| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupref | Structured version Visualization version GIF version | ||
| Description: If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsupref.j | ⊢ Ⅎ𝑗𝐹 |
| limsupref.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| limsupref.s | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
| limsupref.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| limsupref.b | ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) |
| Ref | Expression |
|---|---|
| limsupref | ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupref.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | limsupref.s | . 2 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
| 3 | limsupref.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 4 | limsupref.b | . . 3 ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) | |
| 5 | breq2 5119 | . . . . . 6 ⊢ (𝑏 = 𝑦 → ((abs‘(𝐹‘𝑗)) ≤ 𝑏 ↔ (abs‘(𝐹‘𝑗)) ≤ 𝑦)) | |
| 6 | 5 | imbi2d 340 | . . . . 5 ⊢ (𝑏 = 𝑦 → ((𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) ↔ (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
| 7 | 6 | ralbidv 3158 | . . . 4 ⊢ (𝑏 = 𝑦 → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
| 8 | breq1 5118 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝑗 ↔ 𝑖 ≤ 𝑗)) | |
| 9 | 8 | imbi1d 341 | . . . . . 6 ⊢ (𝑘 = 𝑖 → ((𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ (𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
| 10 | 9 | ralbidv 3158 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∀𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
| 11 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) | |
| 12 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑖 ≤ 𝑥 | |
| 13 | nfcv 2893 | . . . . . . . . . 10 ⊢ Ⅎ𝑗abs | |
| 14 | limsupref.j | . . . . . . . . . . 11 ⊢ Ⅎ𝑗𝐹 | |
| 15 | nfcv 2893 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗𝑥 | |
| 16 | 14, 15 | nffv 6875 | . . . . . . . . . 10 ⊢ Ⅎ𝑗(𝐹‘𝑥) |
| 17 | 13, 16 | nffv 6875 | . . . . . . . . 9 ⊢ Ⅎ𝑗(abs‘(𝐹‘𝑥)) |
| 18 | nfcv 2893 | . . . . . . . . 9 ⊢ Ⅎ𝑗 ≤ | |
| 19 | nfcv 2893 | . . . . . . . . 9 ⊢ Ⅎ𝑗𝑦 | |
| 20 | 17, 18, 19 | nfbr 5162 | . . . . . . . 8 ⊢ Ⅎ𝑗(abs‘(𝐹‘𝑥)) ≤ 𝑦 |
| 21 | 12, 20 | nfim 1896 | . . . . . . 7 ⊢ Ⅎ𝑗(𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦) |
| 22 | breq2 5119 | . . . . . . . 8 ⊢ (𝑗 = 𝑥 → (𝑖 ≤ 𝑗 ↔ 𝑖 ≤ 𝑥)) | |
| 23 | 2fveq3 6870 | . . . . . . . . 9 ⊢ (𝑗 = 𝑥 → (abs‘(𝐹‘𝑗)) = (abs‘(𝐹‘𝑥))) | |
| 24 | 23 | breq1d 5125 | . . . . . . . 8 ⊢ (𝑗 = 𝑥 → ((abs‘(𝐹‘𝑗)) ≤ 𝑦 ↔ (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
| 25 | 22, 24 | imbi12d 344 | . . . . . . 7 ⊢ (𝑗 = 𝑥 → ((𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦))) |
| 26 | 11, 21, 25 | cbvralw 3283 | . . . . . 6 ⊢ (∀𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
| 27 | 26 | a1i 11 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦))) |
| 28 | 10, 27 | bitrd 279 | . . . 4 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦))) |
| 29 | 7, 28 | cbvrex2vw 3222 | . . 3 ⊢ (∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) ↔ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
| 30 | 4, 29 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
| 31 | 1, 2, 3, 30 | limsupre 45612 | 1 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2878 ∀wral 3046 ∃wrex 3055 ⊆ wss 3922 class class class wbr 5115 ⟶wf 6515 ‘cfv 6519 supcsup 9409 ℝcr 11085 +∞cpnf 11223 ℝ*cxr 11225 < clt 11226 ≤ cle 11227 abscabs 15210 lim supclsp 15443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-inf 9412 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-z 12546 df-uz 12810 df-rp 12966 df-ico 13325 df-seq 13977 df-exp 14037 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-limsup 15444 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |