Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupref Structured version   Visualization version   GIF version

Theorem limsupref 45541
Description: If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupref.j 𝑗𝐹
limsupref.a (𝜑𝐴 ⊆ ℝ)
limsupref.s (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
limsupref.f (𝜑𝐹:𝐴⟶ℝ)
limsupref.b (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
Assertion
Ref Expression
limsupref (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Distinct variable groups:   𝐴,𝑏,𝑗,𝑘   𝐹,𝑏,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘,𝑏)   𝐹(𝑗)

Proof of Theorem limsupref
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupref.a . 2 (𝜑𝐴 ⊆ ℝ)
2 limsupref.s . 2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
3 limsupref.f . 2 (𝜑𝐹:𝐴⟶ℝ)
4 limsupref.b . . 3 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
5 breq2 5173 . . . . . 6 (𝑏 = 𝑦 → ((abs‘(𝐹𝑗)) ≤ 𝑏 ↔ (abs‘(𝐹𝑗)) ≤ 𝑦))
65imbi2d 340 . . . . 5 (𝑏 = 𝑦 → ((𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ↔ (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
76ralbidv 3180 . . . 4 (𝑏 = 𝑦 → (∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ↔ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
8 breq1 5172 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
98imbi1d 341 . . . . . 6 (𝑘 = 𝑖 → ((𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
109ralbidv 3180 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑗𝐴 (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
11 nfv 1913 . . . . . . 7 𝑥(𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)
12 nfv 1913 . . . . . . . 8 𝑗 𝑖𝑥
13 nfcv 2904 . . . . . . . . . 10 𝑗abs
14 limsupref.j . . . . . . . . . . 11 𝑗𝐹
15 nfcv 2904 . . . . . . . . . . 11 𝑗𝑥
1614, 15nffv 6929 . . . . . . . . . 10 𝑗(𝐹𝑥)
1713, 16nffv 6929 . . . . . . . . 9 𝑗(abs‘(𝐹𝑥))
18 nfcv 2904 . . . . . . . . 9 𝑗
19 nfcv 2904 . . . . . . . . 9 𝑗𝑦
2017, 18, 19nfbr 5216 . . . . . . . 8 𝑗(abs‘(𝐹𝑥)) ≤ 𝑦
2112, 20nfim 1895 . . . . . . 7 𝑗(𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)
22 breq2 5173 . . . . . . . 8 (𝑗 = 𝑥 → (𝑖𝑗𝑖𝑥))
23 2fveq3 6924 . . . . . . . . 9 (𝑗 = 𝑥 → (abs‘(𝐹𝑗)) = (abs‘(𝐹𝑥)))
2423breq1d 5179 . . . . . . . 8 (𝑗 = 𝑥 → ((abs‘(𝐹𝑗)) ≤ 𝑦 ↔ (abs‘(𝐹𝑥)) ≤ 𝑦))
2522, 24imbi12d 344 . . . . . . 7 (𝑗 = 𝑥 → ((𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)))
2611, 21, 25cbvralw 3307 . . . . . 6 (∀𝑗𝐴 (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦))
2726a1i 11 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐴 (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)))
2810, 27bitrd 279 . . . 4 (𝑘 = 𝑖 → (∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)))
297, 28cbvrex2vw 3243 . . 3 (∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ↔ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦))
304, 29sylib 218 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦))
311, 2, 3, 30limsupre 45497 1 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2103  wnfc 2888  wral 3063  wrex 3072  wss 3970   class class class wbr 5169  wf 6568  cfv 6572  supcsup 9505  cr 11179  +∞cpnf 11317  *cxr 11319   < clt 11320  cle 11321  abscabs 15279  lim supclsp 15512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-sup 9507  df-inf 9508  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-n0 12550  df-z 12636  df-uz 12900  df-rp 13054  df-ico 13409  df-seq 14049  df-exp 14109  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-limsup 15513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator