Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupref Structured version   Visualization version   GIF version

Theorem limsupref 45633
Description: If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupref.j 𝑗𝐹
limsupref.a (𝜑𝐴 ⊆ ℝ)
limsupref.s (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
limsupref.f (𝜑𝐹:𝐴⟶ℝ)
limsupref.b (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
Assertion
Ref Expression
limsupref (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Distinct variable groups:   𝐴,𝑏,𝑗,𝑘   𝐹,𝑏,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘,𝑏)   𝐹(𝑗)

Proof of Theorem limsupref
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupref.a . 2 (𝜑𝐴 ⊆ ℝ)
2 limsupref.s . 2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
3 limsupref.f . 2 (𝜑𝐹:𝐴⟶ℝ)
4 limsupref.b . . 3 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
5 breq2 5127 . . . . . 6 (𝑏 = 𝑦 → ((abs‘(𝐹𝑗)) ≤ 𝑏 ↔ (abs‘(𝐹𝑗)) ≤ 𝑦))
65imbi2d 340 . . . . 5 (𝑏 = 𝑦 → ((𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ↔ (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
76ralbidv 3165 . . . 4 (𝑏 = 𝑦 → (∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ↔ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
8 breq1 5126 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑗𝑖𝑗))
98imbi1d 341 . . . . . 6 (𝑘 = 𝑖 → ((𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
109ralbidv 3165 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑗𝐴 (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)))
11 nfv 1913 . . . . . . 7 𝑥(𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦)
12 nfv 1913 . . . . . . . 8 𝑗 𝑖𝑥
13 nfcv 2897 . . . . . . . . . 10 𝑗abs
14 limsupref.j . . . . . . . . . . 11 𝑗𝐹
15 nfcv 2897 . . . . . . . . . . 11 𝑗𝑥
1614, 15nffv 6895 . . . . . . . . . 10 𝑗(𝐹𝑥)
1713, 16nffv 6895 . . . . . . . . 9 𝑗(abs‘(𝐹𝑥))
18 nfcv 2897 . . . . . . . . 9 𝑗
19 nfcv 2897 . . . . . . . . 9 𝑗𝑦
2017, 18, 19nfbr 5170 . . . . . . . 8 𝑗(abs‘(𝐹𝑥)) ≤ 𝑦
2112, 20nfim 1895 . . . . . . 7 𝑗(𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)
22 breq2 5127 . . . . . . . 8 (𝑗 = 𝑥 → (𝑖𝑗𝑖𝑥))
23 2fveq3 6890 . . . . . . . . 9 (𝑗 = 𝑥 → (abs‘(𝐹𝑗)) = (abs‘(𝐹𝑥)))
2423breq1d 5133 . . . . . . . 8 (𝑗 = 𝑥 → ((abs‘(𝐹𝑗)) ≤ 𝑦 ↔ (abs‘(𝐹𝑥)) ≤ 𝑦))
2522, 24imbi12d 344 . . . . . . 7 (𝑗 = 𝑥 → ((𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)))
2611, 21, 25cbvralw 3289 . . . . . 6 (∀𝑗𝐴 (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦))
2726a1i 11 . . . . 5 (𝑘 = 𝑖 → (∀𝑗𝐴 (𝑖𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)))
2810, 27bitrd 279 . . . 4 (𝑘 = 𝑖 → (∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑦) ↔ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦)))
297, 28cbvrex2vw 3228 . . 3 (∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ↔ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦))
304, 29sylib 218 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥𝐴 (𝑖𝑥 → (abs‘(𝐹𝑥)) ≤ 𝑦))
311, 2, 3, 30limsupre 45589 1 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  wnfc 2882  wral 3050  wrex 3059  wss 3931   class class class wbr 5123  wf 6536  cfv 6540  supcsup 9461  cr 11135  +∞cpnf 11273  *cxr 11275   < clt 11276  cle 11277  abscabs 15254  lim supclsp 15487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-sup 9463  df-inf 9464  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-div 11902  df-nn 12248  df-2 12310  df-3 12311  df-n0 12509  df-z 12596  df-uz 12860  df-rp 13016  df-ico 13374  df-seq 14024  df-exp 14084  df-cj 15119  df-re 15120  df-im 15121  df-sqrt 15255  df-abs 15256  df-limsup 15488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator