Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupref Structured version   Visualization version   GIF version

Theorem limsupref 45683
Description: If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupref.j 𝑗𝐹
limsupref.a (𝜑𝐴 ⊆ ℝ)
limsupref.s (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
limsupref.f (𝜑𝐹:𝐴⟶ℝ)
limsupref.b (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
Assertion
Ref Expression
limsupref (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Distinct variable groups:   𝐴,𝑏,𝑗,𝑘   𝐹,𝑏,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘,𝑏)   𝐹(𝑗)

Proof of Theorem limsupref
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupref.a . 2 (𝜑𝐴 ⊆ ℝ)
2 limsupref.s . 2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
3 limsupref.f . 2 (𝜑𝐹:𝐴⟶ℝ)
4 limsupref.b . . 3 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
5 breq2 5111 . . . . . 6 (𝑏 = 𝑦 → ((abs‘(𝐹𝑗)) ≤ 𝑏 ↔ (abs‘(𝐹𝑗)) ≤ 𝑦))
65imbi2d 340 . . . . 5 (𝑏 = 𝑦 → ((𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ↔ (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
76ralbidv 3156 . . . 4 (𝑏 = 𝑦 → (∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ↔ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
8 breq1 5110 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
98imbi1d 341 . . . . . 6 (𝑘 = 𝑖 → ((𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
109ralbidv 3156 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑗𝐴 (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
11 nfv 1914 . . . . . . 7 𝑥(𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)
12 nfv 1914 . . . . . . . 8 𝑗 𝑖𝑥
13 nfcv 2891 . . . . . . . . . 10 𝑗abs
14 limsupref.j . . . . . . . . . . 11 𝑗𝐹
15 nfcv 2891 . . . . . . . . . . 11 𝑗𝑥
1614, 15nffv 6868 . . . . . . . . . 10 𝑗(𝐹𝑥)
1713, 16nffv 6868 . . . . . . . . 9 𝑗(abs‘(𝐹𝑥))
18 nfcv 2891 . . . . . . . . 9 𝑗
19 nfcv 2891 . . . . . . . . 9 𝑗𝑦
2017, 18, 19nfbr 5154 . . . . . . . 8 𝑗(abs‘(𝐹𝑥)) ≤ 𝑦
2112, 20nfim 1896 . . . . . . 7 𝑗(𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)
22 breq2 5111 . . . . . . . 8 (𝑗 = 𝑥 → (𝑖𝑗𝑖𝑥))
23 2fveq3 6863 . . . . . . . . 9 (𝑗 = 𝑥 → (abs‘(𝐹𝑗)) = (abs‘(𝐹𝑥)))
2423breq1d 5117 . . . . . . . 8 (𝑗 = 𝑥 → ((abs‘(𝐹𝑗)) ≤ 𝑦 ↔ (abs‘(𝐹𝑥)) ≤ 𝑦))
2522, 24imbi12d 344 . . . . . . 7 (𝑗 = 𝑥 → ((𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)))
2611, 21, 25cbvralw 3280 . . . . . 6 (∀𝑗𝐴 (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦))
2726a1i 11 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐴 (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)))
2810, 27bitrd 279 . . . 4 (𝑘 = 𝑖 → (∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)))
297, 28cbvrex2vw 3220 . . 3 (∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ↔ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦))
304, 29sylib 218 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦))
311, 2, 3, 30limsupre 45639 1 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  wrex 3053  wss 3914   class class class wbr 5107  wf 6507  cfv 6511  supcsup 9391  cr 11067  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  abscabs 15200  lim supclsp 15436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator