| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupref | Structured version Visualization version GIF version | ||
| Description: If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| limsupref.j | ⊢ Ⅎ𝑗𝐹 |
| limsupref.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| limsupref.s | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
| limsupref.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| limsupref.b | ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) |
| Ref | Expression |
|---|---|
| limsupref | ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupref.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 2 | limsupref.s | . 2 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
| 3 | limsupref.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 4 | limsupref.b | . . 3 ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) | |
| 5 | breq2 5093 | . . . . . 6 ⊢ (𝑏 = 𝑦 → ((abs‘(𝐹‘𝑗)) ≤ 𝑏 ↔ (abs‘(𝐹‘𝑗)) ≤ 𝑦)) | |
| 6 | 5 | imbi2d 340 | . . . . 5 ⊢ (𝑏 = 𝑦 → ((𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) ↔ (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
| 7 | 6 | ralbidv 3153 | . . . 4 ⊢ (𝑏 = 𝑦 → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
| 8 | breq1 5092 | . . . . . . 7 ⊢ (𝑘 = 𝑖 → (𝑘 ≤ 𝑗 ↔ 𝑖 ≤ 𝑗)) | |
| 9 | 8 | imbi1d 341 | . . . . . 6 ⊢ (𝑘 = 𝑖 → ((𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ (𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
| 10 | 9 | ralbidv 3153 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∀𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦))) |
| 11 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) | |
| 12 | nfv 1915 | . . . . . . . 8 ⊢ Ⅎ𝑗 𝑖 ≤ 𝑥 | |
| 13 | nfcv 2892 | . . . . . . . . . 10 ⊢ Ⅎ𝑗abs | |
| 14 | limsupref.j | . . . . . . . . . . 11 ⊢ Ⅎ𝑗𝐹 | |
| 15 | nfcv 2892 | . . . . . . . . . . 11 ⊢ Ⅎ𝑗𝑥 | |
| 16 | 14, 15 | nffv 6827 | . . . . . . . . . 10 ⊢ Ⅎ𝑗(𝐹‘𝑥) |
| 17 | 13, 16 | nffv 6827 | . . . . . . . . 9 ⊢ Ⅎ𝑗(abs‘(𝐹‘𝑥)) |
| 18 | nfcv 2892 | . . . . . . . . 9 ⊢ Ⅎ𝑗 ≤ | |
| 19 | nfcv 2892 | . . . . . . . . 9 ⊢ Ⅎ𝑗𝑦 | |
| 20 | 17, 18, 19 | nfbr 5136 | . . . . . . . 8 ⊢ Ⅎ𝑗(abs‘(𝐹‘𝑥)) ≤ 𝑦 |
| 21 | 12, 20 | nfim 1897 | . . . . . . 7 ⊢ Ⅎ𝑗(𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦) |
| 22 | breq2 5093 | . . . . . . . 8 ⊢ (𝑗 = 𝑥 → (𝑖 ≤ 𝑗 ↔ 𝑖 ≤ 𝑥)) | |
| 23 | 2fveq3 6822 | . . . . . . . . 9 ⊢ (𝑗 = 𝑥 → (abs‘(𝐹‘𝑗)) = (abs‘(𝐹‘𝑥))) | |
| 24 | 23 | breq1d 5099 | . . . . . . . 8 ⊢ (𝑗 = 𝑥 → ((abs‘(𝐹‘𝑗)) ≤ 𝑦 ↔ (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
| 25 | 22, 24 | imbi12d 344 | . . . . . . 7 ⊢ (𝑗 = 𝑥 → ((𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦))) |
| 26 | 11, 21, 25 | cbvralw 3272 | . . . . . 6 ⊢ (∀𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
| 27 | 26 | a1i 11 | . . . . 5 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐴 (𝑖 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦))) |
| 28 | 10, 27 | bitrd 279 | . . . 4 ⊢ (𝑘 = 𝑖 → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦))) |
| 29 | 7, 28 | cbvrex2vw 3213 | . . 3 ⊢ (∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) ↔ ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
| 30 | 4, 29 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∃𝑖 ∈ ℝ ∀𝑥 ∈ 𝐴 (𝑖 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑦)) |
| 31 | 1, 2, 3, 30 | limsupre 45658 | 1 ⊢ (𝜑 → (lim sup‘𝐹) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2110 Ⅎwnfc 2877 ∀wral 3045 ∃wrex 3054 ⊆ wss 3900 class class class wbr 5089 ⟶wf 6473 ‘cfv 6477 supcsup 9319 ℝcr 10997 +∞cpnf 11135 ℝ*cxr 11137 < clt 11138 ≤ cle 11139 abscabs 15133 lim supclsp 15369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-ico 13243 df-seq 13901 df-exp 13961 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-limsup 15370 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |