9 𝑗
19 nfcv 2893 . . . . . . . . 9 𝑗𝑦
2017, 18, 19nfbr 5162 . . . . . . . 8 𝑗(abs‘(𝐹𝑥)) ≤ 𝑦
2112, 20nfim 1896 . . . . . . 7 𝑗(𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)
22 breq2 5119 . . . . . . . 8 (𝑗 = 𝑥 → (𝑖𝑗𝑖𝑥))
23 2fveq3 6870 . . . . . . . . 9 (𝑗 = 𝑥 → (abs‘(𝐹𝑗)) = (abs‘(𝐹𝑥)))
2423breq1d 5125 . . . . . . . 8 (𝑗 = 𝑥 → ((abs‘(𝐹𝑗)) ≤ 𝑦 ↔ (abs‘(𝐹𝑥)) ≤ 𝑦))
2522, 24imbi12d 344 . . . . . . 7 (𝑗 = 𝑥 → ((𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)))
2611, 21, 25cbvralw 3283 . . . . . 6 (∀𝑗𝐴 (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦))
2726a1i 11 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐴 (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)))
2810, 27bitrd 279 . . . 4 (𝑘 = 𝑖 → (∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)))
297, 28cbvrex2vw 3222 . . 3 (∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ↔ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦))
304, 29sylib 218 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦))
311, 2, 3, 30limsupre 45612 1 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wnfc 2878  wral 3046  wrex 3055  wss 3922   class class class wbr 5115  wf 6515  cfv 6519  supcsup 9409  cr 11085  +∞cpnf 11223  *cxr 11225   < clt 11226  cle 11227  abscabs 15210  lim supclsp 15443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9411  df-inf 9412  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-3 12261  df-n0 12459  df-z 12546  df-uz 12810  df-rp 12966  df-ico 13325  df-seq 13977  df-exp 14037  df-cj 15075  df-re 15076  df-im 15077  df-sqrt 15211  df-abs 15212  df-limsup 15444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator